Skip to main content
Log in

Radiation shielding features for various tellurium-based alloys: a comparative study

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We investigate the radiation shielding properties for four Te-based alloys. X-ray diffraction patterns revealed pure phases in all studied samples; however, a secondary phase is detected in the CrTe sample in good agreement with the literature. All samples’ densities were measured using the Archimedes principle. The mass attenuation coefficient (MAC) was calculated using Geant4 MC Toolkit and then compared with the XCOM data. Many photon-shielding properties were computed for all investigated samples based on the MAC. The Phy-X and SRIM were used to determine the fast neutron removal cross-section (ΣR) and projected range, respectively. As a result, PbTe shows superior shielding features compared to the rest of the investigated samples to use this sample in different shielding applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. B. Aygün, E. Şakar, T. Korkut, M.I. Sayyed, A. Karabulut, New high-temperature resistant heavy concretes for fast neutron and gamma radiation shielding. Radiochim. Acta 107, 359–367 (2019). https://doi.org/10.1515/ract-2018-3075

    Article  CAS  Google Scholar 

  2. I. Akkurt, C. Basyigit, S. Kilincarslan, B. Mavi, A. Akkurt, Radiation shielding of concretes containing different aggregates. Cem. Concr. Compos. 28, 153–157 (2006). https://doi.org/10.1016/j.cemconcomp.2005.09.006

    Article  CAS  Google Scholar 

  3. I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24, 1389–1401 (1997). https://doi.org/10.1016/S0306-4549(97)00003-0

    Article  CAS  Google Scholar 

  4. A.V. Trukhanov, S.S. Grabchikov, A.A. Solobai, D.I. Tishkevich, S.V. Trukhanov, E.L. Trukhanova, AC and DC-shielding properties for the Ni80Fe20/Cu film structures. J. Magn. Magn. Mater. 443, 142–148 (2017). https://doi.org/10.1016/j.jmmm.2017.07.053

    Article  CAS  Google Scholar 

  5. D.I. Tishkevich, S.S. Grabchikov, S.B. Lastovskii, S.V. Trukhanov, T.I. Zubar, D.S. Vasin, A.V. Trukhanov, A.L. Kozlovskiy, M.M. Zdorovets, Effect of the synthesis conditions and microstructure for highly effective electron shields production based on Bi coatings. ACS Appl. Energy Mater. 1, 1695–1702 (2018). https://doi.org/10.1021/acsaem.8b00179

    Article  CAS  Google Scholar 

  6. D.I. Tishkevich, S.S. Grabchikov, S.B. Lastovskii, S.V. Trukhanov, D.S. Vasin, T.I. Zubar, A.L. Kozlovskiy, M.V. Zdorovets, V.A. Sivakov, A.V. Muradyan, T.R. Trukhanov, Function composites materials for shielding applications: Correlation between phase separation and attenuation properties. J. Alloys Compd. 771, 238–245 (2019). https://doi.org/10.1016/j.jallcom.2018.08.209

    Article  CAS  Google Scholar 

  7. A.H. Abdalsalam, M.I. Sayyed, T. Ali Hussein, E. Şakar, M.H.A. Mhareb, B. Ceviz Şakar, B. Alim, K.M. Kaky, A study of gamma attenuation property of UHMWPE/Bi2O3 nanocomposites. Chem. Phys. 523, 92–98 (2019). https://doi.org/10.1016/j.chemphys.2019.04.013

    Article  CAS  Google Scholar 

  8. A.H. Abdalsalam, E. Şakar, K.M. Kaky, M.H.A. Mhareb, B. Ceviz Sakar, M.I. Sayyed, A. Gürol, Investigation of gamma ray attenuation features of bismuth oxide nano powder reinforced high-density polyethylene matrix composites. Eur. Phys. J. Plus 168, 108537 (2020). https://doi.org/10.1016/j.radphyschem.2019.108537

    Article  CAS  Google Scholar 

  9. M.H.A. Mhareb, M.I. Sayyed, Y.S.M. Alajerami, M. Alqahtani, N. Dwaikat, A.M. Alsagry, M. Al-Yatimi, M. Zakariah, Structural and radiation shielding features for a new series of borate glass samples: part I. Eur. Phys. J. Plus (2021). https://doi.org/10.1140/epjp/s13360-020-00984-7

    Article  Google Scholar 

  10. M.I. Sayyed, A.A. Ati, M.H.A. Mhareb, K.A. Mahmoud, K.M. Kaky, S.O. Baki, M.A. Mahdi, Novel tellurite glass (60–x)TeO2–10GeO2 -20ZnO–10BaO - xBi2O3 for radiation shielding. J. Alloys Compd. 844, 155668 (2020). https://doi.org/10.1016/j.jallcom.2020.155668

