Skip to main content
Log in

Ability of green cover from sainfoin (Onobrychis viciifolia Scop.) and dog rose (Rosa canina L.) to control erosion and improve soil organic carbon and nitrogen stocks in terraces of Northwest Turkey

  • Original Article
  • Published:
Euro-Mediterranean Journal for Environmental Integration Aims and scope Submit manuscript

Abstract

The main aim of this study was to evaluate the impact of green cover and afforestation on soil properties, erosion susceptibility, as well as soil organic carbon (SOC) and soil total nitrogen (STN) contents and stock capacities. Mineral soil samples from two soil depths (0–10 cm and 10–20 cm) were obtained from a bare soil plot (BSP), a young forest plot (7-year-old juvenile cover; YFP), a mature forest plot (MFP) used as a reference control, a young forest plot with sainfoin green cover (YFP + S), and a young forest plot with dog rose green cover (YFP + R). The soil samples were analyzed for pH, water holding capacity (WHC), soil texture, dispersion ratio, bulk density, SOC, STN, and soil extractable P and K. Soil bulk density, soil volume, and the SOC and STN were used to calculate the mean SOC and STN stocks. Results showed that afforestation and green cover significantly influenced the chemical and physical properties of the soil, reduced its dispersion ratio, and increased its SOC and STN stock capacities (P < 0.05). The mean SOC stock was highest for MFP (39.7 t C ha−1), followed by YFP + R (37.1 t C ha−1), YFP + S (35.7 t C ha−1), YFP (22.1 t C ha−1), and BSP (10.9 t C ha−1). However, the mean STN stock was highest for YFP + S (2.40 t N ha−1), followed by MFP (2.25 t N ha−1), YFP + R (2.08 t N ha−1), YFP (1.88 t N ha−1), and BSP (0.55 t N ha−1). These results indicate that with proper care and management, natural or artificial leguminous and shrub species can provide year-round soil protection and minimize soil erosion in black pine plantation terraces. Growing these species could enhance soil productivity by increasing soil organic matter, improving the soil structure, and increasing the water holding capacity and nutrient retention of the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acin-Carrera M, Jose Marques M, Carral P, Alvarez AM, Lopez C, Martin-Lopez B, Gonzalez JA (2013) Impacts of land-use intensity on soil organic carbon content, soil structure and water-holding capacity. Soil Use Manag 29:547–556. https://doi.org/10.1111/sum.12064

    Article  Google Scholar 

  • Afrasinei GM, Melis MT, Buttau C, Arras C, Pistis M, Zerrim A, Guied M, Ouessar M, Essifi B, Zaied MB, Jlali A, Jarray H, Ghiglieri G (2017) Classification methods for detecting and evaluating changes in desertification-related features in arid and semiarid environments. Euro Mediterr J Environ Integr 2:14. https://doi.org/10.1007/s41207-017-0021-1

    Article  Google Scholar 

  • Allen SE (1989) Chemical analysis of ecological materials. Blackwell Scientific, Oxford

  • Andreu V, Rubio JL, Gimeno-Garcıa E, Llinares JV (1998) Testing three Mediterranean shrub species in runoff reduction and sediment transport. Soil Tillage Res 45:441–454. https://doi.org/10.1016/S0933-3630(97)00040-8

    Article  Google Scholar 

  • Archer S, Boutton TW, Hibbard KA (2001) Trees in grasslands: biogeochemical consequences of woody plant expansion. In: Schulze ED, et al. (eds) Global biogeochemical cycles in the climate system. Academic, San Diego, pp 115–138

    Chapter  Google Scholar 

  • Ashworth J, Mrazek K (1995) “Modified Kelowna” test for available phosphorus and potassium in soil. Commun Soil Sci Plant Anal 26:731–739. https://doi.org/10.1080/00103629509369331

    Article  Google Scholar 

  • Barrows HL, Kilmer VJ (1963) Plant nutrient losses from soils by water erosion. Adv Agron 15:303–315

    Article  Google Scholar 

  • Berg B, McClaugherty CA (2003) Plant litter: decomposition, humus formation, carbon sequestration. Springer, Berlin

    Book  Google Scholar 

  • Bienes R, Marques MJ, Sastre B, García-Díaz A, Ruiz-Colmenero M (2016) Eleven years after shrub revegetation in semiarid eroded soils. Influence in soil properties. Geoderma 273:106–114. https://doi.org/10.1016/j.geoderma.2016.03.023

