Skip to main content

Advertisement

Log in

Efficacy of nanoparticles as photocatalyst in leachate treatment

  • Critical Reviews
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

Waste management is critical for creating sustainable and habitable communities, yet many developing countries and cities struggle with it. The inhumane disposal of toxic compounds in water bodies and garbage sites is contaminating the environment. Organic materials such as insecticides, pharmaceuticals waste, dyes and others are employed for a variety of functions, but when discarded in landfills, they constitute a serious health risk. When damp waste is put in a landfill and the site is exposed to rain and runoff, a dark brown liquid known as leachate accumulates at the landfill's bottom, containing some harmful and undesired compounds. This leachate pollutes the soil, groundwater, and surface water when it runs off the land and mixes with it. Landfill leachate is one of the most critical discharges or waste liquids due to its complicated composition, diverse qualities, and strength. In environmental engineering, nanomaterials are emerging as new functional materials capable of enhancing wastewater and leachate treatment. Treatment of leachate has been designated as a high-priority topic for nanotechnology applications. Nano-porous/filter materials, nanofiltration membranes, nano-photocatalysts, and magnetic nano-adsorbent have all been explored in the recent decade as leachate remedies utilizing nanoscience’s. Many researchers agree that these nanoparticles can be used as photocatalysts to remove aqueous contaminants and heavy metals from leachate at a low cost. Nanoparticles have unique quantum effects and a large surface area, making them more effective than bulk materials for leachate clean up. Physical, chemical, and mechanical properties like large SA:V (surface area to volume ratio) all contribute to the generation of oxidising agents at the pollutants surface, assisting in the complete breakdown of complex compounds found in the leachate into simpler compounds, CO2, and H2O. Because of their small size, nanomaterials as photocatalysts can exhibit a number of unique novel properties that aid in the elimination of organic compound and heavy metals found in leachate in large-scale applications with minimum dosages. The elements that influence nano-photocatalytic activity, as well as the photocatalytic mechanism, are thoroughly examined. By giving a summary of research papers and breakthroughs related to nanoparticle synthesis and their prospective use in leachate remediation, this study aids in the identification of research needs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdulhussain A, Abdulhussain A, Abbas GJ, Ping LZ, Ya PY, Al-Rekabi WS (2009) Review on landfill leachate treatments. J Appl Sci Res 6(4):672–684. https://doi.org/10.3844/ajassp.2009.672.684

    Article  Google Scholar 

  2. Kamaruddin MA, Yusoff MS, Aziz HA, Hung Y-T (2015) Sustainable treatment of landfill leachate. Appl Water Sci 5:113–126. https://doi.org/10.1007/s13201-014-0177-7

    Article  Google Scholar 

  3. Mojiri A, Zhou JL, Ratnaweera H, Ohashi A, Ozaki N, Kindaichi T, Asakura H (2021) Treatment of landfill leachate with different techniques: an overview. J Water Reuse Desalination 11(1):66–96. https://doi.org/10.2166/wrd.2020.079

    Article  Google Scholar 

  4. Anqi T, Zhiyong Z, Suhua H, Xia L (2020) Review on landfill leachate treatment methods. In: 6th international conference on energy science and chemical engineering, earth and environmental science, vol 565, pp 012038. https://doi.org/10.1088/1755-1315/565/1/012038

  5. Payandeh PE, Mehrdadi N, Dadgar P (2017) Study of biological methods in landfill leachate treatment. Open J Ecol 07:568–580. https://doi.org/10.4236/oje.2017.79038

    Article  Google Scholar 

  6. Luo H, Zeng Y, Cheng Y, He D, Pan X (2020) Recent advances in municipal landfill leachate: a review focusing on its characteristics, treatment, and toxicity assessment. Sci Total Environ 703:135468. https://doi.org/10.1016/j.scitotenv.2019.135468

    Article  Google Scholar 

  7. Sepehri A, Sarrafzadeh M-H (2018) Effect of nitrifiers community on fouling mitigation and nitrification efficiency in a membrane bioreactor. Chem Eng Process Process Intensif 128:10–18. https://doi.org/10.1016/j.cep.2018.04.006

    Article  Google Scholar 

  8. Güvenç SY, Güven EC (2019) Pre-treatment of food industry wastewater by coagulation: process modeling and optimisation. Celal Bayar Univ J Sci 15(3):307–316. https://doi.org/10.18466/cbayarfbe.581611

