Skip to main content
Log in

An overview on cellulose-supported semiconductor photocatalysts for water purification

  • Critical Reviews
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

Metal oxides have been widely used in wastewater treatment, but due to their limitations there is a need of some modifications to make them an efficient photocatalyst. Many support materials are used to enhance the photocatalytic efficacy of many photocatalysts. Recently, cellulose nanomaterials have been utilized as green prototype for the preparation of metal or metal oxide nanomaterials and to improve their photocatalytic efficacy as it acts as a good adsorbent and support material. Cellulose fibers (macro and nano) have gathered the interest of scientific community due to its easy fabrication and some unique possessions. Through immobilization, photocatalysts can be used for the removal of pollutants by fixing the raw catalyst powder onto a support material. Physical adsorption and covalent binding on carrier substance are various strategies for immobilization. In composites, cellulose fibers (macro and nano) have been utilized as a driving force owing to its structural properties (presence of functional groups, i.e., carboxylic, hydroxyl, methoxy and phenolic groups) and hydrophilic nature which helps in increasing surface roughness in composites. The present review offers an outlook on metal oxides, their limitations, immobilization and support materials where cellulose performed as support (to enhance surface area), adsorbent, immobilized and functionalized material to minimize the limitation of metal oxides. The main focus of this review is on different role of cellulose materials which describes the fundamental properties of cellulose and its amendments by coupling with other metal oxides such as TiO2, ZnO, Ag and phosphates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

reproduced with permission from Elsevier (License no. 5032941084385) Ref. [82] Copyright (2016)

Fig. 6

reproduced with permission from Elsevier (License no. 5032960671742) [82] Copyright (2020)

Fig. 7

reproduced with permission from Elsevier (License no. 5032961023539) [140] Copyright (2018)

Fig. 8

reproduced with permission from Elsevier (License no. 5032961315226) [141] Copyright (2019)

Fig. 9

reproduced with permission from Elsevier (License no. 5032970042442) [142] Copyright (2020)

Fig. 10

reproduced with permission from Elsevier (License no. 5032970199166) [144] Copyright (2021)

Fig. 11

reproduced with permission from Elsevier (License no. 5032970199166) [144] Copyright (2021). SEM pictures of b cellulose, c TiO2, and d cellulose/TiO2 composite, reproduced with permission from Elsevier (License no. 5034070622117) [145] Copyright (2020)

Fig. 12

reproduced with permission from Elsevier (License no. 5032971178709) [149] Copyright (2021)

Fig. 13

reproduced with permission from Elsevier (License no. 5032971178709) [149] Copyright (2021)

Fig. 14

reproduced with permission from Elsevier (License no. 5032971178709) [149] Copyright (2021)

Fig. 15

reproduced with permission from Elsevier (License no. 5095930330482) [152] Copyright (2021)

Fig. 16

reproduced with permission from Elsevier (License no. 5032970942396) [153] Copyright (2014)

Fig. 17

reproduced with permission from Elsevier (License no. 5033760640581) [157] Copyright (2017)

Fig. 18

reproduced with permission from Springer nature (Open Access 2021) [158] (Licensed under CC BY 4.0)

Fig. 19

reproduced with permission from Walter de Gruyter-Open Chemistry (Open Access 2019) [159] (Licensed under CC BY 4.0)

Fig. 20

reproduced with permission from Walter de Royal Society of Chemistry (Open Access 2020) [131], (Licensed under CC BY 3.0). SEM micrographs displaying morphology of j nanocellulose (NC), k Ag3PO4 nanoparticles, l Ag3PO4/NC nanocomposites and m schematic diagram of photodegradation mechanism of azo dyes by Ag3PO4/NC nanocomposites under visible light irradiation. reproduced with permission from Elsevier (License no. 5095941256575) [164] Copyright (2019)

Fig. 21

reproduced with permission from American Chemical Society (Open Access 2021) [165] (Licensed under CC-BY and CC-BY-NC-ND). b Experimentally examined Raman spectra of 4-CP, HQ, and BQ (top panel), calculated Raman spectra of 4-CP, HQ, and BQ (middle panel) and calculated Raman spectra of HCP, HHQ, and HBQ using DFT (bottom panel). (b) Experimentally examined Raman spectrum (upper panel) and DFT-calculated Raman spectrum of quinhydrone (bottom panel), reproduced with permission from American Chemical Society [166] Copyright (2018)

Similar content being viewed by others

Abbreviations

AOPs:

Advanced oxidation processes

BET:

Brunauer–Emmett–Teller

CNT:

Carbon nanotubes

CNCs:

Cellulose nanocrystals

CNFs:

Cellulose nanofibrils

CB:

Conduction band

DFT:

Density functional theory

ENPs:

Engineered nanoparticles

GQDs:

Graphene quantum dots

OH:

Hydroxyl radical

MB:

Methylene blue

MCC:

Microcrystalline cellulose

MFC:

Microfibrillated cellulosed

NFC:

Nanofibrillated cellulose

PL:

Photoluminescence

OG:

Orange G

ROS:

Reactive organic species

RhB:

Rhodamine B

SEM:

Scanning electron microscopy

SPR:

Surface plasmonic resonance

TOC:

Total organic carbon

TEM:

Transmission electron microscopy

VB:

