Skip to main content
Log in

Efficient removal of Co(II) from aqueous solution by titanate sodium nanotubes

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In this paper, a novel material for Co(II) adsorption, titanate sodium nanotubes (Na2Ti2O5-NTs) were synthesized and characterized, and then they were used to remove Co(II) from aqueous solution and compared with titanic acid nanotubes (H2Ti2O5-NTs) and potassium hexatitanate whiskers (K2Ti6O13). The results showed that the adsorption of Co(II) on the materials was dependent on pH values and was a spontaneous, endothermic process. Specifically, Na2Ti2O5-NTs exhibited much more efficient ability to adsorb Co(II) from aqueous solution, with the maximum adsorption capacity of 85.25 mg/g. Furthermore, Na2Ti2O5-NTs could selectively adsorb Co(II) from aqueous solution containing coexisting ions (Na+, K+, Mg2+, and Ca2+). The results suggested that Na2Ti2O5-NTs were potential effective adsorbents for removal of Co(II) or cobalt-60 from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E. Hernández-Barrales, F. Granados-Correa, Sorption of radioactive cobalt in natural Mexican clinoptilolite. J. Radioanal. Nucl. Chem. (1999). doi:10.1007/BF02345901

    Google Scholar 

  2. J.S. Kim, M.A. Keane, The removal of iron and cobalt from aqueous solutions by ion exchange with Na-Y zeolite: batch, semi-batch and continuous operation. J. Chem. Technol. Biotechnol. (2002). doi:10.1002/jctb.618

    Google Scholar 

  3. S. Rengaraj, S.H. Moon, Kinetics of adsorption of Co (II) removal from water and wastewater by ion exchange resins. Water Res. (2002). doi:10.1016/S0043-1354(01)00380-3

    Google Scholar 

  4. B. Ma, S. Oh, W.S. Shin et al., Removal of Co2 + , Sr2 + and Cs + from aqueous solution by phosphate-modified montmorillonite (PMM). Desalination (2011). doi:10.1016/j.desal.2011.03.072

    Google Scholar 

  5. P.H. Tewari, A.B. Campbell, W. Lee, Adsorption of Co2 + by oxides from aqueous solution. Can. J. Chem. (1972). doi:10.1139/v72-263

    Google Scholar 

  6. A. Malekpour, M. Edrisi, S. Hajialigol et al., Solid phase extraction–inductively coupled plasma spectrometry for adsorption of Co (II) and Ni (II) from radioactive wastewaters by natural and modified zeolites. J. Radioanal. Nucl. Chem. (2011). doi:10.1007/s10967-011-1013-2

    Google Scholar 

  7. M.Y. He, Y. Zhu, Y. Yang et al., Adsorption of cobalt (II) ions from aqueous solutions by palygorskite. Appl. Clay Sci. (2011). doi:10.1016/j.clay.2011.09.013

    Google Scholar 

  8. Y.V. Hete, S.B. Gholase, R.U. Khope, Adsorption study of cobalt on treated granular activated carbon. J. Chem. (2012). doi:10.1155/2012/472517

    Google Scholar 

  9. F. Granados-Correa, S. Bulbulian, Co (II) adsorption in aqueous media by a synthetic Fe–Mn binary oxide adsorbent. Water Air Soil Pollut. (2012). doi:10.1007/s11270-012-1175-8

    Google Scholar 

  10. S. Wang, L.Q. Tan, J.L. Jiang et al., Preparation and characterization of nanosized TiO2 powder as an inorganic adsorbent for aqueous radionuclide Co (II) ions. J. Radioanal. Nucl. Chem. (2013). doi:10.1007/s10967-012-2296-7

    Google Scholar 

  11. D. Gogoi, A.G. Shanmugamani, S.V.S. Rao et al., Studies on adsorptive removal of radioactive cobalt from alkaline waste generated in sodium cooled fast breeder reactors. J. Radioanal. Nucl. Chem. (2013). doi:10.1007/s10967-012-2291-z

    Google Scholar 

  12. Z.J. Liu, L. Chen, Z.C. Zhang et al., Synthesis of multi-walled carbon nanotube–hydroxyapatite composites and its application in the sorption of Co (II) from aqueous solutions. J. Mol. Liq. (2013). doi:10.1016/j.molliq.2012.12.011

    Google Scholar 

  13. K.R. Kim, K.J. Lee, J.H. Bae, Characteristics of Cobalt Adsorption on Prepared TiO2 and Fe-Ti-O Adsorbents in High Temperature Water. Sep. Sci. Technol. (1995). doi:10.1080/01496399508015410

    Google Scholar 

  14. W.Z. Xu, S.T. Chen, C.X. Li et al., Study on the adsorption behavior of potassium hexatitanate whisker to cobalt. Metall. Anal. (2009). doi:10.13228/j.issn.1000-7571.2009.06.007

    Google Scholar 

  15. S. Thennarasu, K. Rajasekar, K.B. Ameen, Hydrothermal temperature as a morphological control factor: preparation, characterization and photocatalytic activity of titanate nanotubes and nanoribbons. J. Mol. Struct. (2013). doi:10.1016/j.molstruc.2013.06.064

