Skip to main content
Log in

Comparative evaluation of machine learning techniques in predicting fundamental meteorological factors based on survey data from 1981 to 2021

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

Predicting the meteorological factors of the climate in the medium and long term is a significant challenge with socio-economic and environmental implications, given its complex and chaotic nature. The current short-term weather predictions the Iraqi meteorological organization offers are less valuable. As a result, this study introduces four machine-learning methods—artificial neural network, support vector machine, random forest (RF), and K nearest neighbors—to forecast six meteorological factors: total precipitation (TPRE), minimum temperature (MINT), maximum temperature (MAXT), relative humidity (RHUM), top-of-atmosphere radiation (TOAR), and wind speed (WIND) up to 1, 3, 6, and 12 months ahead in four Iraqi governorates. Data on these factors from 1981 to 2021 were extracted from the Modern-ERA Retrospective Analysis for Research and Applications version 2 dataset. The findings indicate that the RF algorithm outperformed other algorithms regarding prediction accuracy, while the SVR algorithm exhibited the least accuracy. Moreover, TPRE had the lowest performance with an average root-mean-square error (RMSE) of 19.002; conversely, RHUM and WIND showed much better performance with average RMSE values of 7.259 and 0.192 respectively. The highest performance was observed for MINT (MAXT and TOAR prediction with average-RMSE values of 2.346, 2.244, and 5.314, respectively). The present study’s findings will bring significant advantages in safeguarding human lives and property and promoting health, security, and economic prosperity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Allen, M. R., Dube, O. P., Soleck, W., Aragón-Durand, F., Cramer, W., Humphreys, S., Kainuma, M., Kala, J., Mahowald, N., Mulugetta, Y., Perez, R., Wairiu, M., & Zickfeld, K. (2022). Global warming of 15°C: IPCC special report on impacts of global warming of 15°C above pre-industrial levels in context of strengthening response to climate change, sustainable development, and efforts to eradicate poverty. Cambridge University Press.

    Google Scholar 

  2. Yuan, W., Wu, S., Hou, S., Xu, Z., & Lu, H. (2019). Normalized Difference Vegetation Index-based assessment of climate change impact on vegetation growth in the humid-arid transition zone in northern China during 1982–2013. International Journal of Climatology, 39(15), 5583–5598. https://doi.org/10.1002/joc.6172

    Article  Google Scholar 

  3. IOM Iraq. (2022). Migration, environment, and climate change in Iraq. In International Organization for Migration (IOM).

  4. Rabiei-Dastjerdi, H., Mohammadi, S., Saber, M., Amini, S., & McArdle, G. (2022). Spatiotemporal analysis of NO2 production using TROPOMI time-series images and google earth engine in a middle eastern country. Remote Sensing, 14(7), 1725. https://doi.org/10.3390/rs14071725

    Article  Google Scholar 

  5. Mohammadi, S., Saber, M., Amini, S., Mostafavi, M. A., McArdle, G., & Rabiei-Dastjerdi, H. (2022). Environmental conditions in middle eastern megacities: A comparative spatiotemporal analysis using remote sensing time series. Remote Sensing, 14(22), 5834. https://doi.org/10.3390/rs14225834

    Article  Google Scholar 

  6. Abdi, R., & Endreny, T. (2019). A river temperature model to assist managers in identifying thermal pollution causes and solutions. Water, 11(5), 1060. https://doi.org/10.3390/w11051060

    Article  Google Scholar 

  7. Ebi, K. L., Ziska, L. H., & Yohe, G. W. (2016). The shape of impacts to come: Lessons and opportunities for adaptation from uneven increases in global and regional temperatures. Climatic Change, 139(3–4), 341–349. https://doi.org/10.1007/s10584-016-1816-9

    Article  Google Scholar 

  8. Miller, S., Mishra, V., Ellenburg, W. L., Adams, E., Roberts, J., Limaye, A., & Griffin, R. (2021). Analysis of a short-term and a seasonal precipitation forecast over Kenya. Atmosphere, 12(11), 1371. https://doi.org/10.3390/atmos12111371

    Article  Google Scholar 

  9. Tongal, H., & Berndtsson, R. (2017). Impact of complexity on daily and multi-step forecasting of streamflow with chaotic, stochastic, and black-box models. Stochastic Environmental Research and Risk Assessment, 31(3), 661–682. https://doi.org/10.1007/s00477-016-1236-4