Valence band

VOCs:

Volatile organic compounds

References

  1. Obama B (2017) The irreversible momentum of clean energy. Science 355(6321):126–129. https://doi.org/10.1126/science.aam6284

    Article  Google Scholar 

  2. Kumar R et al (2021) Recent advances on water disinfection using bismuth based modified photocatalysts: strategies and challenges. J Clean Prod 297:126617

    Article  Google Scholar 

  3. Naciri Y, Bouddouch A, Bakiz B, Taoufyq A, Ezahri M, Benlhachemi A (2020) Photocatalytic degradation of sulfadiazine by Zn3(PO4)2/BiPO4 composites upon UV light irradiation. Mater Today Proc 22:48–51

    Article  Google Scholar 

  4. Pankaj R, Anita S, Pardeep S, Hosseini-Bandegharaei A, Gupta VK, Shilpi A (2019) Silver-mediated Bi2O3 and graphitic carbon nitride nanocomposite as all solid state Z scheme photocatalyst for imidacloprid pesticide abatement from water. Desalination Water Treat 171:344–355

    Article  Google Scholar 

  5. Essekri A et al (2020) Novel citric acid-functionalized brown algae with a high removal efficiency of crystal violet dye from colored wastewaters: insights into equilibrium, adsorption mechanism, and reusability. Int. J. Phytoremediation 23:1–11

    Google Scholar 

  6. Singh P, Raizada P, Pathania D, Sharma G, Sharma P (2013) Microwave induced KOH activation of guava peel carbon as an adsorbent for congo red dye removal from aqueous phase

  7. Shahar H, Tan LL, Ta GC, Heng LY (2019) Detection of halogenated hydrocarbon pollutants using enzymatic reflectance biosensor. Sens Actuators B Chem 281:80–89

    Article  Google Scholar 

  8. Pare B, Singh P, Jonnalgadda SB (2009) Degradation and mineralization of victoria blue B dye in a slurry photoreactor using advanced oxidation process JSIR Vol6808 August 2009. Accessed: Mar. 17, 2021. http://nopr.niscair.res.in/handle/123456789/5300

  9. Hsini A et al (2021) Synthesis of an arginine-functionalized polyaniline@ FeOOH composite with high removal performance of hexavalent chromium ions from water: adsorption behavior, regeneration and process capability studies. Colloids Surf Physicochem Eng Asp 617:126274

    Article  Google Scholar 

  10. Abrams IM, Millar JR (1997) A history of the origin and development of macroporous ion-exchange resins. React Funct Polym 35(1):7–22. https://doi.org/10.1016/S1381-5148(97)00058-8

    Article  Google Scholar 

  11. Singh P, Sudhaik A, Raizada P, Shandilya P, Sharma R, Hosseini-Bandegharaei A (2019) Photocatalytic performance and quick recovery of BiOI/Fe3O4@ graphene oxide ternary photocatalyst for photodegradation of 2, 4-dintirophenol under visible light. Mater Today Chem 12:85–95

    Article  Google Scholar 

  12. Ali I (2014) Water treatment by adsorption columns: evaluation at ground level. Sep Purif Rev 43(3):175–205

    Article  Google Scholar 

  13. Hasija V, Raizada P, Sudhaik A, Singh P, Thakur VK, Khan AAP (2020) Fabrication of Ag/AgI/WO3 heterojunction anchored P and S co-doped graphitic carbon nitride as a dual Z scheme photocatalyst for efficient dye degradation. Solid State Sci 100:106095

    Article  Google Scholar 

  14. Yadav D et al (2021) Environmental and health impacts of contaminants of emerging concerns: Recent treatment challenges and approaches. Chemosphere 272:129492. https://doi.org/10.1016/j.chemosphere.2020.129492

    Article  Google Scholar 

  15. El Fakir AA et al (2021) Engineering of new hydrogel beads based conducting polymers: metal-free catalysis for highly organic pollutants degradation. Appl Catal B Environ 286:119948

    Article  Google Scholar 

  16. Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53(1):51–59. https://doi.org/10.1016/S0920-5861(99)00102-9

    Article  Google Scholar 

  17. Liu Y, Adewuyi YG (2016) A review on removal of elemental mercury from flue gas using advanced oxidation process: chemistry and process. Chem Eng Res Des 112:199–250. https://doi.org/10.1016/j.cherd.2016.06.024

    Article  Google Scholar 

  18. Bethi B, Sonawane SH, Bhanvase BA, Gumfekar SP (2016) Nanomaterials-based advanced oxidation processes for wastewater treatment: a review. Chem Eng Process Process Intensif 109:178–189. https://doi.org/10.1016/j.cep.2016.08.016

    Article  Google Scholar 

  19. Patial S, Hasija V, Raizada P, Singh P, Singh AAPK, Asiri AM (2020) Tunable photocatalytic activity of SrTiO3 for water splitting: strategies and future scenario. J Environ Chem Eng 8(3):103791

    Article  Google Scholar 

  20. Naciri Y et al (2018) Facile synthesis, characterization and photocatalytic performance of Zn3(PO4)2 platelets toward photodegradation of Rhodamine B dye. J Environ Chem Eng 6(2):1840–1847

