Skip to main content

Advertisement

Log in

Isolation and identification of grapevine endophytic bacteria with antagonistic potential against Fomitiporia mediterranea, a pathogen involved in grapevine trunk disease

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Background

Grapevine trunk diseases (GTDs) are an economically serious threat, affecting grapevine long-term sustainability and productivity. The use of antagonistic endophytic bacteria can be a promissing approach for GTDs’ management.

Results

253 bacterial endophytes were isolated from the stems and roots of grapevines from 68 geographic locations in eight provinces of Iran. Based on biochemical properties, 22 strains were selected and identified using the 16S rRNA gene. The representative strains belonged to 13 genera of Agrobacterium, Arthrobacter, Bacillus, Chryseobacterium, Klebsiella, Kocuria, Pantoea, Pseudomonas, Rahnella, Rothia, Serratia, Staphylococcus and Variovorax. Using the dual culture method, antagonistic activity of 27 strains from 50 selected ones was shown against Fomitiporia mediterranea, a pathogen of GTDs; in which its hyphal growth was inhibited from 10 to 55%. Among the tested bacteria, Serratia plymuthica GI154, Bacillus sp. GI298 and Pseudomonas fluorescens GI310 showed the highest fungal growth inhibition zones, respectively. Co-treatment of GI154, GI298, and GI310 with F. mediterranea, in planta, could reduce the length of its internal canker by 54.41, 60.16 and 49.42% in compare with contol, respectively.

Conclusions

To the best of our knowledge, this is the first report of isolation of Arthrobacter agilis, Chryseobacterium daecheongense, Rahnella aquatilis, Serratia plymuthica, Staphylococcus epidermidis, Staphylococcus warneri and Variovorax paradoxus from grapevine in Iran. Moreover, this is the first report of Rothia amarae as a bacterial endophyte of the grapevine for the world. Grapevine bacterial endophytes exhibit auspicious biocontrol activities that can be utilized in sustainable and organic agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Almost all data generated or analyzed related to this topic, are included in this published article. The datasets which was not used directly in this article are available from the corresponding author on reasonable request.

Abbreviations

GTDs:

Grapevine trunk diseases

BCAs:

Biological control agents

NA:

Nutrient agar

HR:

Hypersensitive response

NB:

Nutrient broth

CTAB:

Cetyl trimethyl ammonium bromide

RH:

Relative humidity

References

  • Aballay E, Prodan S, Mårtensson A, Persson P (2012) Assessment of rhizobacteria from grapevine for their suppressive effect on the parasitic nematode Xiphinema index. Crop Prot 42:36–41

    Article  Google Scholar 

  • Abed-Ashtiani F, Narmani A, Arzanlou M (2019) Analysis of Kalmusia variispora associated with grapevine decline in Iran. Eur J Plant Pathol 154:787–799

    Article  CAS  Google Scholar 

  • Aftab Uddin M, Akter S, Ferdous M, Haidar B, Amin A, Shofiul Islam Molla AHM, Khan H, Islam MR (2021) A plant endophyte Staphylococcus hominis strain MBL_AB63 produces a novel lantibiotic, homicorcin and a position one variant. Sci Rep 11:11211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akbari E, Rasekh B, Beheshti Maal K, Karbasiun F, Yazdian F, Emami-Karvani Z, Peighami R (2021) A novel biosurfactant producing Kocuria rosea ABR6 as potential strain in oil sludge recovery and lubrication. AMB Expr 11:131

    Article  CAS  Google Scholar 

  • Akram W, Anjum T (2011) Quantitative changes in defense system of tomato induced by two strains of Bacillus against Fusarium wilt. Indian J Fundam 1(3):7–13

    Google Scholar 

  • Alizadeh M (2017) Bacterial wetwood disease. Plant Chem Ecophysiol 2(1):1015

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  • Álvarez-Pérez JM, González-García S, Cobos R, Olego MÁ, Ibañez A, Díez-Galán A, Garzón-Jimeno E, Coque JJR (2017) Use of endophytic and rhizosphere actinobacteria from grapevine plants to reduce nursery fungal graft infections that lead to young grapevine decline. Appl Environ Microbiol 83(24):e01564-e1617

    Article  PubMed  PubMed Central  Google Scholar 

  • Amarloo OA, Mohammadi H, Mahdian SA, Tajick Ghanbary MA (2020) Identification and pathogenicity of fungal species associated with grapevine trunk diseases in Khorasan-Razavi province. Iran Mycol Iran 7(1):83–94