    Article  CAS  Google Scholar 

  11. M. Monisha, A.N. D’Souza, V. Hegde, N.S. Prabhu, M.I. Sayyed, G. Lakshminarayana, S.D. Kamath, Dy3+ doped SiO2–B2O3–Al2O3–NaF–ZnF2 glasses: an exploration of optical and gamma radiation shielding features. Curr. Appl. Phys. 20, 1207–1216 (2020). https://doi.org/10.1016/j.cap.2020.08.004

    Article  Google Scholar 

  12. M.H.A. Mhareb, M. Alqahtani, F. Alshahri, Y.S.M. Alajerami, N. Saleh, N. Alonizan, M.I. Sayyed, M.G.B. Ashiq, T. Ghrib, S.I. Al-Dhafar, T. Alayed, M.A. Morsy, The impact of barium oxide on physical, structural, optical, and shielding features of sodium zinc borate glass. J. Non-Cryst. Solids. 541, 120090 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120090

    Article  CAS  Google Scholar 

  13. Y. Alajerami, D. Drabold, M. Mhareb, K. Subedi, K. Cimatu, G. Chen, Physical, structural, and shielding properties of cadmium bismuth borate-based glasses. J. Appl. Phys. (2020). https://doi.org/10.1063/1.5143116

    Article  Google Scholar 

  14. M.K. Hamad, M.H.A. Mhareb, Y.S. Alajerami, M.I. Sayyed, G. Saleh, Y. Maswadeh, K.A. Ziq, Radiation shielding properties of Nd0.6Sr0.4Mn1−yNiyO3 substitute with different concentrations of nickle. Radiat. Phys. Chem. (2020). https://doi.org/10.1016/j.radphyschem.2020.108920

    Article  Google Scholar 

  15. F. Akman, Z.Y. Khattari, M.R. Kaçal, M.I. Sayyed, F. Afaneh, The radiation shielding features for some silicide, boride and oxide types ceramics. Radiat. Phys. Chem. 160, 9–14 (2019). https://doi.org/10.1016/j.radphyschem.2019.03.001

    Article  CAS  Google Scholar 

  16. M.H.A. Mhareb, Y. Slimani, Y.S. Alajerami, M.I. Sayyed, E. Lacomme, M.A. Almessiere, Structural and radiation shielding properties of BaTiO3 ceramic with different concentrations of Bismuth and Ytterbium. Ceram. Int. 46, 28877–28886 (2020). https://doi.org/10.1016/j.ceramint.2020.08.055

    Article  CAS  Google Scholar 

  17. D.I. Shlimas, M.V. Zdorovets, A.L. Kozlovskiy, Synthesis and resistance to helium swelling of Li2TiO3 ceramics. J. Mater. Sci. Mater. Electron. 31, 12903–12912 (2020). https://doi.org/10.1007/s10854-020-03843-4

    Article  CAS  Google Scholar 

  18. M.V. Zdorovets, A.S. Kurlov, A.L. Kozlovskiy, Radiation defects upon irradiation with Kr14+ ions of TaC0.81 ceramics. Surf. Coat. Technol. 386, 125499 (2020). https://doi.org/10.1016/j.surfcoat.2020.125499

    Article  CAS  Google Scholar 

  19. M.V. Zdorovets, I.E. Kenzhina, V. Kudryashov, A.L. Kozlovskiy, Helium swelling in WO3 microcomposites. Ceram. Int. 46, 10521–10529 (2020). https://doi.org/10.1016/j.ceramint.2020.01.053

    Article  CAS  Google Scholar 

  20. T. Kaur, J. Sharma, T. Singh, Review on scope of metallic alloys in gamma rays shield designing. Prog. Nucl. Energy. 113, 95–113 (2019). https://doi.org/10.1016/j.pnucene.2019.01.016

    Article  CAS  Google Scholar 

  21. K.S. Babu, S.C. Lingam, D.V. Krishna Reddy, Gamma-ray cross sections and effective atomic numbers in some alloys in the energy range 32 to 662 keV. Can. J. Phys. (1984). https://doi.org/10.1139/p84-028

    Article  Google Scholar 

  22. D.V. KrishnaReddy, K.S. Babu, S.C. Lingam, Photon cross sections and effective atomic numbers in some alloys. Can. J. Phys. (1985). https://doi.org/10.1139/p85-237

    Article  Google Scholar 

  23. P. Limkitjaroenporn, J. Kaewkhao, S. Asavavisithchai, Determination of mass attenuation coefficients and effective atomic numbers for Inconel 738 alloy for different energies obtained from Compton scattering. Ann. Nucl. Energy 53, 64–68 (2013). https://doi.org/10.1016/j.anucene.2012.08.020