    Article  Google Scholar 

  21. Sudhaik A, Raizada P, Singh P, Hosseini-Bandegharaei A, Thakur VK, Nguyen V-H (2020) Highly effective degradation of imidacloprid by H2O2/ fullerene decorated P-doped g-C3N4 photocatalyst. J Environ Chem Eng 8(6):104483. https://doi.org/10.1016/j.jece.2020.104483

    Article  Google Scholar 

  22. Naciri Y et al (2020) Influence of Sr-doping on structural, optical and photocatalytic properties of synthesized Ca3(PO4)2. J Colloid Interface Sci 572:269–280

    Article  Google Scholar 

  23. Shaim A et al (2019) Synthesis, characterization and photocatalytic activity of titano-phosphate glasses. Mediterr J Chem 8(1):66–73

    Article  Google Scholar 

  24. Kumar A, Raizada P, Hosseini-Bandegharaei A, Thakur VK, Nguyen V-H, Singh P (2021) C-, N-vacancy defect engineered polymeric carbon nitride towards photocatalysis: viewpoints and challenges. J Mater Chem A 9:111–153

    Article  Google Scholar 

  25. Raizada P et al (2021) Surface defect engineering of metal oxides photocatalyst for energy application and water treatment. J Materiomics 7(2):388–418. https://doi.org/10.1016/j.jmat.2020.10.009

    Article  Google Scholar 

  26. Sudhaik A et al (2020) Synergistic photocatalytic mitigation of imidacloprid pesticide and antibacterial activity using carbon nanotube decorated phosphorus doped graphitic carbon nitride photocatalyst. J Taiwan Inst Chem Eng 113:142–154. https://doi.org/10.1016/j.jtice.2020.08.003

    Article  Google Scholar 

  27. Dutta V, Sharma S, Raizada P, Hosseini-Bandegharaei A, Kaushal J, Singh P (2020) Fabrication of visible light active BiFeO3/CuS/SiO2 Z-scheme photocatalyst for efficient dye degradation. Mater Lett 270:127693. https://doi.org/10.1016/j.matlet.2020.127693

    Article  Google Scholar 

  28. Saranya M, Ramachandran R, Kollu P, Jeong SK, Grace AN (2015) A template-free facile approach for the synthesis of CuS–rGO nanocomposites towards enhanced photocatalytic reduction of organic contaminants and textile effluents. RSC Adv 5(21):15831–15840. https://doi.org/10.1039/C4RA09029B

    Article  Google Scholar 

  29. Zarezadeh S, Habibi-Yangjeh A, Mousavi M, Ghosh S (2020) Synthesis of novel p-n-p BiOBr/ZnO/BiOI heterostructures and their efficient photocatalytic performances in removals of dye pollutants under visible light. J Photochem Photobiol Chem 389:112247. https://doi.org/10.1016/j.jphotochem.2019.112247

    Article  Google Scholar 

  30. Shoja A, Habibi-Yangjeh A, Mousavi M, Ghosh S (2020) BiOBr and BiOCl decorated on TiO2 QDs: impressively increased photocatalytic performance for the degradation of pollutants under visible light. Adv Powder Technol 31(8):3582–3596. https://doi.org/10.1016/j.apt.2020.07.002

    Article  Google Scholar 

  31. Sedaghati N, Habibi-Yangjeh A, Pirhashemi M, Asadzadeh-Khaneghah S, Ghosh S (2020) Integration of BiOI and Ag3PO4 nanoparticles onto oxygen vacancy rich-TiO2 for efficient visible-light photocatalytic decontaminations. J Photochem Photobiol Chem 400:112659. https://doi.org/10.1016/j.jphotochem.2020.112659

    Article  Google Scholar 

  32. Raizada P, Sharma S, Kumar A, Singh P, Parwaz Khan AA, Asiri AM (2020) Performance improvement strategies of CuWO4 photocatalyst for hydrogen generation and pollutant degradation. J Environ Chem Eng 8(5):104230. https://doi.org/10.1016/j.jece.2020.104230

    Article  Google Scholar 

  33. Kumar R et al (2020) An overview on bismuth molybdate based photocatalytic systems: controlled morphology and enhancement strategies for photocatalytic water purification. J Environ Chem Eng 8(5):104291. https://doi.org/10.1016/j.jece.2020.104291

    Article  Google Scholar 

  34. Khan MM, Adil SF, Al-Mayouf A (2015) Metal oxides as photocatalysts. J Saudi Chem Soc 19(5):462–464. https://doi.org/10.1016/j.jscs.2015.04.003

    Article  Google Scholar 

  35. Chan SHS, Yeong Wu T, Juan JC, The CY (2011) Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. J Chem Technol Biotechnol 86(9):1130–1158

    Article  Google Scholar 

  36. Kumar SG, Rao KSRK (2017) Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO). Appl Surf Sci 391:124–148. https://doi.org/10.1016/j.apsusc.2016.07.081

    Article  Google Scholar 

  37. Meng A, Zhang L, Cheng B, Yu J (2019) Dual cocatalysts in TiO2 photocatalysis. Adv Mater 31(30):1807660. https://doi.org/10.1002/adma.201807660

    Article  Google Scholar 

  38. Lin H et al (2020) Ultrafine nano 1T-MoS2 monolayers with NiOx as dual co-catalysts over TiO2 photoharvester for efficient photocatalytic hydrogen evolution. Appl Catal B Environ 279:119387

