Skip to main content

Advertisement

Log in

Investigating nuclear dissipation properties at large deformations via excitation energy at scission

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Using the stochastic Langevin model coupled with a statistical decay model, we study nuclear dissipation properties at large deformations with excitation energy at scission (\(E_{\mathrm {sc}}^*\)) measured in experiments. It is found that the postsaddle dissipation strength required to fit \(E_{\mathrm {sc}}^*\) data is 12 \(\times 10^{21}\) s\(^{-1}\) for \(^{254,256} \)Fm and 6 \(\times 10^{21}\) s\(^{-1}\) for \(^{189}\)Au, which has a smaller postsaddle deformation than the former heavy nucleus, showing a rise of nuclear dissipation strength with increasing deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D. Hilscher, H. Rossner, Ann. Phys. 17, 471 (1992). doi:10.1051/anphys:01992001706047100

    Article  Google Scholar 

  2. J.U. Andersen, J. Chevallier, J.S. Forster et al., Attosecond time delays in heavy-ion induced fission measured by crystal blocking. Phys. Rev. C 78, 064609 (2008). doi:10.1103/PhysRevC.78.064609

    Article  Google Scholar 

  3. W.Q. Shen, J. Albinski, A. Gobbi et al., Fission and quasifission in U-induced reactions. Phys. Rev. C 36, 115 (1987). doi:10.1103/PhysRevC.36.115

    Article  Google Scholar 

  4. J. Velkovska, C.R. Morton, R.L. McGrath et al., Quasifission reactions as a probe of nuclear viscosity. Phys. Rev. C 59, 1506 (1999). doi:10.1103/PhysRevC.59.1506

    Article  Google Scholar 

  5. E. Williams, D.J. Hinde, M. Dasgupta et al., Evolution of signatures of quasifission in reactions forming curium. Phys. Rev. C 88, 034611 (2013). doi:10.1103/PhysRevC.88.034611

    Article  Google Scholar 

  6. A.K. Nasirov, G. Giardina, G. Mandaglio et al., Quasifission and fusion-fission in reactions with massive nuclei: comparison of reactions leading to the Z = 120 element. Phys. Rev. C 79, 024606 (2009). doi:10.1103/PhysRevC.79.024606

    Article  Google Scholar 

  7. Y. Aritomo, Fusion hindrance and roles of shell effects in superheavy mass region. Nucl. Phys. A 88, 034611 (2013). doi:10.1016/j.nuclphysa.2006.09.018

    Google Scholar 

  8. J. Benlliure, E. Casarejos, J. Pereira et al., Transient and quasistationary dissipative effects in the fission flux across the barrier in 1A GeV \(^{238}\)U on deuterium reactions. Phys. Rev. C 74, 014609 (2006). doi:10.1103/PhysRevC.74.014609

    Article  Google Scholar 

  9. H. Singh, K.S. Golda, Santanu Pal et al., Role of nuclear dissipation and entrance channel mass asymmetry in pre-scission neutron multiplicity enhancement in fusion-fission reactions. Phys. Rev. C 78, 024609 (2008). doi:10.1103/PhysRevC.78.024609

    Article  Google Scholar 

  10. R. Sandal, B.R. Behera, V. Singh et al., Effect of N/Z in pre-scission neutron multiplicity for \(^{16,18}\)O + \(^{194,198}\)Pt systems. Phys. Rev. C 87, 014604 (2013). doi:10.1103/PhysRevC.87.014604

    Article  Google Scholar 

  11. J. Sadhukhan, S. Pal, Critical comparison of Kramers’ fission width with the stationary width from the Langevin equation. Phys. Rev. C 79, 064606 (2009). doi:10.1103/PhysRevC.79.064606

    Article  Google Scholar 

  12. W. Ye, Heavy-ion versus \(^3\)He/\(^4\)He fusion-fission reactions: Angular momentum dependence of dissipation in nuclear fission. Phys. Rev. C 84, 034617 (2011). doi:10.1103/PhysRevC.84.034617

    Article  Google Scholar 

  13. V. Singh, B.R. Behera, Maninder Kaur et al., Neutron multiplicity measurements for \(^{19}\)F + \(^{194,196,198}\)Pt systems to investigate the effect of shell closure on nuclear dissipation. Phys. Rev. C 87, 064601 (2013). doi:10.1103/PhysRevC.87.064601

    Article  Google Scholar 

  14. Y. Ayyad, J. Benlliure, E. Casarejos et al., Proton-induced fission of \(^{181}\)Ta at high excitation energies. Phys. Rev. C 89, 054610 (2014). doi:10.1103/PhysRevC.89.054610

    Article  Google Scholar 

  15. P. Fröbrich, I.I. Gontchar, Langevin fluctuation-dissipation dynamics of hot nuclei: prescission neutron multiplicities and fission probabilities. Nucl. Phys. A 556, 281 (1993). doi:10.1016/0375-9474(93)90352-X

    Article  Google Scholar 

  16. K. Pomorski, B. Nerlo-Pomorskaa, A. Surowieca et al., Light-particle emission from the fissioning nuclei \(^{126}\)Ba, \(^{188}\)Pt and \(^{266,272,278}\)110: theoretical predictions and experimental results. Nucl. Phys. A 679, 25 (2000). doi:10.1016/S0375-9474(00)00327-4

    Article  Google Scholar 

  17. W. Ye, Role of N/Z in giant dipole resonance \(\gamma \) rays as a probe of post-saddle nuclear dissipation. Phys. Lett. B 681, 413 (2000). doi:10.1016/j.physletb.2009.10.067

