Skip to main content
Log in

Quantifying the sensitivity of band ratio methods for clean glacier ice mapping

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

Many methods and techniques utilize a combination of different bandwidths in the visible, NIR (Near Infrared), and SWIR (Shortwave Infrared) regions for glacier ice mapping. In this study, we investigated and compared various techniques to map the clean ice area of the glaciers using Landsat 8 and Sentinel 2 images. The effectiveness of different techniques and effects of different sensors on the mapping accuracy was also assessed in the Dhauliganga basin of Pithoragarh district, Uttarakhand state of India. Also, the time series composite of Sentinel-1 SAR (Synthetic Aperture Radar) data was used as reference data for estimating the bare or clean glacier ice area. It was reported from the study that clean ice/snow areas mapped using band ratios Red/SWIR and NIR/SWIR from Landsat 8 were overestimated by 4.41% and 4.94% respectively which were larger as compared to Sentinel 2. The most rigorous and well-known technique for glacier mapping, NDSI (Normalized Difference Snow Index) was also checked for both sensors. Clean ice/snow areas mapped from NDSI were found to be 1.35% less as compared to Red/SWIR and 2.62% greater as compared to NIR/SWIR bands of the Landsat 8. However using the same bands from the Sentinel 2, NDSI overestimated 0.67% and 5.27% respectively over both the ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bhambri, R., & Bolch, T. (2009). Glacier mapping: A review with special reference to the Indian Himalayas. Progress in Physical Geography, 33(5), 672704. https://doi.org/10.1177/0309133309348112.

    Article  Google Scholar 

  2. Bolch, T., Buchroithner, M. F., Peters, J., Baessler, M., & Bajracharya, S. (2008). Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery. Natural Hazards and Earth System Sciences, 8(6), 1329–1340. https://doi.org/10.5194/nhess-8-1329-2008.

    Article  Google Scholar 

  3. Andreassen, L. M., Paul, F., Ksignb, A., & Hausberg, J. E. (2008). Landsat-derived glacier inventory for Jotunheimen, Norway, and deduced glacier changes since the 1930s. Cryosphere, 2(2), 131145. https://doi.org/10.5194/tc-2-131-2008.

    Article  Google Scholar 

  4. Leonard, K. C., & Fountain, A. G. (2003). Map-based methods for estimating glacier equilibrium-line altitudes. Journal of Glaciology, 49(166), 329336. https://doi.org/10.3189/172756503781830665.

    Article  Google Scholar 

  5. RGI Consortium. Randolph Glacier Inventory (RGI)—A Dataset of Global Glacier Outlines: Version 6.0. Technical Report, GLIMS Technical Report RGI, 1(1), 11881197 (2017). https://doi.org/10.1111/j.1469-7610.2010.02280.x.

  6. Haeberli, W., Cihlar, J., & Barry, R. G. (2000). Glacier monitoring within the global climate observing system. Annals of Glaciology, 31, 241246.

    Article  Google Scholar 

  7. Paul, F., Huggel, C., & Kb, A. (2004). Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sensing of Environment, 89(4), 510518. https://doi.org/10.1016/j.rse.2003.11.007.

    Article  Google Scholar 

  8. Paul, F., Kb, A., Maisch, M., Kellenberger, T., & Haeberli, W. (2002). The new remote sensing derived Swiss glacier inventory: I. Methods. Annals of Glaciology, 34, 362–366. https://doi.org/10.3189/172756402781817941.

    Article  Google Scholar 

  9. Sidjak, R. W., & Wheate, R. D. (1999). Glacier mapping of the Illecillewaet Icefield, British Columbia, Canada, using Landsat TM and digital elevation data. International Journal of Remote Sensing, 20(2), 273284. https://doi.org/10.1080/014311699213442.

    Article  Google Scholar 

  10. Negi, H. S., Kulkarni, A. V., & Semwal, B. S. (2009). Estimation of snow cover distribution in Beas basin, Indian Himalaya using satellite data and ground measurements. Journal of Earth System Science, 118(5), 525538. https://doi.org/10.1007/s12040-009-0039-0.

    Article  Google Scholar 

  11. Paul, F., Winsvold, S. H., Kb, A., Nagler, T., & Schwaizer, G. (2016). Glacier remote sensing using Sentinel-2. Part II. Mapping glacier extents and surface facies, and comparison to Landsat 8. Remote Sensing, 8(7), 575. https://doi.org/10.3390/rs8070575.