    Article  Google Scholar 

  39. Aziz Zamri MSF, Sapawe N (2019) Regeneration studies of TiO2 photocatalyst for degradation of phenol in a batch system. Mater Today Proc 19:1327–1332. https://doi.org/10.1016/j.matpr.2019.11.145

    Article  Google Scholar 

  40. Fronzi M, Iwaszuk A, Lucid A, Nolan M (2016) Metal oxide nanocluster-modified TiO2 as solar activated photocatalyst materials. J Phys Condens Matter 28(7):074006. https://doi.org/10.1088/0953-8984/28/7/074006

    Article  Google Scholar 

  41. Ahsaine HA et al (2018) Photo/electrocatalytic properties of nanocrystalline ZnO and La-doped ZnO: combined DFT fundamental semiconducting properties and experimental study. ChemistrySelect 3(27):7778–7791

    Article  Google Scholar 

  42. Lam S-M, Sin J-C, Abdullah AZ, Mohamed AR (2014) Transition metal oxide loaded ZnO nanorods: preparation, characterization and their UV–vis photocatalytic activities. Sep Purif Technol 132:378–387. https://doi.org/10.1016/j.seppur.2014.05.043

    Article  Google Scholar 

  43. Yaqoob AA, Binti Mohd Noor NH, Serrà A, Mohamad Ibrahim MN (2020) Advances and challenges in developing efficient graphene oxide-based ZnO photocatalysts for dye photo-oxidation. Nanomaterials 10:5. https://doi.org/10.3390/nano10050932

    Article  Google Scholar 

  44. Batzill M (2011) Fundamental aspects of surface engineering of transition metal oxide photocatalysts. Energy Environ Sci 4(9):3275–3286. https://doi.org/10.1039/C1EE01577J

    Article  Google Scholar 

  45. Mondal K, Sharma A (2016) Recent advances in the synthesis and application of photocatalytic metal–metal oxide core–shell nanoparticles for environmental remediation and their recycling process. RSC Adv 6(87):83589–83612. https://doi.org/10.1039/C6RA18102C

    Article  Google Scholar 

  46. Bulfin B, Vieten J, Agrafiotis C, Roeb M, Sattler C (2017) Applications and limitations of two step metal oxide thermochemical redox cycles; a review. J Mater Chem A 5(36):18951–18966. https://doi.org/10.1039/C7TA05025A

    Article  Google Scholar 

  47. Dong H et al (2015) An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res 79:128–146. https://doi.org/10.1016/j.watres.2015.04.038

    Article  Google Scholar 

  48. Bion N, Epron F, Moreno M, Marino F, Duprez D (2008) Preferential oxidation of carbon monoxide in the presence of hydrogen (PROX) over noble metals and transition metal oxides: advantages and drawbacks. Top Catal 51(1–4):76

    Article  Google Scholar 

  49. Bilal M, Asgher M, Cheng H, Yan Y, Iqbal HMN (2019) Multi-point enzyme immobilization, surface chemistry, and novel platforms: a paradigm shift in biocatalyst design. Crit Rev Biotechnol 39(2):202–219. https://doi.org/10.1080/07388551.2018.1531822

    Article  Google Scholar 

  50. Bilal M, Rasheed T, Zhao Y, Iqbal HMN, Cui J (2018) ‘Smart’ chemistry and its application in peroxidase immobilization using different support materials. Int J Biol Macromol 119:278–290. https://doi.org/10.1016/j.ijbiomac.2018.07.134

    Article  Google Scholar 

  51. Walt DR, Agayn VI (1994) The chemistry of enzyme and protein immobilization with glutaraldehyde. TrAC Trends Anal Chem 13(10):425–430. https://doi.org/10.1016/0165-9936(94)85023-2

    Article  Google Scholar 

  52. Shi Q, Chen X, Lu T, Jing X (2008) The immobilization of proteins on biodegradable polymer fibers via click chemistry. Biomaterials 29(8):1118–1126. https://doi.org/10.1016/j.biomaterials.2007.11.008

    Article  Google Scholar 

  53. Zeng J, Liu S, Cai J, Zhang L (2010) TiO2 immobilized in cellulose matrix for photocatalytic degradation of phenol under weak UV light irradiation. J Phys Chem C 114(17):7806–7811

    Article  Google Scholar 

  54. Singh S, Mahalingam H, Singh PK (2013) Polymer-supported titanium dioxide photocatalysts for environmental remediation: a review. Appl Catal Gen 462–463:178–195. https://doi.org/10.1016/j.apcata.2013.04.039

    Article  Google Scholar 

  55. Arabatzis IM et al (2002) Preparation, characterization and photocatalytic activity of nanocrystalline thin film TiO2 catalysts towards 3,5-dichlorophenol degradation. J Photochem Photobiol Chem 149(1):237–245. https://doi.org/10.1016/S1010-6030(01)00645-1

    Article  Google Scholar 

  56. Cámara RM et al (2014) Enhanced photocatalytic activity of TiO2 thin films on plasma-pretreated organic polymers. Catal Today 230:145–151