    Article  Google Scholar 

  • Boutton TW, Liao JD, Filley TR, Archer SR (2008) Belowground carbon storage and dynamics following woody plant encroachment in a subtropical savanna. In: Lal R, Follett R (eds) Soil carbon sequestration and the greenhouse effect. Soil Science Society of America, Madison, pp 181–205

  • Bouyoucos GJ (1935) The clay ratio as a criterion of susceptibility of soils to erosion. J Am Soc Agron 27:738–741

    Article  Google Scholar 

  • Bouyoucos GJ (1962) Hydrometer method improved for making particle size analysis of soils. Agron J 54:464–465

    Article  Google Scholar 

  • Bowren KE, Biederbeck VO, Bjorge HA, Brandt SA, Goplen BP, Henry JL, Ukrainetz H, Wright T, McLean LA (1995) Soil improvement with legumes. Saskatchewan Agriculture and Food, Regina, p 24. www.gov.sk.ca

  • Boydak M, Çalışkan S (2015) Afforestation in arid and semi-arid region, 1st ed. CTA, Ankara. ISBN: 978-605-4610-84-6

  • Carbonero CH, Mueller-Harvey I, Brown AT, Smith L (2011) Sainfoin (Onobrychis viciifolia): a beneficial forage legume. Plant Gen Res 9:70–85. https://doi.org/10.1017/S1479262110000328

    Article  Google Scholar 

  • Carvalho-Santos C, Nunes JP, Monteiro AT, Hein L, Honrado JP (2016) Assessing the effects of land cover and future climate conditions on the provision of hydrological services in a medium-sized watershed of Portugal. Hydrol Process 30(5):720–738. https://doi.org/10.1002/hyp.10621

    Article  Google Scholar 

  • Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–595

    Article  Google Scholar 

  • Cash SD, Ditterline LR (1996) Seed size effects on growth and N2 fixation of juvenile sainfoin. Field Crops Res 46:145–151

    Article  Google Scholar 

  • Cerdà A, Morera AG, Bodí MB (2009) Soil and water losses from new citrus orchards growing on sloped soils in the Western Mediterranean basin. Earth Surf Process Landf 34:1822–1830. https://doi.org/10.1002/esp.1889

    Article  Google Scholar 

  • Cerdà A, Giménez-Morera A, Jordan A, Pereira P, Novara A, Keesstra S, Mataix-Solera J, Damián Ruiz J (2015) Shrubland as a soil and water conservation agent in Mediterranean-type ecosystems: the Sierra de Enguera study site contribution (Chap. 3). In: Dykes AP, Mulligan M, Wainwright J (eds) Monitoring and modelling dynamic environments: (a festschrift in memory of Professor John B. Thornes). Wiley-Blackwell, Hoboken, pp 45–59

  • Chaney K, Swift RS (1984) The influence of organic matter on aggregate stability in some British soils. J Soil Sci 35:223–230

    Article  Google Scholar 

  • Chisci G, Bazzoffi P, Pagliai M, Papini R, Pellegrini S, Vignozzi N (2001) Association of sulla and atriplex shrub for the physical improvement of clay soils and environmental protection in Central Italy. Agric Ecosyst Environ 84:45–53. https://doi.org/10.1016/S0167-8809(00)00190-0

    Article  Google Scholar 

  • Cotler H, Cram S, Martinez-Trinidad S, Quintanar E (2013) Forest soil conservation in central Mexico: an interdisciplinary assessment. Catena 104:280–287. https://doi.org/10.1016/j.catena.2012.12.005

    Article  Google Scholar 

  • De Falco E, Landi G, Basso F (2000) Production and quality of the sainfoin forage (Onobrychis viciefolia Scop.) as affected by cutting regime in a hilly area of southern Italy. Cahiers Options Méditerranéennes 45:275–279. https://om.ciheam.org/om/pdf/c45/00600211.pdf

  • De Luis M, González-Hidalgo JC, Longares LA (2010) Is rainfall erosivity increasing in the Mediterranean Iberian peninsula? Land Degrad Dev 21(2):139–144. https://doi.org/10.1002/ldr.918