    Article  Google Scholar 

  9. Kumar V, Singh K, Shah MP (2021) Advanced oxidation processes for complex wastewater treatment. Adv Oxid Process Effl Treat Plants. https://doi.org/10.1016/b978-0-12-821011-6.00001-3

    Article  Google Scholar 

  10. Faheem, Du J, Kim SH, Hassan MA, Irshad S, Bao J (2020) Application of biochar in advanced oxidation processes: supportive, adsorptive, and catalytic role. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-07612-y

    Article  Google Scholar 

  11. Lu H, Wang J, Stoller M, Wang T, Bao Y, Hao H (2016) An overview of nanomaterials for water and wastewater treatment. Adv Mater Sci Eng. https://doi.org/10.1155/2016/4964828

    Article  Google Scholar 

  12. Ealia SAM, Saravanakumar MP (2017) A review on the classification, characterisation, synthesis of nanoparticles and their application. In: IOP conference series materials science and engineering, vol 263, pp 032019. https://doi.org/10.1088/1757-899X/263/3/032019

  13. Heera P, Shanmugam S (2015) Nanoparticle characterization and application: an overview. Int J Curr Microbiol Appl Sci 4(8):379–386 (ISSN: 2319-7706)

    Google Scholar 

  14. Chatterjee A, Kwatra N, Abraham J (2020) Nanoparticles fabrication by plant extracts. Phytonanotechnology. https://doi.org/10.1016/b978-0-12-822348-2.00008-5

    Article  Google Scholar 

  15. Karande SD, Jadhav SA, Garud HB, Kalantre VA, Burungale SH, Patil PS (2021) Green and sustainable synthesis of silica nanoparticles. Nanotechnol Environ Eng. https://doi.org/10.1007/s41204-021-00124-1

    Article  Google Scholar 

  16. Yaqoob AA, Parveen T, Umar K, Mohamad Ibrahim MN (2020) Role of nanomaterials in the treatment of wastewater: a review. Water 12(2):495. https://doi.org/10.3390/w12020495

    Article  Google Scholar 

  17. Ab GZ, Yusoff MS, Andas J (2015) Review on applications of nanoparticles in landfill leachate treatment. Appl Mech Mater 802:525–530. https://doi.org/10.4028/www.scientific.net/AMM.802.525

    Article  Google Scholar 

  18. Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12(7):908–931. https://doi.org/10.1016/j.arabjc.2017.05.011 (ISSN 1878-5352)

    Article  Google Scholar 

  19. Zhu D, Zhou Q (2019) Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: a review. Environ Nanotechnol Monit Manag 12:100255. https://doi.org/10.1016/j.enmm.2019.100255

    Article  Google Scholar 

  20. Sharma S, Dutta V, Singh P, Raizada P, Rahmani-Sani A, Hosseini-Bandegharaei A, Thakur VK (2019) Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: a review. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.04.292

    Article  Google Scholar 

  21. Singh P, Sharma K, Hasija V, Sharma V, Sharma S, Raizada P, Singh M, Saini AK, Hosseini-Bandegharaei A, Thakur VK (2019) Systematic review on applicability of magnetic iron oxides–integrated photocatalysts for degradation of organic pollutants in water. Mater Today Chem. https://doi.org/10.1016/j.mtchem.2019.08.005

    Article  Google Scholar 

  22. Bagheri S, Julkapli NM (2015) Magnetite hybrid photocatalysis: advance environmental remediation. Rev Inorg Chem. https://doi.org/10.1515/revic-2015-0014

    Article  Google Scholar 

  23. Saravanan R, Gracia F, Stephen A (2017) Basic principles, mechanism, and challenges of photocatalysis. Springer Ser Polym Compos Mater. https://doi.org/10.1007/978-3-319-62446-4_2

    Article  Google Scholar 

  24. Dutta V, Sharma S, Raizada P, Thakur VK, Khan AAP, Saini V, Asiri AM, Singh P (2021) An overview on WO3 based photocatalyst for environmental remediation. J Environ Chem Eng 9:105018. https://doi.org/10.1016/j.jece.2020.105018

    Article  Google Scholar 

  25. Singh R (2021) Different anticipated criteria to achieve novel and efficient photocatalysis via green ZnO: scope and challenges. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-021-03413-z