    Article  CAS  Google Scholar 

  24. U. Perişanoğlu, L. Demir, A study of K shell X-ray intensity ratios of NixCr1-x alloys in external magnetic field and determination of effective atomic numbers of these alloys. Radiat. Phys. Chem. 110, 119–125 (2015). https://doi.org/10.1016/j.radphyschem.2015.01.032

    Article  CAS  Google Scholar 

  25. R. Sharma, J. Sharma, T. Singh, Effective atomic numbers for some alloys at 662 keV using gamma rays backscattering technique. Phys. Sci. Int. J. 11, 1–6 (2016). https://doi.org/10.9734/psij/2016/27243

    Article  CAS  Google Scholar 

  26. S. Kaur, A. Kaur, P.S. Singh, T. Singh, Scope of Pb-Sn binary alloys as gamma rays shielding material. Prog. Nucl. Energy 93, 277–286 (2016). https://doi.org/10.1016/j.pnucene.2016.08.022

    Article  CAS  Google Scholar 

  27. S. Kobayashi, N. Hosoda, R. Takashima, Tungsten alloys as radiation protection materials. Nucl. Instruments Methods Phys. Res. Sect. A 390, 426–430 (1997). https://doi.org/10.1016/S0168-9002(97)00392-6

    Article  CAS  Google Scholar 

  28. N. Jamal AbuAlRoos, M.N. Azman, N.A. Baharul Amin, R. Zainon, Tungsten-based material as promising new lead-free gamma radiation shielding material in nuclear medicine. Phys. Med. 78, 48–57 (2020). https://doi.org/10.1016/j.ejmp.2020.08.017

    Article  Google Scholar 

  29. V.R.K. Murty, D.P. Winkoun, K.R.S. Devan, Effective atomic numbers for W/Cu alloy using transmission experiments. Appl. Radiat. Isot. 53, 945–948 (2000). https://doi.org/10.1016/S0969-8043(00)00248-7

    Article  CAS  Google Scholar 

  30. V.R.K. Murty, Effective atomic numbers for W/Cu alloy for total photon attenuation. Radiat. Phys. Chem. 71, 667–669 (2004). https://doi.org/10.1016/j.radphyschem.2004.04.046

    Article  CAS  Google Scholar 

  31. S. Seven, I.H. Karahan, Ö.F. Bakkaloglu, The measurement of total mass attenuation coefficients of CoCuNi alloys. J. Quant. Spectrosc. Radiat. Transf. 83, 237–242 (2004). https://doi.org/10.1016/S0022-4073(03)00118-3

    Article  CAS  Google Scholar 

  32. O. Jelli, S. Erzeneoǧlu, I.H. Karahan, G. Çankaya, Effective atomic numbers for CoCuNi alloys using transmission experiments. J. Quant. Spectrosc. Radiat. Transf. 91, 485–491. (2005). https://doi.org/10.1016/j.jqsrt.2004.07.006

  33. G. Apaydin, E. Cengiz, E. Tirasoǧlu, V. Aylikci, F.O. Bakkaloǧlu, Studies on mass attenuation coefficients, effective atomic numbers and electron densities for CoCuAg alloy thin film. Phys. Scr. (2009). https://doi.org/10.1088/0031-8949/79/05/055302

    Article  Google Scholar 

  34. J. Kaewkhao, J. Laopaiboon, W. Chewpraditkul, Determination of effective atomic numbers and effective electron densities for Cu/Zn alloy. J. Quant. Spectrosc. Radiat. Transf. 109, 1260–1265 (2008). https://doi.org/10.1016/j.jqsrt.2007.10.007

    Article  CAS  Google Scholar 

  35. V.P. Singh, N.M. Badiger, Study of mass attenuation coefficients, effective atomic numbers and electron densities of carbon steel and stainless steels. Radioprotection 48, 431–443 (2013). https://doi.org/10.1051/radiopro/2013067

    Article  Google Scholar 

  36. J. Blink, J. Farmer, J. Choi, C. Saw, Applications in the nuclear industry for thermal spray amorphous metal and ceramic coatings. Metall. Mater. Trans. A 40, 1344–1354 (2009). https://doi.org/10.1007/s11661-009-9830-4

    Article  CAS  Google Scholar 

  37. S. M. Al-Jaff, Investigation the Effective atomic number , electron density, Half value layer and mean free path of steel types304and 347 in the energy range 40KeV-130KeV, Journal of Natural Sciences Research. 5 (2013). ISSN 2225-0921. https://www.iiste.org/Journals/index.php/JNSR/article/view/9723.