    Google Scholar 

  16. Z.H. Li, Z.Q. Liu, Q.Z. Yan et al., Preparation and performance of titanate nanotube by hydrothermal treatment. Rare Metals (2008). doi:10.1016/S1001-0521(08)60112-6

    Google Scholar 

  17. S. Sreekantan, L.C. Wei, Study on the formation and photocatalytic activity of titanate nanotubes synthesized via hydrothermal method. J. Alloy. Compd. (2010). doi:10.1016/S1001-0521(08)60112-6

    Google Scholar 

  18. C.K. Lee, K.S. Lin, C.F. Wu et al., Effects of synthesis temperature on the microstructures and basic dyes adsorption of titanate nanotubes. J. Hazard. Mater. (2008). doi:10.1016/j.jhazmat.2007.04.129

    Google Scholar 

  19. H.Y. Niu, J.M. Wang, Y.L. Shi et al., Adsorption behavior of arsenic onto protonated titanate nanotubes prepared via hydrothermal method. Microporous Mesoporous Mater. (2009). doi:10.1016/j.micromeso.2009.02.005

    Google Scholar 

  20. S.S. Liu, C.K. Lee, H.C. Chen et al., Application of titanate nanotubes for Cu (II) ions adsorptive removal from aqueous solution. J. Chem. Eng. (2009). doi:10.1016/j.cej.2008.06.034

    Google Scholar 

  21. G.D. Sheng, S.T. Yang, D.L. Zhao et al., Adsorption of Eu(III) on titanate nanotubes studied by a combination of batch and EXAFS technique. Sci. China Chem. (2012). doi:10.1007/s11426-011-4370-3

    Google Scholar 

  22. Y.C. Chen, S.L. Lo, J. Kuo, Pb(II) adsorption capacity and behavior of titanate nanotubes made by microwave hydrothermal method. Coll. Surf. A (2010). doi:10.1016/j.colsurfa.2010.03.017

    Google Scholar 

  23. T. Wang, W. Liu, L. Xiong et al., Influence of pH, ionic strength and humic acid on competitive adsorption of Pb(II), Cd (II) and Cr(III) onto titanate nanotubes. J. Chem. Eng. (2013). doi:10.1016/j.cej.2012.11.029

    Google Scholar 

  24. J.L. Liu, M.B. Luo, Z.Z. Yuan et al., Synthesis, characterization, and application of titanate nanotubes for Th(IV) adsorption. J. Radioanal. Nucl. Chem. (2013). doi:10.1007/s10967-013-2607-7

    Google Scholar 

  25. M. Yada, Y. Inoue, M. Uota et al., Plate, wire, mesh, microsphere, and microtube composed of sodium titanate nanotubes on a titanium metal template. Langmuir (2007). doi:10.1021/la062654c

    Google Scholar 

  26. Y.P. Guo, N.H. Lee, H.J. Oh et al., Structure-tunable synthesis of titanate nanotube thin films via a simple hydrothermal process. Nanotechnology (2007). doi:10.1088/0957-4484/18/29/295608

    Google Scholar 

  27. N. Xiao, Z.H. Li, J.W. Liu et al., Effects of calcination temperature on the morphology, structure and photocatalytic activity of titanate nanotube thin films. Thin Sol. Film. (2010). doi:10.1016/j.tsf.2010.07.120

    Google Scholar 

  28. Z.R. Tian, J.A. Voigt, J. Liu et al., Large oriented arrays and continuous films of TiO2-based nanotubes. J. Am. Chem. Soc. (2003). doi:10.1021/ja0369461

    Google Scholar 

  29. L.Y. Zheng, H.Y. Shi, Study on the Adsorption of Cobalt Titanate Nanotubes. Guangzhou Chem. Ind. (2013). doi:10.3969/j.issn.1001-9677.2013.08.037

    Google Scholar 

  30. C.Y. Liu, H.B. Yin, Y.M. Liu et al., Synthesis of potassium hexatitanate whiskers starting from metatitanic acid and potassium carbonate and sulfate by calcination method. Mater. Res. Bull. (2009). doi:10.1016/j.materresbull.2008.09.038

    Google Scholar 

  31. H.S. Klooster, NITROSO R-SALT, A NEW REAGENT FOR THE DETECTION OF COBALT. J. Am. Chem. Soc. (1921). doi:10.1021/ja01437a007

    Google Scholar 

  32. M. Qamar, C.R. Yoon, H.J. Oh et al., Effect of post treatments on the structure and thermal stability of titanate nanotubes. Nanotechnology (2006). doi:10.1088/0957-4484/17/24/004

    Google Scholar 

  33. C.K. Lee, C.C. Wang, M.D. Lyu et al., Effects of sodium content and calcination temperature on the morphology, structure and photocatalytic activity of nanotubular titanates. J. Coll. Interface Sci. (2007). doi:10.1016/j.jcis.2007.08.008