    Article  Google Scholar 

  26. Jain A, Vaya D (2017) Photocatalytic activity of TiO2 nanomaterial. J Chil Chem Soc 62(4):3683–3690. https://doi.org/10.4067/s0717-97072017000403683

    Article  Google Scholar 

  27. Rocha EMR, Vilar VJP, Fonseca A, Saraiva I, Boaventura RAR (2011) Landfill leachate treatment by solar-driven AOPs. Sol Energy 85(1):46–56. https://doi.org/10.1016/j.solener.2010.11.001 (ISSN 0038-092X)

    Article  Google Scholar 

  28. Poblete R, Prieto-Rodríguez L, Oller I, Maldonado MI, Malato S, Otal E, Vilches LF, Fernández-Pereira C (2012) Solar photocatalytic treatment of landfill leachate using a solid mineral by-product as a catalyst. Chemosphere 88(9):1090–1096. https://doi.org/10.1016/j.chemosphere.2012.04.044 (ISSN 0045-6535)

    Article  Google Scholar 

  29. Jia C, Wang Y, Zhang C, Qin Q (2011) UV-TiO2 photocatalytic degradation of landfill leachate. Water Air Soil Pollut 217:375–385. https://doi.org/10.1007/s11270-010-0594-7

    Article  Google Scholar 

  30. Meeroff DE, Bloetscher F, Reddy DV, Gasnier F, Jain S, McBarnette A, Hamaguchi H (2012) Application of photochemical technologies for treatment of landfill leachate. J Hazard Mater 209–210:299–307. https://doi.org/10.1016/j.jhazmat.2012.01.028

    Article  Google Scholar 

  31. Palanivelu K, Venkateswaran P, Esakku S, Ponethal R (2007) Treatment of municipal landfill leachate by solar photocatalytic method using fixed titanium dioxide. J Environ Sci Eng 49(1):54–57 (PMID: 18472561)

    Google Scholar 

  32. Wang C, Sun X, Shan H, Zhang H, Xi B (2021) Degradation of landfill leachate using UV-TiO2 photocatalysis combination with aged waste reactors. Processes 9(6):946. https://doi.org/10.3390/pr9060946

    Article  Google Scholar 

  33. Desai NN, Soraganvi VS, Madabhavi VK (2020) Solar photocatalytic degradation of organic contaminants in landfill leachate using TiO2 nanoparticles by RSM and ANN. Nat Environ Pollut Technol 19:651–662. https://doi.org/10.46488/NEPT.2020.v19i02.019

    Article  Google Scholar 

  34. Azadi S, Karimi-Jashni A, Javadpour S, Mahmoudian-Boroujerd L (2021) Photocatalytic landfill leachate treatment using P-type TiO2 nanoparticles under visible light irradiation. Environ Dev Sustain Multidiscip Approach Theory Pract Sustain Dev 23(4):6047–6065. https://doi.org/10.1007/s10668-020-00861-4

    Article  Google Scholar 

  35. Azadi S, Karimi-Jashni A, Javadpour S (2017) Photocatalytic treatment of landfill leachate using W-doped TiO2 nanoparticles. J Environ Eng. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001244

    Article  Google Scholar 

  36. Azadi S, Karimi-Jashni A, Javadpour S, Amiri H (2020) Photocatalytic treatment of landfill leachate using cascade photoreactor with immobilized W-C-codoped TiO2 nanoparticles. J Water Process Eng 36:101307. https://doi.org/10.1016/j.jwpe.2020.101307 (ISSN 2214-7144)

    Article  Google Scholar 

  37. Yasmin C, Lobna E, Mouna M, Kais D, Mariam K, Rached S, Abdelwaheb C, Ismail T (2020) New trend of Jebel Chakir landfill leachate pre-treatment by photocatalytic TiO2/Ag nanocomposite prior to fermentation using Candida tropicalis strain. Int Biodeterior. https://doi.org/10.1016/j.ibiod.2019.104829

    Article  Google Scholar 

  38. Loganayagi C, Andal P, Ramsathyajayanthi (2017) Landfill leachate degradation using zinc oxide under direct sunlight. Int J Pharm Sci Res 8(7):3039–3048. https://doi.org/10.13040/IJPSR.0975-8232.8(7).3039-48

    Article  Google Scholar 

  39. Makhtar SMZ, Wahab MA, Selimin MT, Mohamed NC (2011) Landfill leachate treatment by a coagulation-photocatalytic process. Int Conf Environ Ind Innov IPCBEE 12:228–228