    Google Scholar 

  • Arif N, Khullar S, Kumar R, Choudhary SK, Kapil A, Dhawan B (2019) Pleural effusion due to Chryseobacterium indologenes: case report and review of literature. J Lab Physicians 11(3):284–286

    Article  PubMed  PubMed Central  Google Scholar 

  • Asghari S, Harighi B, Mozafari AA, Esmaeel Q, Barka EA (2019) Screening of endophytic bacteria isolated from domesticated and wild growing grapevines as potential biological control agents against crown gall disease. Biocontrol 64:723–735

    Article  CAS  Google Scholar 

  • Baldan R, Cigana C, Testa F, Bianconi I, De Simone M, Pellin D, Di Serio C, Bragonzi A, Cirillo DM (2014) Adaptation of Pseudomonas aeruginosa in cystic fibrosis airways influences virulence of Staphylococcus aureus in vitro and murine models of co-infection. PLoS ONE 9(3):e89614

    Article  PubMed  PubMed Central  Google Scholar 

  • Basavand E, Khodaygan P, Ghelardini L, Rahimian H (2022) Isolation and identification of Rahnella victoriana associated with bacterial canker of Eucalyptus in Iran. For Pathol 52(3):e12743

    Article  Google Scholar 

  • Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF (2018) Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data 30(5):180214

    Article  Google Scholar 

  • Brisse S, Grimont F, Grimont PAD (2006) The genus Klebsiella. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The Prokaryotes. Springer, New York, NY, pp 159–196

    Chapter  Google Scholar 

  • Bruisson S, Zufferey M, L’Haridon F, Trutmann E, Anand A, Dutartre A, De Vrieze M, Weisskopf L (2019) Endophytes and epiphytes from the grapevine leaf microbiome as potential biocontrol agents against phytopathogens. Front Microbiol 10:2726

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruno G, Sparapano L, Graniti A (2007) Effects of three esca-associated fungi on Vitis vinifera L.: IV. Diffusion through the xylem of metabolites produced by two tracheiphilous fungi in the woody tissue of grapevine leads to esca-like symptoms on leaves and berries. Physiol Mol Plant Pathol 711(3):106–124

    Article  Google Scholar 

  • Brunori E, Farina R, Biasi R (2016) Sustainable viticulture: the carbon-sink function of the vineyard agro-ecosystem. Agric Ecosyst Environ 223:10–21

    Article  CAS  Google Scholar 

  • Burr TJ, Otten L (1999) Crown gall of grape: biology and disease management. Annu Rev Phytopathol 37:53–80

    Article  CAS  PubMed  Google Scholar 

  • Campisano A, Antonielli L, Pancher M, Yousaf S, Pindo M, Pertot I (2014) Bacterial endophytic communities in the grapevine depend on pest management. PLoS ONE 9(11):e112763

    Article  PubMed  PubMed Central  Google Scholar 

  • Carrero P, Garrote JA, Pacheco S, García AI, Gil R, Carbajosa SG (1995) Report of six cases of human infection by Serratia plymuthica. J Clin Microbiol 33:275–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, Guo YB, Wang JH, Li JY, Wang HM (2007) Biological control of grape crown gall by Rahnella aquatilis HX2. Plant Dis 91(8):957–963

    Article  CAS  PubMed  Google Scholar 

  • Cobos R, Ibañez A, Diez-Galán A, Calvo-Peña C, Ghoreshizadeh S, Coque JJR (2022) The grapevine microbiome to the rescue: implications for the biocontrol of trunk diseases. Plants (basel) 11(7):840

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Mathieu F (2017) Biocontrol of major grapevine diseases: leading research. CABI, Wallingford, UK, pp 160–170

    Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth promoting bacteria in the rhizo and endosphere of plants. Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Del Pilar M-D, Díaz-Losada E, Andrés-Sodupe M, Bujanda R, Maldonado-González MM, Ojeda S, Yacoub A, Rey P, Gramaje D (2021) Field evaluation of biocontrol agents against black-foot and Petri diseases of grapevine. Pest Manag Sci 77(2):697–708

    Article  Google Scholar 

  • FAO (2020). http://data.un.org/Data.aspx?d=FAO&f=itemCode%3A560

  • Farashiani A, Mousavi Jorf SA, Karimi MR (2012) Study of esca of grapevine in Bojnord. Iran J Plant Pathol 48(2):143–153

