Skip to main content
Log in

Using circuity as a network efficiency measure: the example of Paris

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

Circuity, also called as the detour index or the route factor, is the ratio of the network distance between two points to the Euclidean or ‘as-the-crow-flies’ distance. This study aims to present a simple yet effective procedure to assess the transport network efficiency in and between different parts of an urban area using circuity and concentering partitioning. As an example, the road network of the city of Paris and its vicinity is examined using planar network data from OpenStreetMap. The variation in circuity levels is analyzed by quantifying the physical structure of the street network through the use of graph theory-based topological indices. The findings reveal that the beta index, or the average number of edges per node, and the order of a node, or the number of edges connecting to a node, plan a more important role in having more direct routes with less circuity in a road network. It is concluded that that the priorities in city planning affect the efficiency of transportation and the efficiency of the network can be assessed by a simple yet effective procedure based on circuity to guide policymaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cubukcu, K. M. (2001). Factors affecting shopping trip generation rates in metropolitan areas. Studies in Regional and Urban Planning, 9, 51–68.

    Google Scholar 

  2. Muller, P. O. (2017). Transportation and urban form: Stages in the spatial evolution of the American metropolises. In G. Giuliano & S. Hanson (Eds.), The geography of urban transportation (4th ed., pp. 57–85). New York: The Guilford Press.

    Google Scholar 

  3. Sohn, J. (2005). Are commuting patterns a good indicator of urban spatial structure? Journal of Transport Geography, 13(4), 306–317.

    Article  Google Scholar 

  4. Levinson, D. (2012). Network structure and city size. PLoS ONE, 7(1), e29721.

    Article  Google Scholar 

  5. Tsekeris, T., & Geroliminis, N. (2013). City size, network structure and traffic congestion. Journal of Urban Economics, 76, 1–14.

    Article  Google Scholar 

  6. Boscoe, F. P., Henry, K. A., & Zdeb, M. S. (2012). A nationwide comparison of driving distance versus straight-line distance to hospitals. The Professional Geographer, 64(2), 188–196.

    Article  Google Scholar 

  7. Levin, O. (2015). Discrete mathematics: An open introduction. South Carolina: CreateSpace.

    Google Scholar 

  8. Sarkar, P. K., Maitri, V., & Joshi, G. J. (2017). Transportation planning: Principles, practices and policies. Ltd: PHI Learning Pvt.

    Google Scholar 

  9. Bin, X., & Zhongyi, Z. (2010). Graph theory, mathematical olympiad series. London: East China University Press.

    Google Scholar 

  10. Barthelemy, M. (2011). Spatial networks. Physics Reports, 499, 1–101.

    Article  Google Scholar 

  11. Nilsson, L., & Gil, J. (2019). The signature of organic urban growth. In L. D’Acci (Ed.), The mathematics of urban morphology (pp. 93–121). Cham: Birkhäuser.

    Chapter  Google Scholar 

  12. Rodrigue, J. P., Comtois, C., & Slack, B. (2016). The geography of transport systems. Abingdon: Routledge.

    Book  Google Scholar 

  13. Kansky, K. (1963). Structure of transportation networks: Relationships between network geometry and regional characteristics. Research paper 84, Department of Geography, University of Chicago, Chicago.

  14. Kansky, K., & Danscoine, P. (1989). Measures of network structure. FLUX Cahiers scientifiques internationaux Réseaux et Territoires, 5(1), 89–121.

    Google Scholar 

  15. Haggett, P. (1967). Models, paradigms and the new geography. In P. Haggett & R. J. Chorley (Eds.), Models in geography (pp. 19–41). Methuen: London.

    Google Scholar 

  16. Nagne, A. D., & Gawali, B. W. (2013). Transportation network analysis by using Remote Sensing and GIS a review. International Journal of Engineering Research and Applications, 3(3), 70–76.

    Google Scholar 

  17. Huang, J., & Levinson, D. M. (2015). Circuity in urban transit networks. Journal of Transport Geography, 48, 145–153.

    Article  Google Scholar 

  18. Boeing, G. (2019). The Morphology and circuity of walkable and drivable street networks. In L. D’Acci (Ed.), The mathematics of urban morphology (pp. 271–287). Cham: Birkhäuser.

    Chapter  Google Scholar 

  19. Ballou, R. H., Rahardja, H., & Sakai, N. (2002). Selected country circuity factors for road travel distance estimation. Transportation Research Part A: Policy and Practice, 36(9), 843–848.