    Google Scholar 

  40. Coffman N, Meeroff D, Bloetscher F (2020) Photocatalytic oxidation of landfill leachate using UV/TiO2 with catalyst recovery. Int J Eng Technol Manag Res 7(8):21–34. https://doi.org/10.29121/ijetmr.v7.i8.2020.735

    Article  Google Scholar 

  41. Aisien FA, Amenaghawon NA, Ikponmwen O (2016) Treatment of landfill leachate using Solar UV facilitated photocatalytic degradation. Niger J Technol Res. https://doi.org/10.4314/njtr.v11i2.3

    Article  Google Scholar 

  42. Zandsalimi Y, Rezaee R, Ghahramani E, Moradi M (2019) Photocatalytic efficiency of molybdenum-doped zinc oxide nanoparticles in treating landfill leachate. J Adv Environ Health Res 7(1):25–31. https://doi.org/10.22102/jaehr.2019.129825.1077

    Article  Google Scholar 

  43. Pavithra S, Shanthakumar S (2017) Removal of COD, BOD and color from municipal solid waste leachate using silica and iron nano particles: a comparative study. Glob Nest J 19:122–130. https://doi.org/10.30955/gnj.002065

    Article  Google Scholar 

  44. Soubh AM, Baghdadi M, Abdoli MA, Aminzadeh B (2018) Zero-valent iron nanofibers (ZVINFs) immobilized on the surface of reduced ultra-large graphene oxide (rULGO) as a persulfate activator for treatment of landfill leachate. J Environ Chem Eng 6(5):6568–6579. https://doi.org/10.1016/j.jece.2018.10.011 (ISSN 2213-3437)

    Article  Google Scholar 

  45. Shafaei N, Jahanshahi M, Peyravi M, Najafpour Q (2016) Self-cleaning behavior of nanocomposite membrane induced by photocatalytic WO3 nanoparticles for landfill leachate treatment. Korean J Chem Eng 33:2968–2981. https://doi.org/10.1007/s11814-016-0154-y

    Article  Google Scholar 

  46. Uday B, Patel R, Metre A (2018) Photocatalytic treatment of landfill leachate using pure TiO2 nanoparticles. Int J Creative Res Thoughts 6(2):158–166 (ISSN: 2320-2882)

    Google Scholar 

  47. Elleuch L, Messaoud M, Djebali K, Attafi M, Cherni Y, Kasmi M, Elaoud A, Trabelsi I, Chatti A (2020) A new insight into highly contaminated landfill leachate treatment using Kefir grains pre-treatment combined with Ag-doped TiO2 photocatalytic process. J Hazard Mater 382:121119. https://doi.org/10.1016/j.jhazmat.2019.121119 (ISSN 0304-3894)

    Article  Google Scholar 

  48. Carard RF, Schiavon GJ, De Castro TM, Medeiros FVS, De Paula G, Landgraf ACM, Arantes EJ (2021) Photocatalytic ozonation performance in landfill leachate treatment. Eng Sci An Acad Bras Ciênc. https://doi.org/10.1590/0001-3765202120190137

    Article  Google Scholar 

  49. Rojviroon O, Rojviroon T, Sirivithayapakorn S (2015) Removal of color and chemical oxygen demand from landfill leachate by photocatalytic process with AC/TiO2. Energy Procedia 79:536–541. https://doi.org/10.1016/j.egypro.2015.11.530 (ISSN 1876-6102)

    Article  Google Scholar 

  50. Tasnim G, Sheikh YB, Mahtab MS (2020) Photocatalytic (UV-TiO2) degradation process for landfill leachate treatment. In: International conference on recent advances in engineering and science, ICRAES 2020

  51. Gandhimathi A, Ramaraj M (2017) Municipal solid waste dumping yard leachate treatment by solar photocatalytic using ZnO as a catalyst. Int J Civ Eng Technol 8:429–438

    Google Scholar 

  52. Becerra D, Soto J, Villamizar S, Machuca-Martínez F, Ramírez L (2020) Alternative for the treatment of leachates generated in a landfill of Norte de Santander-Colombia, by means of the coupling of a photocatalytic and biological aerobic process. Top Catal 63:1336–1349. https://doi.org/10.1007/s11244-020-01284-1

