Skip to main content
Log in

Investigation of high-temperature-resistant rhenium–boron neutron shields by experimental studies and Monte Carlo simulations

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In this study, novel rhenium–boron neutron-shielding high-temperature-resistant materials were designed. The considered samples, Re60–B40, Re58–B42, Re50–B50, and Re40–B60, with different concentrations of rhenium and boron were investigated to elucidate their neutron-shielding performances, and compare them with well-known neutron-shielding materials such as the 316LN quality nuclear steel. In addition to the experimental studies, Monte Carlo simulations were performed using the FLUKA and GEANT4 codes, where 4.5-MeV neutrons emitted by a 241Am–Be source were employed. Experimental equivalent dose rates, simulated track lengths, energy balances, and neutron mass absorption cross sections were discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.J. Martin, R.S. Reid, Life test approach for refractory metal/sodium heat pipes. AIP Conf. Proc. 813, 108–116 (2006). https://doi.org/10.1063/1.2169186

    Article  Google Scholar 

  2. A. Xu, E.J. Armstrong David et al., Ion irradiation induced clustering in W–Re–Ta, W–Re and W–Ta alloys: an atom probe tomography and nano indentation study. Acta Mater. 124, 71–78 (2017). https://doi.org/10.1016/j.actamat.2016.10.050

    Article  Google Scholar 

  3. T. Mastrena, V. Radchenko et al., Bulk production and evaluation of high specific activity 186gRe for cancer therapy using enriched 186WO3 targets in a proton beam. Nucl. Med. Biol. 49, 24–29 (2017). https://doi.org/10.1016/S0022-3115(99)00269-X

    Article  Google Scholar 

  4. R.L. Klueh, D.J. Alexander et al., Effect of rhenium and osmium on mechanical properties of a 9Cr–2W–0.25V–0.07Ta–0.1C steel. J. Nucl. Mater. 279(1), 91–99 (2000). https://doi.org/10.1016/S0022-3115(99)00269-X

    Article  Google Scholar 

  5. A.V. Krajnikova, F. Moritob et al., Embrittlement of molybdenum–rhenium welds under low and high temperature neutron irradiation. J. Nucl. Mater. 444(1–3), 404–415 (2014). https://doi.org/10.1016/j.jnucmat.2013.10.027

    Article  Google Scholar 

  6. C.S. Corr, S.O. Ryan et al., Mechanical properties of tungsten following rhenium ion and helium plasma exposure. Nucl. Mater. Energy (2017). https://doi.org/10.1016/j.nme.2017.04.012 (in press)

  7. H. Yiping, L. Lu et al., The design study of a new nuclear protection material. Nucl. Eng. Des. 248, 22–27 (2012). https://doi.org/10.1016/j.nucengdes.2012.03.016

    Article  Google Scholar 

  8. T. Korkut, A. Karabulut et al., Investigation of neutron shielding properties depending on number of boron atoms for colemanite, ulexite and tincal ores by experiments and FLUKA Monte Carlo simulations. Appl. Radiat. Isotopes 70(1), 341–345 (2012). https://doi.org/10.1016/j.apradiso.2011.09.006

    Article  Google Scholar 

  9. R.A. Karam, T.F. Parkinson et al., Final Technical Reports on the Nuclear Properties of Rhenium (1963). Department of Nuclear Engineering University of Florida Gainesville, Florida

  10. S.X. Bai, L. Zhu et al., High-temperature diffusion in couple of chemical vapor deposited rhenium and electrodeposited iridium. Int. J. Refract. Met. H 41(563–570), 2005 (2013). https://doi.org/10.1016/j.ijrmhm.2013.07.008

    Google Scholar 

  11. A. Ferrari, P.R. Sala et al., FLUKA: a multi-particle transport code. CERN-2005-10, INFN/TC_05/11, SLAC-R-773

  12. G. Battistoni, S. Muraro et al., In: Proceedings of the Hadronic Shower Simulation Workshop 2006, Fermilab (6–8 September 2006)

  13. S. Agostinelli, J. Allison et al., Geant4-a simulation toolkit. Nucl. Instrum. Methods A 506, 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  Google Scholar 

  14. J. Allison, K. Amako et al., Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270–278 (2006). https://doi.org/10.1109/TNS.2006.869826

    Article  Google Scholar 

  15. K.S. Mann, T. Korkut, Gamma-ray buildup factors study for deep penetration in some silicates. Ann. Nucl. Energy 51, 81–93 (2013). https://doi.org/10.1016/j.anucene.2012.08.024

    Article  Google Scholar 

  16. O. Gencel, A. Bozkurt et al., Determination and calculation of gamma and neutron shielding characteristics of concretes containing different hematite proportions. Ann. Nucl. Energy 38(12), 2719–2723 (2011). https://doi.org/10.1016/j.anucene.2011.08.010

    Article  Google Scholar 

  17. T. Korkut, H. Korkut, FLUKA simulations of DPA in 6H–SiC reactor blanket material induced by different radiation fields frequently mentioned in literature. J. Fusion Energy 32(1), 66–70 (2013). https://doi.org/10.1007/s10894-012-9525-5

    Article  MathSciNet  Google Scholar 

  18. T. Korkut, H. Korkut et al., A new radiation shielding material: amethyst ore. Ann. Nucl. Energy 38(1), 56–59 (2011). https://doi.org/10.1016/j.anucene.2010.08.017

    Article  Google Scholar 

  19. T. Korkut, O. Gencel et al., X-ray, gamma, and neutron radiation tests on epoxy-ferrochromium slag composites by experiments and monte carlo simulations. Int J Polymer Anal Charact 18, 224–231 (2013). https://doi.org/10.1080/1023666X.2013.755658

    Article  Google Scholar 

  20. M.F. Kaplan, Concrete Radiation Shielding: Nuclear Physics, Concrete Properties, Design and Construction (Longman Scientific & Technical, New York, 1989)

    Google Scholar 

  21. A.B. Smith, Fast-neutron scattering from elemental rhenium. J. Phys. G Nucl. Part. Phys. 30(4), 407 (2004). https://doi.org/10.1088/0954-3899/30/4/003

    Article  Google Scholar 

  22. http://geant4.cern.ch/

  23. http://www.fluka.org/fluka.php

Download references

Acknowledgements

We wish to thank Prof. Gökhan Budak, who died on January 26, 2013, for his contributions to our studies and scientific world.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turgay Korkut.

Additional information

This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) (No: 111T764).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korkut, T., Korkut, H., Aygün, B. et al. Investigation of high-temperature-resistant rhenium–boron neutron shields by experimental studies and Monte Carlo simulations. NUCL SCI TECH 29, 102 (2018). https://doi.org/10.1007/s41365-018-0430-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0430-0

Keywords

Navigation