    Google Scholar 

  34. A. Arifi, H.A. Hanafi, Adsorption of cesium, thallium, strontium and cobalt radionuclides using activated carbon. J. At. Mol. Sci. (2010). doi:10.4208/jams.100809.112309a

    Google Scholar 

  35. X.M. Ren, J.X. Li, X.L. Tan et al., Comparative study of graphene oxide, activated carbon and carbon nanotubes as adsorbents for copper decontamination. Dalton Trans. (2013). doi:10.1039/C3DT32969K

    Google Scholar 

  36. F. Granados, V. Bertin, S. Bulbulian et al., 60 Co aqueous speciation and pH effect on the adsorption behavior on inorganic materials. Appl. Radiat. Isot. (2006). doi:10.1016/j.apradiso.2005.06.016

    Google Scholar 

  37. Q. Chen, L.M. Peng, Structure and applications of titanate and related nanostructures. Int. J. Nanotech. (2007). doi:10.1504/IJNT.2007.012314

    Google Scholar 

  38. Q. Su, B.C. Pan, B.J. Pan et al., Fabrication of polymer-supported nanosized hydrous manganese dioxide (HMO) for enhanced lead removal from waters. Sci. Total Environ. (2009). doi:10.1016/j.scitotenv.2009.06.045

    Google Scholar 

  39. Y.S. Ho, Review of second-order models for adsorption systems. J. Hazard. Mater. (2006). doi:10.1016/j.jhazmat.2005.12.043

    Google Scholar 

  40. Y.S. Ho, G. McKay, Sorption of dyes and copper ions onto biosorbents. Process Biochem. (2003). doi:10.1016/S0032-9592(02)00239-X

    Google Scholar 

  41. L. Tan, Y. Jin, J. Chen et al., Sorption of radiocobalt (II) from aqueous solutions to Na-attapulgite. J. Radioanal. Nucl. Chem. (2011). doi:10.1007/s10967-011-1121-z

    Google Scholar 

  42. K.G. Bhattacharyya, S.S. Gupta, Adsorption of Fe(III), Co (II) and Ni (II) on ZrO–kaolinite and ZrO–montmorillonite surfaces in aqueous medium. Coll. surf. A. (2008). doi:10.1016/j.colsurfa.2007.09.037

    Google Scholar 

  43. L. Chen, Y. Huang, L. Huang et al., Characterization of Co (II) removal from aqueous solution using bentonite/iron oxide magnetic composites. J. Radioanal. Nucl. Chem. (2011). doi:10.1007/s10967-011-1337-y

    Google Scholar 

  44. K. Li, Z. Liu, T. Wen et al., Sorption of radiocobalt (II) onto Ca-montmorillonite: effect of contact time, solid content, pH, ionic strength and temperature. J. Radioanal. Nucl. Chem. (2012). doi:10.1007/s10967-011-1400-8

    Google Scholar 

  45. N.N. Nassar, Kinetics, equilibrium and thermodynamic studies on the adsorptive removal of nickel, cadmium and cobalt from wastewater by superparamagnetic iron oxide nanoadsorbents. Can. J. Chem. Eng. (2012). doi:10.1002/cjce.20613

    Google Scholar 

  46. M. Liu, C. Chen, J. Hu et al., Synthesis of magnetite/graphene oxide composite and application for cobalt (II) removal. J. Phys. Chem. C (2011). doi:10.1021/jp208575m

    Google Scholar 

  47. D. Gogoi, A.G. Shanmugamani, S.V.S. Rao et al., Studies on removal of cobalt from an alkaline waste using synthetic calcium hydroxyapatite. J. Radioanal. Nucl. Chem. (2013). doi:10.1007/s10967-012-2378-6

    Google Scholar 

  48. Z.Q. Guo, Y. Li, S.W. Zhang et al., Enhanced sorption of radiocobalt from water by Bi(III) modified montmorillonite: a novel adsorbent. J. Hazard. Mater. (2011). doi:10.1016/j.jhazmat.2011.05.004

    Google Scholar 

  49. D.M. Manohar, B.F. Noeline, T.S. Anirudhan, Adsorption performance of Al-pillared bentonite clay for the removal of cobalt (II) from aqueous phase. Appl. Clay Sci. (2006). doi:10.1016/j.clay.2005.08.008

    Google Scholar 

  50. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. (1918). doi:10.1021/ja02242a004

    Google Scholar 

Download references

Acknowledgments

Some samples were measured by ICP-OES which was provided by the Institute of Chemistry, Sichuan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Liu.

Additional information

This work was supported by the Applied Basic Research Programs Funded Project of Sichuan Province (No 2012JY0100), National Natural Science Foundation and China Academy of Engineering Physics joint fund (No U1330125) and the National Fund of China for Fostering Talents in Basic Science (J1210004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, DM., Li, FZ., Liao, JL. et al. Efficient removal of Co(II) from aqueous solution by titanate sodium nanotubes. NUCL SCI TECH 27, 143 (2016). https://doi.org/10.1007/s41365-016-0135-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0135-1

Keywords

Navigation