    Article  Google Scholar 

  • De Vries W, Solberg S, Dobbertin M, Sterba H, Laubhann D, Van Oijen M, Evans C, Gundersen P, Kros J, Wamelink GWW, Reinds GJ, Sutton MA (2009) The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. For Ecol Manag 258:1814–1823. https://doi.org/10.1016/j.foreco.2009.02.034

    Article  Google Scholar 

  • Dengiz O, Saygin F, İmamoğlu A (2019) Spatial variability of soil organic carbon density under different land covers and soil types in a sub-humid terrestrial ecosystem. Eurosian J Soil Sci 8:35–43

    Google Scholar 

  • Díaz E, Roldán A, Lax A, Albaladejo J (1994) Formation of stable aggregates in degraded soils by amendment with urban refuse and peat. Geoderma 63:277–288. https://doi.org/10.1016/0016-7061(94)90069-8

    Article  Google Scholar 

  • Drut B, Cassagne N, Cannavacciuolo M, Floch GL, Cobo-Díaz JF, Fustec J (2018) Improving complementarity effect of legume intercrop by earthworm facilitation for wheat performance. J Agric Sci 10:1–14

    Google Scholar 

  • Durán ZVH, Francia MJR, Rodríguez PCR, Martínez RA, Cárceles RB (2006) Soil erosion and runoff prevention by plant covers in a mountainous area (SE Spain): implications for sustainable agriculture. Environmentalist 26:309–319. https://doi.org/10.1007/s10669-006-0160-4

    Article  Google Scholar 

  • Eck T, Potthoff M, Dyckmans J, Wichern F, Joergensen RG (2015) Priming effects of Aporrectodea caliginosa on young rhizodeposits and old soil organic matter following wheat straw addition. Eur J Soil Biol 70:38–45. https://doi.org/10.1016/j.ejsobi.2015.07.002

    Article  Google Scholar 

  • Edmondson JL, Davies ZG, McCormack SA, Gaston KJ, Leake JR (2014) Land-cover effects on soil organic carbon stocks in a European city. Sci Total Environ 472:444–453. https://doi.org/10.1016/j.scitotenv.2013.11.025

    Article  Google Scholar 

  • Eldridge DJ, Maestre FT, Maltez-Mouro S, Bowker MA (2012) A global database of shrub encroachment effects on ecosystem structure and functioning. Ecol Soc Am 93:2499–2499. https://doi.org/10.1890/12-0749.1

    Article  Google Scholar 

  • Feller C, Beare MH (1997) Physical control of soil organic matter dynamics in the tropics. Geoderma 79:69–116. https://doi.org/10.1016/S0016-7061(97)00039-6

    Article  Google Scholar 

  • Fenton TE, Kazemim M, Lauterbach-Barrettm MA (2005) Erosional impact on organic matter content and productivity of selected iowa soils. Soil Tillage Res 81:163–171. https://doi.org/10.1016/j.still.2004.09.005

    Article  Google Scholar 

  • Ferreira IQ, Rodrigues MA, Claro AM, Arrobas M (2015) Management of nitrogen-rich legume cover crops as mulch in traditional olive orchards. Commun Soil Sci Plant Anal 46:1881–1894. https://doi.org/10.1080/00103624.2015.1059847

    Article  Google Scholar 

  • Franzluebbers AJ, Arshad MA (1996) Soil organic matter pools with conventional and zero tillage in a cold, semiarid climate. Soil Tillage Res 39:1–11. https://doi.org/10.1016/S0167-1987(96)01055-0

    Article  Google Scholar 

  • Franzluebbers AJ, Arshad MA (1997) Soil microbial biomass and mineralizable carbon of water-stable aggregates. Soil Sci Soc Am J 61:1090–1097. https://doi.org/10.2136/sssaj1997.03615995006100040015x

    Article  Google Scholar 

  • Frame J (2005) Forage legumes for temperate grasslands. Science, Enfield, pp 127–132

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226

    Article  Google Scholar 

  • Green TH, Brown GF, Bingham L, Mays D, Sistani K, Joslin JD, Bock BR, Thornton FC, Tolbert VR (1996) Environmental impacts of conversion of cropland to biomass production. In: Bioenergy ’96—7th Nat Bioenergy Conf, Nashville, TN, USA, 15–20 Sept 1996, pp 918–924

  • Guerra CA, Pinto-Correia T (2016) Linking farm management and ecosystem service provision: challenges and opportunities for soil erosion prevention in Mediterranean silvo-pastoral systems. Land Use Policy 51:54–65. https://doi.org/10.1016/j.landusepol.2015.10.028