    Article  Google Scholar 

  10. Abdaki, M., Al-Iraqi, A., & Faisal, R. M. (2021). Predicting long-term climate changes in Iraq. IOP Conference Series: Earth and Environmental Science, 779(1), 012053. https://doi.org/10.1088/1755-1315/779/1/012053

    Article  Google Scholar 

  11. Al-Mukhtar, M., & Qasim, M. (2019). Future predictions of precipitation and temperature in Iraq using the statistical downscaling model. Arabian Journal of Geosciences, 12(2), 25. https://doi.org/10.1007/s12517-018-4187-x

    Article  Google Scholar 

  12. Khalaf, R. M., Hussein, H., Hassan, W. H., Mohammed, Z. M., & Nile, B. K. (2022). Projections of precipitation and temperature in Southern Iraq using a LARS-WG Stochastic weather generator. Physics and Chemistry of the Earth, Parts A/B/C, 128, 103224. https://doi.org/10.1016/j.pce.2022.103224

    Article  Google Scholar 

  13. Tarek, M., Brissette, F., & Arsenault, R. (2021). Uncertainty of gridded precipitation and temperature reference datasets in climate change impact studies. Hydrology and Earth System Sciences, 25(6), 3331–3350. https://doi.org/10.5194/hess-25-3331-2021

    Article  Google Scholar 

  14. Castellanos-Acuna, D., & Hamann, A. (2020). A cross-checked global monthly weather station database for precipitation covering the period 1901–2010. Geoscience Data Journal, 7(1), 27–37. https://doi.org/10.1002/gdj3.88

    Article  Google Scholar 

  15. Mistry, M. N., Schneider, R., Masselot, P., Royé, D., Armstrong, B., Kyselý, J., Orru, H., Sera, F., Tong, S., Lavigne, É., Urban, A., Madureira, J., García-León, D., Ibarreta, D., Ciscar, J.-C., Feyen, L., de Schrijver, E., de Sousa Zanotti Stagliorio Coelho, M., Pascal, M., … Gasparrini, A. (2022). Comparison of weather station and climate reanalysis data for modelling temperature-related mortality. Scientific Reports, 12(1), 5178. https://doi.org/10.1038/s41598-022-09049-4

  16. Tarek, M., Brissette, F. P., & Arsenault, R. (2020). Large-scale analysis of global gridded precipitation and temperature datasets for climate change impact studies. Journal of Hydrometeorology, 21(11), 2623–2640. https://doi.org/10.1175/JHM-D-20-0100.1

    Article  Google Scholar 

  17. Sen Gupta, A., & Tarboton, D. G. (2016). A tool for downscaling weather data from large-grid reanalysis products to finer spatial scales for distributed hydrological applications. Environmental Modelling & Software, 84, 50–69. https://doi.org/10.1016/j.envsoft.2016.06.014

    Article  Google Scholar 

  18. Baatz, R., Hendricks Franssen, H. J., Euskirchen, E., Sihi, D., Dietze, M., Ciavatta, S., Fennel, K., Beck, H., De Lannoy, G., Pauwels, V. R. N., Raiho, A., Montzka, C., Williams, M., Mishra, U., Poppe, C., Zacharias, S., Lausch, A., Samaniego, L., Van Looy, K., … Vereecken, H. (2021). Reanalysis in earth system science: toward terrestrial ecosystem reanalysis. Reviews of Geophysics. https://doi.org/10.1029/2020RG000715

  19. Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., … Zhao, B. (2017). The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of Climate, 30(14), 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1

  20. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., … Thépaut, J. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803

  21. Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J., Fiorino, M., & Potter, G. L. (2002). NCEP–DOE AMIP-II reanalysis (R-2). Bulletin of the American Meteorological Society, 83(11), 1631–1644. https://doi.org/10.1175/BAMS-83-11-1631

    Article  Google Scholar 

  22. Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., & Takahashi, K. (2015). The JRA-55 reanalysis: general specifications and basic characteristics. Journal of the Meteorological Society of Japan, 93(1), 5–48. https://doi.org/10.2151/jmsj.2015-001

    Article  Google Scholar 

  23. Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.-T., Chuang, H., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M. P., van den Dool, H., Zhang, Q., Wang, W., Chen, M., & Becker, E. (2014). The NCEP climate forecast system version 2. Journal of Climate, 27(6), 2185–2208. https://doi.org/10.1175/JCLI-D-12-00823.1