    Google Scholar 

  • Fidan O, Zhan J (2019) Discovery and engineering of an endophytic Pseudomonas strain from Taxus chinensis for efficient production of zeaxanthin diglucoside. J Biol Eng 13:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Fischer M (2002) A new wood-decaying basidiomycete species associated with esca of grapevine: Fomitiporia mediterranea (Hymenochaetales). Mycol Prog 1:315–324

    Article  Google Scholar 

  • Fokkema NJ (1978) Fungal antagonism in the phyllosphere. Ann Appl Biol 89(1):115–119

    Article  Google Scholar 

  • Furuya S, Mochizuki M, Aoki Y, Kobayashi H, Takayanagi T, Shimizu M, Suzuki S (2011) Isolation and characterization of Bacillus subtilis KS1 for the biocontrol of grapevine fungal diseases. Biocontrol Sci Technol 21(6):705–720

    Article  Google Scholar 

  • Galland D, Paul B (2001) Pythium perplexum isolated from soil in France: Morphology, molecular characterisation and biological control. Microbiol Res 156(2):185–189

    Article  CAS  PubMed  Google Scholar 

  • Gerin D, Cariddi C, de Miccolis ARM, Rotolo C, Dongiovanni C, Faretra F, Pollastro S (2019) First report of Pseudomonas grapevine bunch rot caused by Pseudomonas syringae pv. syringae. Plant Dis 103(8):1954–1960

    Article  CAS  PubMed  Google Scholar 

  • Grimont PAD, Grimont F, Richard C, Davis BR, Steigerwalt AG, Brenner DJ (1978) Deoxyribonucleic acid relatedness between Serratia plymuthica and other Serratia species, with a description of Serratia odorifera sp. nov. (Type strain: ICPB 3995). Int J Syst Bacteriol 28(4):453–463

    Article  Google Scholar 

  • Haidar R, Roudet J, Bonnard O, Cécile Dufour M, France Corio-Costet M, Fert M, Gautier T, Deschamps A, Fermaud M (2016) Screening and modes of action of antagonistic bacteria to control the fungal pathogen Phaeomoniella chlamydospora involved in grapevine trunk diseases. Microbiol Res 192:172–184

    Article  PubMed  Google Scholar 

  • Haidar R, Amira Y, Roudet J, Marc F, Patrice R (2021) Application methods and modes of action of Pantoea agglomerans and Paenibacillus sp. to control the grapevine trunk disease-pathogen. Neofusicoccum Parvum. OENO One 55(3):1–16

    Google Scholar 

  • Hall BH, McMahon RL, Noble D, Cottier EJ, McLintock D (2002) First report of Pseudomonas syringae on grapevines (Vitis vinifera) in South Australia. Australas Plant Pathol 31:421–422

    Article  Google Scholar 

  • Hallmann J, Berg G (2006) Spectrum and population dynamics of bacterial root endophytes. In: Schulz B, Boyle C, Sieber T (eds) Microbial root endophytes. Springer-Verlag, Berlin Heidelberg, pp 15–31

    Chapter  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Han JI, Choi HK, Lee SW, Orwin PM, Kim J, Laroe SL, Kim T, O’Neil J, Leadbetter JR, Lee SY, Hur CG, Spain JC, Ovchinnikova G, Goodwin L, Han C (2011) Complete genome sequence of the metabolically versatile plant growth-promoting endophyte Variovorax paradoxus S110. J Bacteriol 193(5):1183–1190

    Article  CAS  PubMed  Google Scholar 

  • Kamath U, Singer C, Isenberg HD (1992) Clinical significance of Staphylococcus warneri bacteremia. J Clin Microbiol 30(2):261–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KK, Bae HS, Schumann P, Lee ST (2005) Chryseobacterium daecheongense sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 55(1):133–138

    Article  CAS  PubMed  Google Scholar 

  • Klingner AE, Palleroni NJ, Pontis RE (1976) Isolation of Pseudomonas syringae from lesions on Vitis vinifera. J Phytopathol 86:107–116

    Article  Google Scholar 

  • Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial endophytes, 1st edn. Marcel Dekker Inc., New York, pp 199–233

    Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Leal C, Richet N, Guise JF, Gramaje D, Armengol J, Fontaine F, Trotel-Aziz P (2021) Cultivar contributes to the beneficial effects of Bacillus subtilis PTA-271 and Trichoderma atroviride SC1 to protect grapevine against Neofusicoccum parvum. Front Microbiol 12:726132

    Article  PubMed  PubMed Central  Google Scholar 

  • Malfanova N, Lugtenberg B, Berg G (2013) Bacterial endophytes: who and where, and what are they doing there. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley-Blackwell Hoboken, NJ, USA, pp 391–403