    Article  Google Scholar 

  • Gülçur F (1974) Soil physical and chemical analysis methods. Istanbul University Forestry Faculty Publication no. 221. Kutulmuş, Istanbul

  • Günal H, Korucu T, Birkas M, Özgöz E, Zamfir RHC (2015) Threats to sustainability of soil functions in central and southeast Europe. Sustainability 7:2161–2188. https://doi.org/10.3390/su7022161

    Article  Google Scholar 

  • Hagos MG, Smit GN (2005) Soil enrichment by Acacia mellifera subsp. detinens on nutrient poor sandy soil in a semi-arid southern African savanna. J Arid Environ 61:47–59. https://doi.org/10.1016/j.jaridenv.2004.08.003

  • Hassink J (1997) The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 191:77–87. https://doi.org/10.1023/A:1004213929699

    Article  Google Scholar 

  • Ilisulu K (1992) Medical and spices plants. Agricultural Faculty, Ankara University, Ankara

  • Junqiang W, Lichao L, Xiaoqing Q, Yujie W, Yanrong L, Zhiguo S (2016) Contents of soil organic carbon and nitrogen in water-stable aggregates in abandoned agricultural lands in an arid ecosystem of Northwest China. J Arid Land 8:350–363. https://doi.org/10.1007/s40333-016-0042-7

    Article  Google Scholar 

  • Kaibo W, Lei D, Zongping R, Weiyu S, Yiping C, Zhouping S (2016) Dynamics of ecosystem carbon stocks during vegetation restoration on the Loess Plateau of China. J Arid Land 8:207–220. https://doi.org/10.1007/s40333-015-0091-3

    Article  Google Scholar 

  • Kaihura FBS, Kullaya IK, Kilasara M, Aune JB, Singh BR, Lal R (1999) Soil quality of accelerated erosion and management systems in three eco-regions of Tanzania. Soil Tillage Res 53:59–70. https://doi.org/10.1016/S0167-1987(99)00077-X

    Article  Google Scholar 

  • Kapur S, Akça E, Günal H (2018) The soils of Turkey. World Soils Book Series. Springer, Cham. https://doi.org/10.1007/978-3-319-64392-2(ISBN: 978-3-319-64390-8)

  • Krull ES, Baldock JA, Skjemstad JO (2003) Importance of mechanisms and processes of the stabilization of soil organic matter for modelling carbon turnover. Funct Plant Biol 30:207–222. https://doi.org/10.1071/FP02085

    Article  Google Scholar 

  • Kosmas C, Danalatos NG, St G (2000) The effect of land parameters on vegetation performance and degree of erosion under Mediterranean conditions. Catena 40:3–17. https://doi.org/10.1016/S0341-8162(99)00061-2

    Article  Google Scholar 

  • Langdale GW, West LT, Bruce RR, Miller WP, Thomas AW (1992) Restoration of eroded soil with conservation tillage. Soil Technol 5:81–90. https://doi.org/10.1016/0933-3630(92)90009-P

    Article  Google Scholar 

  • Lee J, Hopmans JW, Rolston DE, Baer SG, Six J (2009) Determining soil carbon stock changes: simple bulk density corrections fail. Agric Ecosyst Environ 134:251–256. https://doi.org/10.1016/j.agee.2009.07.006

    Article  Google Scholar 

  • Lobb DA, Burton DL, Lindstrom MJ, Reicosky C (2002) Impacts of soil erosion on the production and emission of greenhouse gases and carbon sequestration in the Canadian Prairies. In: Smith CAS (ed) Soil organic carbon and agriculture: developing indicators for policy analyses. Proceedings of an OECD Expert Meeting. Agriculture and Agri-Food Canada/Organization for Economic Co-operation and Development, Ottawa/Paris, pp 235–243

  • Ludwig F, De Kroon H, Berendse F, Prins HH (2004) The influence of savanna trees on nutrient, water and light availability and the understorey vegetation. Plant Ecol 170:93–105. https://doi.org/10.1023/B:VEGE.0000019023.29636.92

  • Malik RK, Green TH, Brown GF, Mays D (2000) Use of cover crops in short rotation hardwood plantations to control erosion. Biomass Bioenergy 18:479–487. https://doi.org/10.1016/S0961-9534(00)00016-7