    Article  Google Scholar 

  24. Essou, G. R. C., Brissette, F., & Lucas-Picher, P. (2017). The use of reanalyses and gridded observations as weather input data for a hydrological model: Comparison of performances of simulated river flows based on the density of weather stations. Journal of Hydrometeorology, 18(2), 497–513. https://doi.org/10.1175/JHM-D-16-0088.1

    Article  Google Scholar 

  25. Ghamariadyan, M., & Imteaz, M. A. (2021). Monthly rainfall forecasting using temperature and climate indices through a hybrid method in Queensland, Australia. Journal of Hydrometeorology. https://doi.org/10.1175/JHM-D-20-0169.1

    Article  Google Scholar 

  26. Sahai, A. K., Soman, M. K., & Satyan, V. (2000). All India summer monsoon rainfall prediction using an artificial neural network. Climate Dynamics, 16(4), 291–302. https://doi.org/10.1007/s003820050328

    Article  Google Scholar 

  27. Mohamadi, S., Sheikh Khozani, Z., Ehteram, M., Ahmed, A. N., & El-Shafie, A. (2022). Rainfall prediction using multiple inclusive models and large climate indices. Environmental Science and Pollution Research, 29(56), 85312–85349. https://doi.org/10.1007/s11356-022-21727-4

    Article  Google Scholar 

  28. Mohammadi, B., Moazenzadeh, R., Christian, K., & Duan, Z. (2021). Improving streamflow simulation by combining hydrological process-driven and artificial intelligence-based models. Environmental Science and Pollution Research, 28(46), 65752–65768. https://doi.org/10.1007/s11356-021-15563-1

    Article  Google Scholar 

  29. Guan, Y., Mohammadi, B., Pham, Q. B., Adarsh, S., Balkhair, K. S., Rahman, K. U., Linh, N. T. T., & Tri, D. Q. (2020). A novel approach for predicting daily pan evaporation in the coastal regions of Iran using support vector regression coupled with krill herd algorithm model. Theoretical and Applied Climatology, 142(1–2), 349–367. https://doi.org/10.1007/s00704-020-03283-4

    Article  Google Scholar 

  30. Heng, S. Y., Ridwan, W. M., Kumar, P., Ahmed, A. N., Fai, C. M., Birima, A. H., & El-Shafie, A. (2022). Artificial neural network model with different backpropagation algorithms and meteorological data for solar radiation prediction. Scientific Reports, 12(1), 10457. https://doi.org/10.1038/s41598-022-13532-3

    Article  CAS  Google Scholar 

  31. Sedighkia, M., & Datta, B. (2022). Detecting land use changes using hybrid machine learning methods in the Australian tropical regions. GeoJournal. https://doi.org/10.1007/s10708-022-10678-5

    Article  Google Scholar 

  32. Paul, A., & Bhattacharji, M. (2022). Prediction of landuse/landcover using CA-ANN approach and its association with river-bank erosion on a stretch of Bhagirathi River of Lower Ganga Plain. GeoJournal. https://doi.org/10.1007/s10708-022-10814-1

    Article  Google Scholar 

  33. Achite, M., Banadkooki, F. B., Ehteram, M., Bouharira, A., Ahmed, A. N., & Elshafie, A. (2022). Exploring Bayesian model averaging with multiple ANNs for meteorological drought forecasts. Stochastic Environmental Research and Risk Assessment, 36(7), 1835–1860. https://doi.org/10.1007/s00477-021-02150-6

    Article  Google Scholar 

  34. Khatri, S., Kokane, P., Kumar, V., & Pawar, S. (2022). Prediction of waterlogged zones under heavy rainfall conditions using machine learning and GIS tools: A case study of Mumbai. GeoJournal. https://doi.org/10.1007/s10708-022-10731-3

    Article  Google Scholar 

  35. Sheikh Khozani, Z., Barzegari Banadkooki, F., Ehteram, M., Najah Ahmed, A., & El-Shafie, A. (2022). Combining autoregressive integrated moving average with Long Short-Term Memory neural network and optimisation algorithms for predicting ground water level. Journal of Cleaner Production, 348, 131224. https://doi.org/10.1016/j.jclepro.2022.131224

    Article  Google Scholar 

  36. Hanoon, M. S., Ahmed, A. N., Zaini, N., Razzaq, A., Kumar, P., Sherif, M., Sefelnasr, A., & El-Shafie, A. (2021). Developing machine learning algorithms for meteorological temperature and humidity forecasting at Terengganu state in Malaysia. Scientific Reports, 11(1), 18935. https://doi.org/10.1038/s41598-021-96872-w