    Google Scholar 

  20. Barbour, K. M. (1977). Rural road lengths and farm-market distances in north-east Ulster. Geografiska Annaler: Series B, Human Geography, 59(1), 14–27.

    Article  Google Scholar 

  21. Giacomin, D. J., & Levinson, D. M. (2015). Road network circuity in metropolitan areas. Environment and Planning B: Planning and Design, 42(6), 1040–1053.

    Article  Google Scholar 

  22. O’Sullivan, S., & Morrall, J. (1996). Walking distances to and from light-rail transit stations. Transportation Research Record, 1538(1), 19–26.

    Article  Google Scholar 

  23. Levinson, D., & El-Geneidy, A. (2009). The minimum circuity frontier and the journey to work. Regional Science and Urban Economics, 39(6), 732–738.

    Article  Google Scholar 

  24. Friedmann, J. (1986). The world city hypothesis. Development and Change, 17(1), 69–83.

    Article  Google Scholar 

  25. Yamu, C. (2014). It is simply complex (ity) modeling and simulation in the light of decision-making, emergent structures and a world of non-linearity. The Planning Review, 50(4), 43–53.

    Article  Google Scholar 

  26. Blanchard, P., & Volchenkov, D. (2008). Mathematical analysis of urban spatial networks. Berlin: Springer.

    Google Scholar 

  27. Costa, L. D. F., Travençolo, B. A. N., Viana, M. P., & Strano, E. (2010). On the efficiency of transportation systems in large cities. Europhysics Letters (EPL), 91(1), 18003.

    Article  Google Scholar 

  28. Barthelemy, M. (2014). Discussion: Social and spatial networks. Les nouvelles de l’archéologie, 135, 51–61.

    Article  Google Scholar 

  29. Jiang, B., Duan, Y., Lu, F., Yang, T., & Zhao, J. (2014). Topological structure of urban street networks from the perspective of degree correlations. Environment and Planning B: Planning and Design, 41(5), 813–828.

    Article  Google Scholar 

  30. Buczkowska, S., Coulombel, N., & de Lapparent, M. (2019). A comparison of euclidean distance, travel times, and network distances in location choice mixture models. Networks and Spatial Economics, 19(4), 1215–1248.

    Article  Google Scholar 

  31. Barles, S. (2009). Urban metabolism of Paris and its region. Journal of Industrial Ecology, 13(6), 898–913.

    Article  Google Scholar 

  32. Haklay, M., & Weber, P. (2008). Openstreetmap: User-generated street maps. IEEE Pervasive Computing, 7(4), 12–18.

    Article  Google Scholar 

  33. Battersby, S. E., Finn, M. P., Usery, E. L., & Yamamoto, K. H. (2014). Implications of web Mercator and its use in online mapping. Cartographica: The International Journal for Geographic Information and Geovisualization, 49(2), 85–101.

    Article  Google Scholar 

  34. Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269–271.

    Article  Google Scholar 

  35. Jiao, L. (2015). Urban land density function: A new method to characterize urban expansion. Landscape and Urban Planning, 139, 26–39.

    Article  Google Scholar 

  36. Hammond, R., & McCullagh, P. S. (1978). Quantitative techniques in geography: An introduction (2nd ed.). Oxford: Oxford University Press.

    Google Scholar 

  37. Cubukcu, K. M. (2015). Examining the street patterns in Izmir in the 19th Century: A network based spatial analysis. Procedia-Social and Behavioral Sciences, 202, 436–441.

    Article  Google Scholar 

  38. Cardillo, A., Scellato, S., Latora, V., & Porta, S. (2006). Structural properties of planar graphs of urban street patterns. Physical Review E, 73(6), 066107.

    Article  Google Scholar 

  39. Bedarida, F., & Sutcliffe, A. (1980). The street in the structure and life of the city: Reflections on nineteenth-century London and Paris. Journal of Urban History, 6(4), 379–396.

    Article  Google Scholar 

  40. Bacon, E. N. (1974). Design of cities. London: Thames and Hudson.

    Google Scholar 

  41. Sevtsuk, A., & Mekonnen, M. (2012). Urban network analysis. Revue internationale de géomatique, 287, 305.

    Google Scholar 

Download references

Acknowledgements

I would like to thank three anonymous reviewers for the valuable comments. Any mistakes are my own.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mert Cubukcu.

Ethics declarations

Conflict of interest

The corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cubukcu, K. Using circuity as a network efficiency measure: the example of Paris. Spat. Inf. Res. 29, 163–172 (2021). https://doi.org/10.1007/s41324-020-00342-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-020-00342-w

Keywords

Navigation