    Article  Google Scholar 

  • Martínez-Mena M, Álvarez Rogel J, Castillo V, Albaladejo J (2002) Organic carbon and nitrogen losses influenced by vegetation removal in a semiarid Mediterranean soil. Biogeochemistry 61:309–321. https://www.jstor.org/stable/1469803

  • Mısır M, Mısır N (2013) Root biomass and carbon storage for Fagus orientalis lipsky. (Northeastern Anatolia). Int J Educ Res 1:1–8

    Google Scholar 

  • Middleton HE (1930) The properties of soils which influence erosion. USDA Tech Bull 178:1–16

    Google Scholar 

  • Moro MJ, Pugnaire FI, Haase P, Puigdefábregas J (1997) Mechanisms of interaction between a leguminous shrub understorey in a semi-arid environment. Ecography 20:175–184. https://doi.org/10.1111/j.1600-0587.1997.tb00360.x

    Article  Google Scholar 

  • Nave LE, Vance ED, Swanston CW, Curtis PS (2009) Impacts of elevated N inputs on north temperate forest soil C storage, C/N, and net N mineralization. Geoderma 153:231–240. https://doi.org/10.1016/j.geoderma.2009.08.012

    Article  Google Scholar 

  • Nearing MA, Jetten V, Baffaut C, Cerdan O, Couturier A, Hernández M, Le Bissonnais Y, Nichols MH, Nunes JP, Renschler CS, Souchére V, van Oost K (2005) Modeling response of soil erosion, runoff to changes in precipitation, cover. Catena 61:131–154. https://doi.org/10.1016/j.catena.2005.03.007

    Article  Google Scholar 

  • Nunes JPC, Seixas J (2003) Impacts of extreme rainfall events on hydrological soil erosion patterns; application to a Mediterranean watershed. World J Res Rev 15:336–351. https://doi.org/10.1016/j.iswcr.2015.10.001

    Article  Google Scholar 

  • Pinto-Correia T, Mascarenhas JA (1999) Contribution to the extensification/intensification debate: new trends in the Portuguese montado. Landsc Urban Plan 46:125–131. https://doi.org/10.1016/S0169-2046(99)00036-5

    Article  Google Scholar 

  • Premrov A, Coxon CE, Hackett R, Kirwan L, Richards KG (2012) Effects of over-winter green cover on groundwater nitrate and dissolved organic carbon concentrations beneath tillage land. Sci Total Environ 438:144–153. https://doi.org/10.1016/j.scitotenv.2012.08.043

    Article  Google Scholar 

  • Quiroga AR, Buschaiazzo DE, Peinemann N (1996) Soil organic matter particle size fractions in soils of the semiarid Argentinian Pampas. Soil Sci 161:104–107. https://doi.org/10.1097/00010694-199602000-00004

    Article  Google Scholar 

  • Ranney JW, Wright LL, Layton PA (1987) Hardwood energy crops: the technology of intensive culture. J For 85:17–28. https://doi.org/10.1093/jof/85.9.17

    Article  Google Scholar 

  • Ravindran A, Yang S (2015) Effects of vegetation type on microbial biomass carbon and nitrogen in subalpine mountain forest soils. J Microbiol Immunol Infect 48:362–369. https://doi.org/10.1016/j.jmii.2014.02.003

    Article  Google Scholar 

  • Rodrigues MA, Correia CM, Claro AM, Ferreira IQ, Barbosa JC, Moutinho-Pereira JM, Bacelar EA, Fernandes-Silva AA, Arrobas M (2013) Soil nitrogen availability in olive orchards after mulching legume cover crop residues. Sci Hortic 58:45–51. https://doi.org/10.1016/j.scienta.2013.04.035

    Article  Google Scholar 

  • Rodrigues MA, Dimande P, Pereira EL, Ferreira IQ, Freitas S, Correia CM, Moutinho-Pereira J, Arrobas M (2015) Early-maturing annual legumes: an option for cover cropping in rainfed olive orchards. Nutr Cycl Agroecosyst 103:153–166. https://doi.org/10.1007/s10705-015-9730-5

    Article  Google Scholar 

  • Rodríguez PCR, Durán ZVH, Muriel FJL, Martín PFJ, Franco TD (2009a) Litter decomposition and nitrogen release in a sloping Mediterranean subtropical agroecosystem on the coast of Granada (SE, Spain): effects of floristic and topographic alteration on the slope. Agric Ecosyst Environ 134:79–88. https://doi.org/10.1016/j.agee.2009.05.019