    Article  Google Scholar 

  53. Batista G, Cervantes TNM, Moore GJ, De Santana H (2014) Photocatalysis applied in the studies of decolorization and COD removal of landfill leachate. Sem Ciênc Exatas Tecnol 35:121. https://doi.org/10.5433/1679-0375.2014v35n2p121

    Article  Google Scholar 

  54. Azadi S, Karimi-Jashni A, Javadpour S, Amiri H (2020) Photocatalytic treatment of landfill leachate: a comparison between N-, P-, and N-P-type TiO2 nanoparticles. Environ Technol Innov 19:100985. https://doi.org/10.1016/j.eti.2020.100985 (ISSN 2352-1864)

    Article  Google Scholar 

  55. Thuong NTL, Binh NT (2015) Small scale landfill leachate treatment using photocatalytic oxidation process. J Sci Technol 53(3A):49–54

    Google Scholar 

  56. Makhtar SMZ, Ibrahim N, Selimin MT (2010) Removal of colour from landfill by solar photocatalytic. J Appl Sci 10:2721–2724. https://doi.org/10.3923/jas.2010.2721.2724

    Article  Google Scholar 

  57. Hassan M, Wang X, Wang F, Dong W, Hussain A, Xie B (2017) Coupling ARB-based biological and photochemical (UV/TiO2 and UV/S2O82−) techniques to deal with sanitary landfill leachate. Waste Manag 63:292–298. https://doi.org/10.1016/j.wasman.2016.09.003 (ISSN 0956-053X)

    Article  Google Scholar 

  58. Hassan M, Zhao Y, Xie B (2016) Employing TiO2 photocatalysis to deal with landfill leachate: current status and development. Chem Eng J 285:264–275. https://doi.org/10.1016/j.cej.2015.09.093 (ISSN 1385-8947)

    Article  Google Scholar 

  59. Rezaie E, Sadeghi M, Khoramabadi GS (2017) Removal of organic materials and hexavalent chromium from landfill leachate using a combination of electrochemical and photocatalytic processes. Desalination Water Treat 85:264–270. https://doi.org/10.5004/dwt.2017.21208 (ISSN 1944-3994)

    Article  Google Scholar 

  60. Chemlal R, Azzouz L, Kernani R, Abdi N, Lounici H, Grib H, Mameri N, Drouiche N (2014) Combination of advanced oxidation and biological processes for the landfill leachate treatment. Ecol Eng 73:281–289. https://doi.org/10.1016/j.ecoleng.2014.09.043 (ISSN 0925-8574)

    Article  Google Scholar 

  61. Adeleye AS, Conway JR, Garner K, Huang Y, Yiming S, Keller AA (2016) Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability. Chem Eng J 286:640–662. https://doi.org/10.1016/j.cej.2015.10.105 (ISSN 1385-8947)

    Article  Google Scholar 

  62. Dong H, Zeng G, Tang L, Fan C, Zhang C, He X, He Y (2015) An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res 79:128–146. https://doi.org/10.1016/j.watres.2015.04.038 (ISSN 0043-1354)

    Article  Google Scholar 

  63. Raha S, Mohanta D, Ahmaruzzaman M (2021) Novel CuO/Mn3O4/ZnO nanocomposite with superior photocatalytic activity for removal of Rabeprazole from water. Sci Rep. https://doi.org/10.1038/s41598-021-94066-y

    Article  Google Scholar 

  64. Basaleh A, Mahmoud MHH (2021) CoAl2O4–g-C3N4 nanocomposite photocatalysts for powerful visible-light-driven hydrogen production. ACS Omega 6(15):10428–10436. https://doi.org/10.1021/acsomega.1c00872

    Article  Google Scholar 

  65. Ye C, Wang R, Wang H, Jiang F (2020) The high photocatalytic efficiency and stability of LaNiO3/g-C3N4 heterojunction nanocomposites for photocatalytic water splitting to hydrogen. BMC Chem. https://doi.org/10.1186/s13065-020-00719-w

    Article  Google Scholar 

  66. Ajibade PA, Oluwalana AE, Andrew FP (2020) Morphological studies, photocatalytic activity, and electrochemistry of platinum disulfide nanoparticles from bis(morpholinyl-4-carbodithioato)-platinum(II). ACS Omega 5(42):27142–27153. https://doi.org/10.1021/acsomega.0c03063