    Article  Google Scholar 

  57. Pan JH, Dou H, Xiong Z, Xu C, Ma J, Zhao XS (2010) Porous photocatalysts for advanced water purifications. J Mater Chem 20(22):4512–4528. https://doi.org/10.1039/B925523K

    Article  Google Scholar 

  58. Shan AY, Mohd TI, Ghazi, and S. A. Rashid, (2010) Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review. Appl Catal Gen 389(1):1–8. https://doi.org/10.1016/j.apcata.2010.08.053

    Article  Google Scholar 

  59. Pozzo RL, Baltanás MA, Cassano AE (1997) Supported titanium oxide as photocatalyst in water decontamination: state of the art. Catal Today 39(3):219–231. https://doi.org/10.1016/S0920-5861(97)00103-X

    Article  Google Scholar 

  60. Srikanth B, Goutham R, Narayan RB, Ramprasath A, Gopinath KP, Sankaranarayanan AR (2017) Recent advancements in supporting materials for immobilised photocatalytic applications in waste water treatment. J Environ Manag 200:60–78

    Article  Google Scholar 

  61. Zhiyong Y, Laub D, Bensimon M, Kiwi J (2008) Flexible polymer TiO2 modified film photocatalysts active in the photodegradation of azo-dyes in solution. Inorganica Chim Acta 361(3):589–594

    Article  Google Scholar 

  62. Trujillo-Reyes J, Peralta-Videa JR, Gardea-Torresdey JL (2014) Supported and unsupported nanomaterials for water and soil remediation: are they a useful solution for worldwide pollution? J Hazard Mater 280:487–503. https://doi.org/10.1016/j.jhazmat.2014.08.029

    Article  Google Scholar 

  63. Ren Z et al (2012) Hybridizing photoactive zeolites with graphene: a powerful strategy towards superior photocatalytic properties. Chem Sci 3(1):209–216. https://doi.org/10.1039/C1SC00511A

    Article  Google Scholar 

  64. Porley V, Robertson N (2020) Substrate and support materials for photocatalysis. In: Boukherroub R, Ogale SB, Robertson N (eds) Nanostructured photocatalysts. Elsevier, London, pp 129–171. https://doi.org/10.1016/B978-0-12-817836-2.00006-5

    Chapter  Google Scholar 

  65. Crittenden JC, Zhang Y, Hand DW, Perram DL, Marchand EG (1996) Solar detoxification of fuel-contaminated groundwater using fixed-bed photocatalysts. Water Environ Res 68(3):270–278

    Article  Google Scholar 

  66. Lv H, Shen X, Ji Z, Qiu D, Zhu G, Bi Y (2013) Synthesis of graphene oxide-BiPO4 composites with enhanced photocatalytic properties. Appl Surf Sci 284:308–314. https://doi.org/10.1016/j.apsusc.2013.07.098

    Article  Google Scholar 

  67. Mahmoud ME, Abdelwahab MS (2020) Rapid and efficient removal of lead from water by α-FeOOH/Cellulose/TiO2 nanocomposite. Mater Sci Eng B 262:114689. https://doi.org/10.1016/j.mseb.2020.114689

    Article  Google Scholar 

  68. Paul H, Basu S, Bhaduri S, Lahiri GK (2004) Platinum carbonyl derived catalysts on inorganic and organic supports: a comparative study. J Organomet Chem 689(2):309–316. https://doi.org/10.1016/j.jorganchem.2003.10.017

    Article  Google Scholar 

  69. Takanabe K, Domen K (2012) Preparation of inorganic photocatalytic materials for overall water splitting. ChemCatChem 4(10):1485–1497

    Article  Google Scholar 

  70. Gaya UI (2013) Heterogeneous photocatalysis using inorganic semiconductor solids. Springer, Berlin

    Google Scholar 

  71. Qian X, Fuku K, Kuwahara Y, Kamegawa T, Mori K, Yamashita H (2014) Design and functionalization of photocatalytic systems within mesoporous silica. Chemsuschem 7(6):1528–1536

    Article  Google Scholar 

  72. Anfar Z et al (2021) New functionalization approach synthesis of sulfur doped, nitrogen doped and co-doped porous carbon: superior metal-free carbocatalyst for the catalytic oxidation of aqueous organics pollutants. Chem Eng J 405:126660

    Article  Google Scholar 

  73. Dai K, Hu T, Zhang J, Lu L (2020) Carbon nanotube exfoliated porous reduced graphene oxide/CdS-diethylenetriamine heterojunction for efficient photocatalytic H2 production. Appl Surf Sci 512:144783. https://doi.org/10.1016/j.apsusc.2019.144783

    Article  Google Scholar 

  74. Madima N, Mishra SB, Inamuddin I, Mishra AK (2020) Carbon-based nanomaterials for remediation of organic and inorganic pollutants from wastewater. A review. Environ Chem Lett 18(4):1169–1191

    Article  Google Scholar 

  75. Velasco LF, Parra JB, Ania CO (2010) Role of activated carbon features on the photocatalytic degradation of phenol. Appl Surf Sci 256(17):5254–5258

    Article  Google Scholar 

  76. Corma A, Garcia H (2004) Zeolite-based photocatalysts. Chem Commun 13:1443–1459

    Article  Google Scholar 

  77. Anandan S, Yoon M (2003) Photocatalytic activities of the nano-sized TiO2-supported Y-zeolites. J Photochem Photobiol C Photochem Rev 4(1):5–18. https://doi.org/10.1016/S1389-5567(03)00002-9