    Chapter  Google Scholar 

  • Mažeikien I, Frercks B, Burokien D, Maˇcionien I, Šalaševiˇcien A (2021) Endophytic community composition and genetic-enzymatic features of cultivable bacteria in Vaccinium myrtillus L. in forests of the Baltic–Nordic region. Forests 12:1647

    Article  Google Scholar 

  • Moore LW, Canfield M (1996) Biology of Agrobacterium and management of crown gall disease. In: Hall R (ed) Principles and practice of managing soil borne plant pathogens. APS Press, St. Paul, MN, USA, pp 151–191

    Google Scholar 

  • Moradi-Amirabad Y, Rahimian H, Babaeizad V, Denman S (2019) Brenneria spp. and Rahnella victoriana associated with acute oak decline symptoms on oak and hornbeam in Iran. For Pathol 49:e12535

    Article  Google Scholar 

  • Niem JM, Billones-Baaijens R, Stodart B, Savocchia S (2020) Diversity profiling of grapevine microbial endosphere and antagonistic potential of endophytic Pseudomonas against grapevine trunk diseases. Front Microbiol 11:477

    Article  PubMed  PubMed Central  Google Scholar 

  • Nunes C, Usall N, Teixidó N, Viñas I (2001) Biological control of postharvest pear disease using a bacterium, Pantoea agglomerans CPA-2. Int J Food Microbiol 70(1–2):53–61

    Article  CAS  PubMed  Google Scholar 

  • Nunes C, Usall J, Teixidó N, Fons E, Vinas I (2002) Post-harvest biological control by Pantoea agglomerans (CPA-2) on Golden Delicious apples. J Appl Microbiol 92(2):247–255

    Article  CAS  PubMed  Google Scholar 

  • Pal KK, McSpadden Gardener B (2006) Biological control of plant pathogens. Plant Heal Instr. https://doi.org/10.1094/PHI-A-2006-1117-02

  • Pancher M, Ceol M, Corneo PE, Longa CM, Yousaf S, Pertot I, Campisano A (2012) Fungal endophytic communities in grapevines (Vitis vinifera L.) respond to crop management. Appl Environ Microbiol 78(12):4308–4317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phukon M, Sahu P, Srinath R, Nithya A, Babu S (2013) Unusual occurrence of Staphylococcus warneri as endophyte in fresh fruits along with usual Bacillus spp. J Food Saf 33:102–106

    Article  Google Scholar 

  • Pinto C, Gomes AC (2016) Vitis vinifera microbiome: from basic research to technological development. Biocontrol 61:243–256

    Article  CAS  Google Scholar 

  • Platzer V, Schweigkofler W (2009) In vitro-efficacy of fungicides on F.mediterranea and Phaeomoniella chlamydospora, the causative pathogens of the esca-disease of grapevines. Mitt Klosterneuburg 59(2):74–83

    CAS  Google Scholar 

  • Rhouma A, Ferchichi A, Hafsa M, Boubaker A (2004) Efficacy of the non pathogenic Agrobacterium strains K84 and K1026 against crown gall in Tunisia. Phytopathol Mediterr 43(2):167–176

    Google Scholar 

  • Román-Ponce B, Wang D, Soledad Vásquez-Murrieta M, Feng Chen W, Estrada-de Los Santos P, Hua Sui X, Tao Wang E (2016) Kocuria arsenatis sp. nov., an arsenic-resistant endophytic actinobacterium associated with Prosopis laegivata grown on high-arsenic-polluted mine tailing. Int J Syst Evol Microbiol 66(2):1027–1033

    Article  PubMed  Google Scholar 

  • Russi A, Almança MAK, Grohs DS, Schwambach J (2020) Biocontrol of black foot disease on grapevine rootstocks using Bacillus subtilis strain F62. Trop Plant Pathol 45:103–111

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  • SAS (2013) Statistical analysis software. Users’ guide statistics version 9.4. SAS Institute Inc., Cary

    Google Scholar 

  • Schaad NW, Jones JB, Chun W (2001) Laboratory guide identification pathogenic bacteria: American Phytopathological Society. APS Press, Eagan, USA, p 373

    Google Scholar 

  • Sherafati F, Khodaygan P, Azadvar M, Sedaghati E, Saberi-Riseh R, Baghaee-Ravari S (2014) Association of Pantoea agglomerans with the citrus bacterial canker disease in Iran. JCP 3(3):345–355