    Article  Google Scholar 

  12. Bhardwaj, A., Joshi, P. K., Snehmani, S. M. K., Sam, L., & GuptaGupta, R. D. (2014). Mapping debris-covered glaciers and identifying factors affecting the accuracy. Cold Regions Science and Technology, 106107, 161174. https://doi.org/10.1016/j.coldregions.2014.07.006.

    Article  Google Scholar 

  13. Racoviteanu, A., & Williams, M. W. (2012). Decision tree and texture analysis for mapping debris-covered glaciers in the Kangchenjunga area, eastern Himalaya. Remote Sensing, 4, 3078–3109. https://doi.org/10.3390/rs4103078.

    Article  Google Scholar 

  14. Paterson, W. S. B. (1994). Physics of glaciers (3rd ed.). Oxford: Butterworth-Heinemann.

    Google Scholar 

  15. Patrington, K. C. (1998). Discrimination of glacier facies using multi-temporal SAR data. Journal of Glaciology, 44(146), 42–53.

    Article  Google Scholar 

  16. Thakur, P. K., Aggarwal, S. P., Arun, G., Sood, S., Kumar, A. S., Mani, S., et al. (2017). Estimation of snow cover area, snow physical properties and glacier classification in parts of Western Himalaya using C-band SAR data. Journal of the Indian Society of Remote Sensing (JISRS), 45(3), 525–539.

    Article  Google Scholar 

  17. Paul, F., & Kaab, A. (2005). Perspectives on the production of a glacier inventory from multispectral satellite data in Arctic Canada: Cumberland Peninsula, Baffin Island. Annals of Glaciology, 42, 5966. https://doi.org/10.3189/172756405781813087.

    Article  Google Scholar 

  18. Bhambri, R., Bolch, T., Chaujar, R. K., & Kulshreshtha, S. C. (2011). Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing. Journal of Glaciology, 57(203), 543556. https://doi.org/10.3189/002214311796905604.

    Article  Google Scholar 

  19. Armstrong, R. L., & Paterson, W. S. B. (1982). The physics of glaciers. Arctic and Alpine Research, 14(2), 176.

    Article  Google Scholar 

  20. Winsvold, S. H., & Kb, A. (2016). Regional glacier mapping using optical satellite data time series. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(8), 36983711. https://doi.org/10.1109/JSTARS.2016.2527063.

    Article  Google Scholar 

  21. Barandun, M., Huss, M., Sold, L., Farinotti, D., Azisov, E., Salzmann, N., et al. (2015). Re-analysis of seasonal mass balance at Abramov glacier 1968–2014. Journal of Glaciology, 61(230), 11031117. https://doi.org/10.3189/2015JoG14J239.

    Article  Google Scholar 

  22. Rabatel, A., Rabatel, A., Dedieu, J., Thibert, E., Vincent, C., & Letre, A. (2008). Twenty-five years of equilibrium-line altitude and mass balance reconstruction on the Glacier Blanc, French Alps (1981–2005), using remote- sensing method and meteorological data. Journal of Glaciology, 54(185), 307314. https://doi.org/10.3189/002214308784886063.

    Article  Google Scholar 

  23. Immerzeel, W. W., Droogers, P., de Jong, S. M., & Bierkens, M. F. P. (2009). Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sensing of Environment, 113(1), 4049. https://doi.org/10.1016/j.rse.2008.08.010.

    Article  Google Scholar 

  24. Jha, L. K., & Khare, D. (2016). Glacial lake outburst flood (GLOF) study of Dhauliganga basin in the Himalaya. Cogent Environmental Science, 2(1), 113. https://doi.org/10.1080/23311843.2016.1249107.

    Article  Google Scholar 

  25. Singh, D. K., Thakur, P. K., Naithani, B. P., & Kaushik, S. (2018). Temporal monitoring of glacier change in dhauliganga basin, Kumaun Himalaya using geospatial techniques. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. https://doi.org/10.5194/isprs-annals-IV-5-203-2018.

    Article  Google Scholar 

  26. Adam, S., Pietroniro, A., & Brugman, M. M. (1997). Glacier snow line mapping using ERS-1 SAR imagery. Remote Sensing of Environment, 61(1), 46–54.