    Article  Google Scholar 

  • Rodríguez PCR, Durán ZVH, Francia MJR, de Graaff J, Muriel FJL (2009b) Land use changes in a small watershed in the Mediterranean landscape (Almuñécar, SE Spain): environmental implications of a shift towards subtropical crops. J Land Use Sci 8:47–58. https://doi.org/10.1080/1747423X.2011.620992

    Article  Google Scholar 

  • Romero DMA, López-Bermúdez F, Thornes JB, Francis CF, Fisher GC (1988) Variability of overland flow erosion rates in semiarid Mediterranean environment under matorral cover. Murcia, Spain. Catena Suppl 13:1–11.

  • Sariyildiz T, Savacı G, Kravkaz IS (2016) Effects of tree species, stand age and land-use change on soil carbon and nitrogen stock rates in northwest of Turkey. iForest Biogeosci For 9:165–170. https://doi.org/10.3832/ifor1567-008

  • Simões MP, Madeira M, Gazarini L (2009) Ability of Cistus L. shrubs to promote soil rehabilitation in extensive oak woodlands of Mediterranean areas. Plant Soil 323:249–265. https://doi.org/10.1007/s11104-009-9934-z

    Article  Google Scholar 

  • Song B, Yan M, Hou H, Guan J, Shi W, Li Q, Du S (2016) Distribution of soil carbon and nitrogen in two typical forests in the semiarid region of the Loess Plateau, China. Catena 143:159–166. https://doi.org/10.1016/j.catena.2016.04.004

    Article  Google Scholar 

  • Tárrega R, Calvo L, Taboada A, García-Tejero S, Marcos E (2009) Abandonment and management in Spanish dehesa systems: effects on soil features and plant species richness and composition. For Ecol Manag 257:731–738. https://doi.org/10.1016/j.foreco.2008.10.004

    Article  Google Scholar 

  • Throop HL, Lajtha K, Kramer M (2013) Density fractionation and 13C reveal changes in soil carbon following woody encroachment in a desert ecosystem. Biogeochem 112:409–422. https://doi.org/10.1007/s10533-012-9735-y

  • USDA (2019) Grain and legumes. United States Department of Agriculture, Washington, DC. https://www.nal.usda.gov/afsic/grains-and-legumes

  • Verdonck O, Gabriels R (1992) Reference method for the determination of physical and chemical properties of plant substrates. Acta Hortic 302:169–179. https://doi.org/10.17660/ActaHortic.1991.294.17

    Article  Google Scholar 

  • Yang L, Chen Y, Huang Y, Li Y, Wen M, Liu N, Wang J (2016) Effects of shrub islands created by Rhodomyrtus tomentosa (Aiton) Hassk. on the growth, chlorophyll fluorescence, and chloroplast ultrastructure of pine seedlings in degraded land of South China. Land Degrad Dev 27:729–737. https://doi.org/10.1002/ldr.2401

    Article  Google Scholar 

  • Zuazo VHD, Pleguezuelo CRR (2008) Soil-erosion and runoff prevention by plant covers. A review. Agron Sustain Dev 28:65–86. https://doi.org/10.1051/agro:2007062

    Article  Google Scholar 

  • Zuazo VHD, Rodríguez Pleguezuelo CR, Martin Peinado FJ, de Graaff J, Francia Martínez JR, Flanagan DC (2011) Environmental impact of introducing plant covers in the taluses of terraces: implications for mitigating agricultural soil erosion and runoff. Catena 84:79–88. https://doi.org/10.1016/j.catena.2010.10.004

    Article  Google Scholar 

Download references

Funding

The Scientific Research Projects Coordination Department at Kastamonu University provided financial support for this research (project no: KUBAP-03-2012-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Temel Sariyildiz.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Elena Xoplaki, Chief Editor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sariyildiz, T., Savaci, G. Ability of green cover from sainfoin (Onobrychis viciifolia Scop.) and dog rose (Rosa canina L.) to control erosion and improve soil organic carbon and nitrogen stocks in terraces of Northwest Turkey. Euro-Mediterr J Environ Integr 5, 9 (2020). https://doi.org/10.1007/s41207-020-0148-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41207-020-0148-3

Keywords

Navigation