  38. R. Singh, S. Singh, G. Singh, K. Singh, Gamma radiation shielding properties of steel and iron slags. Sci. Res. (2017). https://doi.org/10.4236/njgc.2017.71001

    Article  Google Scholar 

  39. R.M. Hamad, M.H.A. Mhareb, Y.S. Alajerami, M.I. Sayyed, G. Saleh, M.K. Hamad, K.A. Ziq, A comprehensive ionizing radiation shielding study of FexSe0.5Te0.5 alloys with various iron concentrations. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.157636

    Article  Google Scholar 

  40. M.K. Hamad, E. Martinez-Teran, Y. Maswadeh, R. Hamad, E.G. Al-Nahari, A.A. El-Gendy, K.A. Ziq, Room temperature magnetocaloric effect in CrTe1-xSbx alloys. J. Magn. Magn. Mater. 514, 167171 (2020). https://doi.org/10.1016/j.jmmm.2020.167171

    Article  CAS  Google Scholar 

  41. M.K. Hamad, K.A. Ziq, Critical behavior of CrTe1-xSbx ferromagnet. AIP Adv. (2018). https://doi.org/10.1063/1.5042550

    Article  Google Scholar 

  42. M.K. Hamad, Y. Maswadeh, E. Martinez-Teran, A. El-Gendy, K. Ziq, Structural, magnetic, and critical behavior of CrTe1-xSbx alloys. Eur. Phys. J. Plus (2021). https://doi.org/10.1140/epjp/s13360-021-01534-5

    Article  Google Scholar 

  43. B.O.. Soederberg, E. Zeppezauer, T. Boive, B.N. And, C. Brändén, Structure of Horse Liver Alcohol Dehydrogenase. II. Heavy-atom Derivatives of Type A Crystals., 24 (1970) 3567–3574. https://doi.org/10.3891/acta.chem.scand.24-3567.

  44. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXCom—a program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. 71, 653–654 (2004). https://doi.org/10.1016/j.radphyschem.2004.04.040

    Article  CAS  Google Scholar 

  45. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. (2020). https://doi.org/10.1016/j.radphyschem.2019.108496

    Article  Google Scholar 

  46. P. Rodrigues, A. Trindade, L. Peralta, C. Alves, A. Chaves, M. Lopes, Application of GEANT4radiation transport toolkit to dose calculations in anthropomorphic phantoms. Appl. Radiat. Isot. 61, 1451–1461 (2004). https://doi.org/10.1016/j.apradiso.2004.05.073

    Article  CAS  Google Scholar 

  47. M. Hamad, Bragg-curve simulation of carbon-ion beams for particle-therapy applications: a study with the GEANT4 toolkit. Nucl. Eng. Technol. 53, 2767–2773 (2021). https://doi.org/10.1016/j.net.2021.02.011

    Article  CAS  Google Scholar 

  48. G.B. Street, E. Sawatzky, K. Lee, Magnetic properties of vapor grown crystals of hexagonal chromium telluride. J. Phys. Chem. Solids. 34, 1453–1455 (1973). https://doi.org/10.1016/S0022-3697(73)80048-4

    Article  CAS  Google Scholar 

  49. Y. Al-Hadeethi, M.I. Sayyed, BaO–Li2O–B2O3 glass systems: Potential utilization in gamma radiation protection. Prog. Nucl. Energy. 129, 103511 (2020). https://doi.org/10.1016/j.pnucene.2020.103511

    Article  CAS  Google Scholar 

  50. M.I. Sayyed, Y. Al-Hadeethi, M.M. AlShammari, M. Ahmed, S.H. Al-Heniti, Y.S. Rammah, Physical, optical and gamma radiation shielding competence of newly boro-tellurite based glasses: TeO2–B2O3–ZnO–Li2O3–Bi2O3. Ceram. Int. 47, 611–618 (2020). https://doi.org/10.1016/j.ceramint.2020.08.168

    Article  CAS  Google Scholar 

  51. N. Chanthima, J. Kaewkhao, Investigation on radiation shielding parameters of bismuth borosilicate glass from 1 keV to 100 GeV. Ann. Nucl. Energy. 55, 23–28 (2013). https://doi.org/10.1016/j.anucene.2012.12.011

    Article  CAS  Google Scholar 

  52. O. Agar, M.I. Sayyed, F. Akman, H.O. Tekin, M.R. Kaçal, An extensive investigation on gamma ray shielding features of Pd/Ag-based alloys. Nucl. Eng. Technol. 51, 853–859 (2019). https://doi.org/10.1016/j.net.2018.12.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors from KFUPM acknowledge the support provided by the Deanship of Scientific Research at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. H. A. Mhareb or M. Kh. Hamad.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mhareb, M.H.A., Zeama, M., Elsafi, M. et al. Radiation shielding features for various tellurium-based alloys: a comparative study. J Mater Sci: Mater Electron 32, 26798–26811 (2021). https://doi.org/10.1007/s10854-021-07057-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07057-0

Navigation