    Article  Google Scholar 

  78. Fukahori S, Ichiura H, Kitaoka T, Tanaka H (2003) Photocatalytic decomposition of bisphenol A in water using composite TiO2-zeolite sheets prepared by a papermaking technique. Environ Sci Technol 37(5):1048–1051

    Article  Google Scholar 

  79. Friedmann D, Lee AF, Wilson K, Jalili R, Caruso RA (2019) Printing approaches to inorganic semiconductor photocatalyst fabrication. J Mater Chem A 7(18):10858–10878

    Article  Google Scholar 

  80. Mohd Adnan MA, Phoon BL, Muhd Julkapli N (2020) Mitigation of pollutants by chitosan/metallic oxide photocatalyst: a review. J Clean Prod 261:121190. https://doi.org/10.1016/j.jclepro.2020.121190

    Article  Google Scholar 

  81. Palmisano G, Augugliaro V, Pagliaro M, Palmisano L (2007) Photocatalysis: a promising route for 21st century organic chemistry. Chem Commun 33:3425–3437

    Article  Google Scholar 

  82. Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS (2020) Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano) materials for sustainable water treatment: a review. Carbohydr Polym 251:116986

    Article  Google Scholar 

  83. Almeida-Marrero V, van de Winckel E, Anaya-Plaza E, Torres T, de la Escosura A (2018) Porphyrinoid biohybrid materials as an emerging toolbox for biomedical light management. Chem Soc Rev 47(19):7369–7400. https://doi.org/10.1039/C7CS00554G

    Article  Google Scholar 

  84. Varma RS (2016) Greener and sustainable trends in synthesis of organics and nanomaterials. ACS Publications, New York

    Book  Google Scholar 

  85. Mamaghani AH, Haghighat F, Lee C-S (2021) Effect of titanium dioxide properties and support material on photocatalytic oxidation of indoor air pollutants. Build Environ 189:107518. https://doi.org/10.1016/j.buildenv.2020.107518

    Article  Google Scholar 

  86. Reddy ChV et al (2020) Metal-organic frameworks (MOFs)-based efficient heterogeneous photocatalysts: Synthesis, properties and its applications in photocatalytic hydrogen generation, CO2 reduction and photodegradation of organic dyes. Int J Hydrog Energy 45(13):7656–7679. https://doi.org/10.1016/j.ijhydene.2019.02.144

    Article  Google Scholar 

  87. Tu H et al (2019) Incorporation of rectorite into porous polycaprolactone/TiO2 nanofibrous mats for enhancing photocatalysis properties towards organic dye pollution. Compos Commun 15:58–63. https://doi.org/10.1016/j.coco.2019.06.006

    Article  Google Scholar 

  88. Hoekstra J, Versluijs-Helder M, Vlietstra EJ, Geus JW, Jenneskens LW (2015) Carbon-Supported Base Metal Nanoparticles: Cellulose at Work. Chemsuschem 8(6):985–989. https://doi.org/10.1002/cssc.201403364

    Article  Google Scholar 

  89. Nevell TP, Zeronian SH (1985) Cellulose chemistry and its applications. Accessed: Mar. 17, 2021. http://inis.iaea.org/Search/search.aspx?orig_q=RN:17038890

  90. Zhang X, Yang W, Blasiak W (2011) Modeling study of woody biomass: interactions of cellulose, hemicellulose, and lignin. Energy Fuels 25(10):4786–4795

    Article  Google Scholar 

  91. Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94(1):154–169

    Article  Google Scholar 

  92. “Green composites from sustainable cellulose nanofibrils: a review-ScienceDirect.” https://www.sciencedirect.com/science/article/pii/S0144861711007624. Aaccessed Mar. 21, 2021

  93. Glasser WG et al (2012) About the structure of cellulose: debating the Lindman hypothesis. Cellulose 19(3):589–598. https://doi.org/10.1007/s10570-012-9691-7

    Article  Google Scholar 

  94. Zykwinska AW, Ralet M-CJ, Garnier CD, Thibault J-FJ (2005) Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiol 139(1):397–407

    Article  Google Scholar 

  95. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    Article  Google Scholar 

  96. Poletto M, Ornaghi HL, Zattera AJ (2014) Native cellulose: structure, characterization and thermal properties. Materials. https://doi.org/10.3390/ma7096105

    Article  Google Scholar 

  97. Heinze T (2016) Cellulose: structure and properties. In: Rojas OJ (ed) Cellulose chemistry and properties: fibers, nano. Springer, Cham, pp 1–52

    Google Scholar 

  98. Mohamed MA et al (2017) An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications. Int J Biol Macromol 103:1232–1256. https://doi.org/10.1016/j.ijbiomac.2017.05.181

    Article  Google Scholar 

  99. Lu P, Hsieh Y-L (2010) Preparation and properties of cellulose nanocrystals: Rods, spheres, and network. Carbohydr Polym 82(2):329–336. https://doi.org/10.1016/j.carbpol.2010.04.073