    Article  CAS  Google Scholar 

  37. Mishra, N., Soni, H. K., Sharma, S., & Upadhyay, A. K. (2018). Development and analysis of artificial neural network models for rainfall prediction by using time-series data. International Journal of Intelligent Systems and Applications, 10(1), 16–23. https://doi.org/10.5815/ijisa.2018.01.03

    Article  Google Scholar 

  38. Chen, C., Duan, S., Cai, T., & Liu, B. (2011). Online 24-h solar power forecasting based on weather type classification using artificial neural network. Solar Energy, 85(11), 2856–2870. https://doi.org/10.1016/j.solener.2011.08.027

    Article  Google Scholar 

  39. Shabani, M., Darvishi, S., Rabiei-Dastjerdi, H., Alavi, A., Choudhury, T., & Solaimani, K. (2022). An integrated approach for simulation and prediction of land use and land cover changes and urban growth (Case study: Sanandaj city in Iran). Journal of the Geographical Institute Jovan Cvijic, SASA, 72(3), 273–289. https://doi.org/10.2298/IJGI2203273S

    Article  Google Scholar 

  40. Maier, H. R., Jain, A., Dandy, G. C., & Sudheer, K. P. (2010). Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions. Environmental Modelling & Software, 25(8), 891–909. https://doi.org/10.1016/j.envsoft.2010.02.003

    Article  Google Scholar 

  41. Taormina, R., Chau, K., & Sethi, R. (2012). Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Engineering Applications of Artificial Intelligence, 25(8), 1670–1676. https://doi.org/10.1016/j.engappai.2012.02.009

    Article  Google Scholar 

  42. Haykin, S. S. (2009). Neural networks and learning machines. Pearson Education.

    Google Scholar 

  43. Piotrowski, A. P., & Napiorkowski, J. J. (2011). Optimizing neural networks for river flow forecasting – Evolutionary computation methods versus the Levenberg–Marquardt approach. Journal of Hydrology, 407(1–4), 12–27. https://doi.org/10.1016/j.jhydrol.2011.06.019

    Article  Google Scholar 

  44. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  45. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). Springer. https://doi.org/10.1007/978-0-387-84858-7

    Book  Google Scholar 

  46. Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: from theory to algorithms. UK: Cambridge University Press.

    Book  Google Scholar 

  47. Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21–27. https://doi.org/10.1109/TIT.1967.1053964

    Article  Google Scholar 

  48. Gu, J., Liu, S., Zhou, Z., Chalov, S. R., & Zhuang, Q. (2022). A stacking ensemble learning model for monthly rainfall prediction in the Taihu Basin, China. Water, 14(3), 492. https://doi.org/10.3390/w14030492

    Article  Google Scholar 

  49. Ahmadi, A., Moridi, A., Lafdani, E. K., & Kianpisheh, G. (2014). Assessment of climate change impacts on rainfall using large scale climate variables and downscaling models – A case study. Journal of Earth System Science, 123(7), 1603–1618. https://doi.org/10.1007/s12040-014-0497-x

    Article  Google Scholar 

  50. Alhumaima, A. S., & Abdullaev, S. M. (2019). Landscape approach to normalized difference vegetation index forecast by artificial neural network: Example of Diyala RIVER Basin. Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control & Radioelectronics, 19(3), 5–19. https://doi.org/10.14529/ctcr190301

    Article  Google Scholar 

  51. Alhumaima, A. S., & Abdullaev, S. M. (2020). Tigris basin landscapes: Sensitivity of vegetation index NDVI to climate variability derived from observational and reanalysis data. Earth Interactions, 24(7), 1–18. https://doi.org/10.1175/EI-D-20-0002.1

    Article  Google Scholar 

  52. IPCC. (2014). Climate change 2014: Impacts, adaptation and vulnerability. Intergovernmental Panel on Climate Change.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidreza Rabiei-Dastjerdi.

Ethics declarations

Conflict of interest

I declare that I have no significant competing financial, professional, or personal interests that might have influenced the performance or presentation of the work described in this manuscript, and there are no involving human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, I.J., Al-Nuaimi, B.T., Baker, T.I. et al. Comparative evaluation of machine learning techniques in predicting fundamental meteorological factors based on survey data from 1981 to 2021. Spat. Inf. Res. 32, 359–372 (2024). https://doi.org/10.1007/s41324-023-00561-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-023-00561-x

Keywords

Navigation