    Google Scholar 

  • Siala R, Chobba IB, Vallaeys T, Triki MA, Jrad M, Cheffi M, Ayedi I, Elleuch A, Nemsi A, Cerqueira F, Gdoura R, Drira N, Gharsallah N (2016) Analysis of the cultivable endophytic bacterial diversity in the date palm (Phoenix dactylifera L.) and evaluation of its antagonistic potential against pathogenic Fusarium species that cause date palm bayound disease. J Appl Environ Microbiol 4(5):93–104

    CAS  Google Scholar 

  • Syed Ab Rahman SF, Singh E, Pieterse CMJ, Schenk PM (2018) Emerging microbial biocontrol strategies for plant pathogens. Plant Sci 267:102–111

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaghari Souran SE, Shekariesfahlan A, Ashrafi F, Naeimi S, Ghasemi A (2021) Isolation and identification of grapevine endophytic bacteria in west Azarbaijan province. BCPP 9(1):131–143

    Google Scholar 

  • Velázquez-Becerra C, Macías-Rodríguez LI, López-Bucio J, Flores-Cortez I, Santoyo G, Hernández-Soberano C, Valencia-Cantero E (2013) The rhizobacterium Arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits growth of phytopathogenic fungi in vitro. Protoplasma 250(6):1251–1262

    Article  PubMed  Google Scholar 

  • Vicent JM (1947) Distortion of fungal hyphae in the presence of certain inhibitors. Nature 159:850

    Article  Google Scholar 

  • Vivas J, González JA, Barbeyto L, Rodríguez LA (2000) Identification of environmental Serratia plymuthica strains with the new Combo Panels Type 1S. Diagnosis 95(2):227–229

    CAS  Google Scholar 

  • William S, Helene Feil A, Copeland A (2012) Bacterial genomic DNA isolation using CTAB. DOE Joint Genome Institute US Department of Energy, Walnut Creek, California, p 4

    Google Scholar 

  • Wright SA, Zumoff CH, Schneider L, Beer SV (2001) Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Appl Environ Microbiol 67(1):284–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yacoub S, Lam PK, le Vu HM, Le TL, Ha NT, Toan TT, Van NT, Quyen NT, Le Duyen HT, Van Kinh N, Fox A, Mongkolspaya J, Wolbers M, Simmons CP, Screaton GR, Wertheim H, Wills B (2016) Association of microvascular function and endothelial biomarkers with clinical outcome in dengue: an observational study. J Infect Dis 214(5):697–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon JH, Kang SJ, Oh TK (2007) Chryseobacterium daeguense sp. nov., isolated from wastewater of a textile dye works. Int J Syst Evol Microbiol 57:1355–1359

    Article  CAS  PubMed  Google Scholar 

  • Zabalgogeazcoa I (2008) Fungal endophytes and their interaction with plant pathogens. Span J Agric Res 6:138–146

    Article  Google Scholar 

  • Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J, Lax S, Bokulich NA, Mills DA, Martin G, Taghavi S, van der Lelie D, Gilbert JA (2015) The soil microbiome influences grapevine-associated microbiota. Mbio 6(2):02527–02614

    Article  Google Scholar 

  • Zhao X, Zhou ZJ, Han Y, Wang ZZ, Fan J, Xiao HZ (2013) Isolation and identification of antifungal peptides from Bacillus BH072, a novel bacterium isolated from honey. Microbiol Res 168(9):598–606

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Masoud Amir Maafi (AREEO, Iran) and Shahram Shahrokhi (AREEO, Iran) for providing the phytotron facility.

Funding

This research project was sponsored by Iranian Research institute of Plant Protection and Islamic Azad University (North Tehran Branch).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, AS, SEVS, SN and AG; methodology, SEVS, AS and AG; software, AS, SEVS, and AG; validation, AS, SEVS, SN, FA and AG; data analysis, SEVS, AS and AG; investigation, SEVS and AS; resources, AS, SEVS, and AG; data curation, AS; writing-original draft preparation, SEVS; writing-review and editing, AS and SN; supervision, AS and FA; funding acquisition, AS and SEVS. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Azam Shekariesfahlan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaghari Souran, S.E., Shekariesfahlan, A., Ashrafi, F. et al. Isolation and identification of grapevine endophytic bacteria with antagonistic potential against Fomitiporia mediterranea, a pathogen involved in grapevine trunk disease. J Plant Dis Prot 130, 1371–1384 (2023). https://doi.org/10.1007/s41348-023-00788-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-023-00788-8

Keywords

Navigation