    Article  Google Scholar 

  27. Hall, D. K., Bahr, K. J., Shoener, W., Bindschadler, R. A., & Chien, J. Y. L. (2003). Consideration of the errors inherent in mapping historical glacier positions in Austria from the ground and space. Remote Sensing of Environment, 86, 566–577.

    Article  Google Scholar 

  28. Bhambri, R., Bolch, T., & Chaujar, R. K. (2012). Frontal recession of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2006, measured through high-resolution remote sensing data. Current Science, 102(3), 489–494.

    Google Scholar 

  29. Thakur, P. K., Aggarwal, S., Aggarwal, S. P., & Jain, S. K. (2016). One-dimensional hydrodynamic modelling of GLOF and impact on hydropower projects in Dhauliganga River using remote sensing and GIS applications. Natural Hazards, 83, 1057–1075. https://doi.org/10.1007/s11069-016-2363-4.

    Article  Google Scholar 

  30. Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., et al. (2012). Sentinel-2: ESAs optical high-resolution mission for GMES operational services. Remote Sensing of Environment, 120, 2536. https://doi.org/10.1016/j.rse.2011.11.026.

    Article  Google Scholar 

  31. Bayr, K. J., Hall, D. K., & Kovalick, W. M. (1994). Observations on glaciers in the eastern Austrian Alps using satellite data. International Journal of Remote Sensing, 15(9), 17331742. https://doi.org/10.1080/01431169408954205.

    Article  Google Scholar 

  32. Paul, F., Bolch, T., Kb, A., Nagler, T., Nuth, C., Scharrer, K., et al. (2015). The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products. Remote Sensing of Environment, 162, 408426. https://doi.org/10.1016/j.rse.2013.07.043.

    Article  Google Scholar 

  33. Dixit, A., Goswami, A., & Jain, S. (2019). Development and evaluation of a new ‘Snow Water Index (SWI)’ for accurate snow cover delineation. Remote Sensing, 11(23), 2774.

    Article  Google Scholar 

  34. Wang, X. Y., Wang, J., Jiang, Z. Y., Li, H. Y., & Hao, X. H. (2015). An effective method for snow-cover mapping of dense coniferous forests in the upper Heihe River Basin using Landsat Operational Land Imager data. Remote Sensing, 7(12), 17246–17257.

    Article  Google Scholar 

  35. Paul, F., Bolch, T., Briggs, K., Kb, A., McMillan, M., Mcnabb, R., & Wuite, J. (2017). Error sources and guidelines for quality assessment of glacier area, elevation change, and velocity products derived from satellite data in the Glaciers_cci project. Remote Sensing of Environment, 203, 256275. https://doi.org/10.1016/j.rse.2017.08.038.

  36. Gascon F., Bouzinac C., Thépaut O., et al. 2017. Copernicus sentinel-2A calibration and products validation status. Remote Sensing 9, 584. https://doi.org/10.3390/rs9060584.

  37. Department of Space. (2018). Annual report 2017–18, Department of Space, Government of India, p 146.

  38. Winsvold, S. H., Andreassen, L. M., & Kienholz, C. (2014). Glacier area and length changes in Norway from repeat inventories. Cryosphere, 8(5), 18851903. https://doi.org/10.5194/tc-8-1885-2014.

    Article  Google Scholar 

Download references

Acknowledgements

The study is a part of the Ph.D. program of the Department of Geography, Hemvati Nandan Bahuguna Garhwal University (HNBGU), and in collaboration with Water Resources Department, Indian Institute of Remote Sensing (IIRS-ISRO), Dehradun, India. The author is grateful to his Supervisors and acknowledged for the technical and overall support in the study. We are thankful to the United States Geological Survey for providing an option to download the Landsat and Sentinel datasets through Earth Explorer freely. We are also grateful to the Water Resources Department of IIRS-ISRO, Dehradun, for providing lab facilities like software and other technical requirements.

Funding

Currently, no funding is available for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhanendra K. Singh.

Ethics declarations

Conflict of interest

No potential conflict about the study and authors have nothing to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2868 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D.K., Thakur, P.K., Naithani, B.P. et al. Quantifying the sensitivity of band ratio methods for clean glacier ice mapping. Spat. Inf. Res. 29, 281–295 (2021). https://doi.org/10.1007/s41324-020-00352-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-020-00352-8

Keywords

Navigation