    Article  Google Scholar 

  100. Belbekhouche S et al (2011) Water sorption behavior and gas barrier properties of cellulose whiskers and microfibrils films. Carbohydr Polym 83(4):1740–1748. https://doi.org/10.1016/j.carbpol.2010.10.036

    Article  Google Scholar 

  101. Ray PZ, Shipley HJ (2015) Inorganic nano-adsorbents for the removal of heavy metals and arsenic: a review. RSC Adv 5(38):29885–29907

    Article  Google Scholar 

  102. Trache D, Hussin MH, Haafiz MM, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9(5):1763–1786

    Article  Google Scholar 

  103. Yu D-H, Yu X, Wang C, Liu X-C, Xing Y (2012) Synthesis of natural cellulose-templated TiO2/Ag nanosponge composites and photocatalytic properties. ACS Appl Mater Interfaces 4(5):2781–2787

    Article  Google Scholar 

  104. Wang S, Luo T, Zhu J, Zhang X, Su S (2016) A facile way to fabricate cellulose-Ag@AgCl composites with photocatalytic properties. Cellulose 23(6):3737–3745. https://doi.org/10.1007/s10570-016-1064-1

    Article  Google Scholar 

  105. Carpenter AW, de Lannoy C-F, Wiesner MR (2015) Cellulose Nanomaterials in Water Treatment Technologies. Environ Sci Technol 49(9):5277–5287. https://doi.org/10.1021/es506351r

    Article  Google Scholar 

  106. Ahmad M, Ahmed S, Swami B, Ikram S (2015) Adsorption of heavy metal ions: role of chitosan and cellulose for water treatment. Int J Pharmacogn 2:280–289. https://doi.org/10.13040/IJPSR.0975-8232.IJP.2(6).280-89

    Article  Google Scholar 

  107. Wang J, Liu M, Duan C, Sun J, Xu Y (2019) Preparation and characterization of cellulose-based adsorbent and its application in heavy metal ions removal. Carbohydr Polym 206:837–843. https://doi.org/10.1016/j.carbpol.2018.11.059

    Article  Google Scholar 

  108. Dong C, Zhang F, Pang Z, Yang G (2016) Efficient and selective adsorption of multi-metal ions using sulfonated cellulose as adsorbent. Carbohydr Polym 151:230–236. https://doi.org/10.1016/j.carbpol.2016.05.066

    Article  Google Scholar 

  109. Zhou Y et al (2014) Removal of crystal violet by a novel cellulose-based adsorbent: comparison with native cellulose. Ind Eng Chem Res 53(13):5498–5506

    Article  Google Scholar 

  110. Suhas VK, Gupta PJM, Carrott R, Singh MC, Kushwaha S (2016) Cellulose: a review as natural, modified and activated carbon adsorbent. Bioresour Technol 216:1066–1076. https://doi.org/10.1016/j.biortech.2016.05.106

    Article  Google Scholar 

  111. Anirudhan TS, Senan P (2011) Adsorption of phosphate ions from water using a novel cellulose-based adsorbent. Chem Ecol 27(2):147–164

    Article  Google Scholar 

  112. Lee SB, Shin HS, Ryu DD, Mandels M (1982) Adsorption of cellulase on cellulose: effect of physicochemical properties of cellulose on adsorption and rate of hydrolysis. Biotechnol Bioeng 24(10):2137–2153

    Article  Google Scholar 

  113. Kang H, Liu R, Huang Y (2015) Graft modification of cellulose: methods, properties and applications. Polymer 70:A1–A16. https://doi.org/10.1016/j.polymer.2015.05.041

    Article  Google Scholar 

  114. Bethke K et al (2018) Functionalized cellulose for water purification, antimicrobial applications, and sensors. Adv Funct Mater 28(23):1800409

    Article  Google Scholar 

  115. Ma H, Burger C, Hsiao BS, Chu B (2011) Ultra-fine cellulose nanofibers: new nano-scale materials for water purification. J Mater Chem 21(21):7507–7510

    Article  Google Scholar 

  116. Nevárez LM et al (2011) Biopolymers-based nanocomposites: membranes from propionated lignin and cellulose for water purification. Carbohydr Polym 86(2):732–741

    Article  Google Scholar 

  117. Xing Z et al (2018) Recent advances in floating TiO2-based photocatalysts for environmental application. Appl Catal B Environ 225:452–467

    Article  Google Scholar 

  118. Nasir AM et al (2020) A review on floating nanocomposite photocatalyst: fabrication and applications for wastewater treatment. J. Water Process Eng 36:101300

    Article  Google Scholar 

  119. Xu L, Liu Y, Hu Z, Jimmy CY (2021) Converting cellulose waste into a high-efficiency photocatalyst for Cr (VI) reduction via molecular oxygen activation. Appl Catal B Environ 295:120253

    Article  Google Scholar 

  120. Morshed MN, Al Azad S, Deb H, Shaun BB, Shen XL (2020) Titania-loaded cellulose-based functional hybrid nanomaterial for photocatalytic degradation of toxic aromatic dye in water. J Water Process Eng 33:101062

    Article  Google Scholar 

  121. Sharma D, Kumari M, Dhayal V (2021) Fabrication and characterization of cellulose/PVA/TiO2 nanocomposite thin film as a photocatalyst. Mater Today Proc 43:2970–2974