    Article  Google Scholar 

  18. A.V. Karpov, P.N. Nadtochy, D.V. Vanin et al., Three-dimensional Langevin calculations of fission fragment mass-energy distribution from excited compound nuclei. Phys. Rev. C 63, 054610 (2001). doi:10.1103/PhysRevC.63.054610

    Article  Google Scholar 

  19. Jhilam Sadhukhan, Santanu Pal, Role of saddle-to-scission dynamics in fission fragment mass distribution. Phys. Rev. C 84, 044610 (2011). doi:10.1103/PhysRevC.84.044610

    Article  Google Scholar 

  20. P. Fröbrich, I.I. Gontchar, Langevin description of fusion, deep-inelastic collisions and heavy-ion-induced fission. Phys. Rep. 292, 131 (1998). doi:10.1016/S0370-1573(97)00042-2

    Article  Google Scholar 

  21. P.N. Nadtochy, G.D. Adeev, A.V. Karpov, More detailed study of fission dynamics in fusion-fission reactions within a stochastic approach. Phys. Rev. C 65, 064615 (2002). doi:10.1103/PhysRevC.65.064615

    Article  Google Scholar 

  22. H.J. Krappe, K. Pomorski, Theory of Nuclear Fission. Lecture Notes in Physics Vol. 838 (Springer, Berlin, 2012)

  23. W. Ye, N. Wang, Significant role of level-density parameters in probing nuclear dissipation with light-ion-induced fission excitation functions. Phys. Rev. C 87, 014610 (2013). doi:10.1103/PhysRevC.87.014610

    Article  Google Scholar 

  24. B.B. Back, D.J. Blumenthal, C.N. Davids et al., Fission hindrance in hot \(^{216}\)Th: evaporation residue measurements. Phys. Rev. C 74, 044602 (1999). doi:10.1103/PhysRevC.74.044602

    Article  Google Scholar 

  25. P.D. Shidling, N.M. Badiger, S. Nath et al., Fission hindrance studies in \(^{200}\)Pb: evaporation residue cross section and spin distribution measurements. Phys. Rev. C 60, 064603 (1999). doi:10.1103/PhysRevC.60.064603

    Article  Google Scholar 

  26. K. Ramachandran, A. Chatterjee, A. Navin et al., Fission time scale from prescission neutron, proton, and \(\alpha \) particle multiplicities in \(^{28}\)Si+\(^{175}\)Lu. Phys. Rev. C 73, 064609 (1999). doi:10.1103/PhysRevC.73.064609

    Article  Google Scholar 

  27. W. Ye, N. Wang, Spallation reaction and the probe of nuclear dissipation with excitation energy at scission. Nucl. Sci. Tech. 24, 050521 (2013)

    Google Scholar 

  28. P. Fröbrich, On the dynamics of fission of hot nuclei. Nucl. Phys. A 787, 170 (2007). doi:10.1016/j.nuclphysa.2006.12.028

    Article  Google Scholar 

  29. P. Möller, W.D. Myers, W.J. Swiatecki et al., Nuclear mass formula with a finite-range droplet model and a folded-Yukawa single-particle potential. At. Data Nucl. Data Tables 39, 225 (1988). doi:10.1016/0092-640X(88)90023-X

    Article  Google Scholar 

  30. A.V. Ignatyuk, M.G. Itkis, V.N. Okolovich et al., Fission of pre-actinide nuclei. Excitation functions for the (\(\alpha, f\)) reaction. Yad. Fiz. 21, 1185 (1975)

    Google Scholar 

  31. I.I. Gontchar, P. Fröbrich, Consistent dynamical and statistical description of fission of hot nuclei. Phys. Rev. C 47, 2228 (1999). doi:10.1103/PhysRevC.47.2228

    Article  Google Scholar 

  32. M. Blann, Decay of deformed and superdeformed nuclei formed in heavy ion reactions. Phys. Rev. C 21, 1770 (1980). doi:10.1103/PhysRevC.21.1770

    Article  Google Scholar 

  33. C. Schmitt, P.N. Nadtochy, A. Heinz et al., First experiment on fission transients in highly fissile spherical nuclei produced by fragmentation of radioactive beams. Phys. Rev. Lett 99, 042701 (2007). doi:10.1103/PhysRevLett.99.042701

    Article  Google Scholar 

  34. W. Ye, H.W. Yang, F. Wu, Isospin effects on the evaporation residue spin distribution. Phys. Rev. C 77, 011302(R) (2008). doi:10.1103/PhysRevC.77.011302

    Article  Google Scholar 

  35. B. Jurado, C. Schmitt, K.-H. Schmidt et al., Transient effects in fission from new experimental signatures. Phys. Rev. Lett 93, 072501 (2004). doi:10.1103/PhysRevLett.93.072501

    Article  Google Scholar 

  36. D.J. Hinde, Neutron emission as a probe of fusion-fission and quasifission dynamics. Phys. Rev. C 45, 1229 (1992). doi:10.1103/PhysRevC.45.1229

    Article  Google Scholar 

  37. J. Cabrera, Th Keutgen, Y. El Masri et al., Fusion-fission and fusion-evaporation processes in \(^{20}\)Ne+\(^{159}\)Tb and \(^{20}\)Ne+\(^{169}\)Tm interactions between E/A=8 and 16 MeV. Phys. Rev. C 68, 034613 (2003). doi:10.1103/PhysRevC.68.034613

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Ye.

Additional information

This work was supported by the National Nature Science Foundation of China (No. 11575044).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Ye, W. Investigating nuclear dissipation properties at large deformations via excitation energy at scission. NUCL SCI TECH 27, 145 (2016). https://doi.org/10.1007/s41365-016-0146-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0146-y

Keywords

Navigation