    Article  Google Scholar 

  67. Bouddouch A, Amaterz E, Bakiz B, Taoufyq A, Guinneton F, Villain S, Valmalette JC, Gavarri JR, Benlhachemi A (2021) Photocatalytic and photoluminescence properties of CePO4 nanostructures prepared by coprecipitation method and thermal treatment. Optik 238:166683. https://doi.org/10.1016/j.ijleo.2021.166683

    Article  Google Scholar 

  68. Zinatloo-Ajabshir S, Baladi M, Amiri O, Salavati-Niasari M (2020) Sonochemical synthesis and characterization of silver tungstate nanostructures as visible-light-driven photocatalyst for waste-water treatment. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2020.117062

    Article  Google Scholar 

  69. Ellouzi I, Bouddouch A, Bakiz B, Benlhachemi A, Abou Oualid H (2021) Glucose-assisted ball milling preparation of silver-doped biphasic TiO2 for efficient photodegradation of Rhodamine B: effect of silver-dopant loading. Chem Phys Lett 770:138456. https://doi.org/10.1016/j.cplett.2021.138456

    Article  Google Scholar 

  70. Ambaye TG (2020) Photocatalytic and biological oxidation treatment of real textile wastewater. Nanotechnol Environ Eng. https://doi.org/10.1007/s41204-020-00094-w

    Article  Google Scholar 

  71. Modi S, Fulekar MH (2020) Synthesis and characterization of zinc oxide nanoparticles and zinc oxide/cellulose nanocrystals nanocomposite for photocatalytic degradation of Methylene blue dye under solar light irradiation. Nanotechnol Environ Eng. https://doi.org/10.1007/s41204-020-00080-2

    Article  Google Scholar 

  72. Botsa SM, Basavaiah K (2018) Removal of Nitrophenols from wastewater by monoclinic CuO/RGO nanocomposite. Nanotechnol Environ Eng. https://doi.org/10.1007/s41204-018-0045-z

    Article  Google Scholar 

  73. Saini A, Arora I, Ratan JK (2019) Photo-induced hydrophilicity of microsized-TiO2 based self-cleaning cement. Mater Lett. https://doi.org/10.1016/j.matlet.2019.126888

    Article  Google Scholar 

  74. Ratan JK, Saini A (2019) Enhancement of photocatalytic activity of self-cleaning cement. Mater Lett. https://doi.org/10.1016/j.matlet.2019.02.065

    Article  Google Scholar 

  75. Ratan J, Bansal A (2015) CFD simulations of immobilized-titanium dioxide based annular photocatalytic reactor: model development and experimental validation. Indian J Chem Technol 22:95–104

    Google Scholar 

  76. Dutta V, Sharma S, Raizada P, Thakur VK, Khan AAP, Saini V, Asiri AM, Singh P (2021) An Overview on WO3 based photocatalyst for environmental remediation. J Environ Chem Eng 9:105018. https://doi.org/10.1016/j.jece.2020.105018

    Article  Google Scholar 

  77. Zhu S, Wang D (2017) Photocatalysis: basic principles, diverse forms of implementations and emerging scientific opportunities. Adv Energy Mater. https://doi.org/10.1002/aenm.201700841

    Article  Google Scholar 

  78. Kumar S, Ahlawat W, Bhanjana G, Heydarifard S, Nazhad MM, Dilbaghi N (2014) Nanotechnology-based water treatment strategies. J Nanosci Nanotechnol 14:1838–58. https://doi.org/10.1166/jnn.2014.9050

    Article  Google Scholar 

  79. Gupta A, Tandon M, Kaur A (2020) Role of metallic nanoparticles in water remediation with special emphasis on sustainable synthesis: a review. Nanotechnol Environ Eng. https://doi.org/10.1007/s41204-020-00092-y

    Article  Google Scholar 

  80. Thirunavukkarasu A, Nithya R, Sivashankar R (2020) A review on the role of nanomaterials in the removal of organic pollutants from wastewater. Rev Environ Sci Bio-Technol 19:751–778. https://doi.org/10.1007/s11157-020-09548-8

    Article  Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

SM-Idea for the article, Literature search, Original draft preparation, Review and editing. BS-Idea for the article, Literature search and Critically revised the work.

Corresponding author

Correspondence to Baranidharan Sundaram.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Sundaram, B. Efficacy of nanoparticles as photocatalyst in leachate treatment. Nanotechnol. Environ. Eng. 7, 173–192 (2022). https://doi.org/10.1007/s41204-021-00209-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41204-021-00209-x

Keywords

Navigation