    Article  Google Scholar 

  122. Sboui M et al (2021) TiO2/Ag2O immobilized on cellulose paper: a new floating system for enhanced photocatalytic and antibacterial activities. Environ Res 198:111257

    Article  Google Scholar 

  123. Chang Y, Han W, Cui S, Cai A (2020) Cellulose-inspired synthesis of hierarchically nanostructured TiO2 with high photocatalytic activity. Chem Phys Lett 745:137249

    Article  Google Scholar 

  124. Mohamed MA, Salleh WNW, Jaafar J, Ismail AF, Abd Mutalib M, Jamil SM (2015) Incorporation of N-doped TiO2 nanorods in regenerated cellulose thin films fabricated from recycled newspaper as a green portable photocatalyst. Carbohydr Polym 133:429–437. https://doi.org/10.1016/j.carbpol.2015.07.057

    Article  Google Scholar 

  125. Li H et al (2020) Macro-/nanoporous Al-doped ZnO/cellulose composites based on tunable cellulose fiber sizes for enhancing photocatalytic properties. Carbohydr Polym 250:116873

    Article  Google Scholar 

  126. Tamaddon F, Mosslemin MH, Asadipour A, Gharaghani MA, Nasiri A (2020) Microwave-assisted preparation of ZnFe2O4@ methyl cellulose as a new nano-biomagnetic photocatalyst for photodegradation of metronidazole. Int J Biol Macromol 154:1036–1049

    Article  Google Scholar 

  127. Bai W et al (2020) Robust and recyclable macroscopic g-C3N4/cellulose hybrid photocatalysts with enhanced visible light photocatalytic activity. Appl Surf Sci 504:144179

    Article  Google Scholar 

  128. Imam SS, Adnan R, Kaus NHM (2020) Immobilization of BiOBr into cellulose acetate matrix as hybrid film photocatalyst for facile and multicycle degradation of ciprofloxacin. J Alloys Compd 843:155990

    Article  Google Scholar 

  129. Tavker N, Sharma M (2020) Designing of waste fruit peels extracted cellulose supported molybdenum sulfide nanostructures for photocatalytic degradation of RhB dye and industrial effluent. J Environ Manage 255:109906

    Article  Google Scholar 

  130. Gupta VK, Pathania D, Singh P, Rathore BS, Chauhan P (2013) Cellulose acetate–zirconium (IV) phosphate nano-composite with enhanced photo-catalytic activity. Carbohydr Polym 95(1):434–440

    Article  Google Scholar 

  131. Tavker N, Gaur UK, Sharma M (2020) Agro-waste extracted cellulose supported silver phosphate nanostructures as a green photocatalyst for improved photodegradation of RhB dye and industrial fertilizer effluents. Nanoscale Adv 2(7):2870–2884

    Article  Google Scholar 

  132. Awan F et al (2018) Cellulose nanocrystal-ZnO nanohybrids for controlling photocatalytic activity and UV protection in cosmetic formulation. ACS Omega 3(10):12403–12411

    Article  Google Scholar 

  133. Kale BM et al (2016) Coating of cellulose-TiO2 nanoparticles on cotton fabric for durable photocatalytic self-cleaning and stiffness. Carbohydr Polym 150:107–113. https://doi.org/10.1016/j.carbpol.2016.05.006

    Article  Google Scholar 

  134. Thomas M, Naikoo GA, Sheikh MUD, Bano M, Khan F (2016) Effective photocatalytic degradation of Congo red dye using alginate/carboxymethyl cellulose/TiO2 nanocomposite hydrogel under direct sunlight irradiation. J Photochem Photobiol Chem 327:33–43. https://doi.org/10.1016/j.jphotochem.2016.05.005

    Article  Google Scholar 

  135. Cristina Yeber M, Rodrı́guez J, Freer J, Durán N, Mansilla HD (2000) Photocatalytic degradation of cellulose bleaching effluent by supported TiO2 and ZnO. Chemosphere 41(8):1193–1197. https://doi.org/10.1016/S0045-6535(99)00551-2

    Article  Google Scholar 

  136. Fan H, Li G, Yang F, Yang L, Zhang S (2011) Photodegradation of cellulose under UV light catalysed by TiO2. J Chem Technol Biotechnol 86(8):1107–1112

    Article  Google Scholar 

  137. Nagaoka S et al (2002) Preparation of carbon/TiO2 microsphere composites from cellulose/TiO2 microsphere composites and their evaluation. J Mol Catal Chem 177(2):255–263. https://doi.org/10.1016/S1381-1169(01)00271-0

    Article  Google Scholar 

  138. Xie J, Hung Y-C (2019) Methodology to evaluate the antimicrobial effectiveness of UV-activated TiO2 nanoparticle-embedded cellulose acetate film. Food Control 106:106690. https://doi.org/10.1016/j.foodcont.2019.06.016

    Article  Google Scholar 

  139. Garusinghe UM, Raghuwanshi VS, Batchelor W, Garnier G (2018) Water resistant cellulose–titanium dioxide composites for photocatalysis. Sci Rep 8(1):1–13

    Article  Google Scholar 

  140. Hamad H, Bailón-García E, Morales-Torres S, Carrasco-Marín F, Pérez-Cadenas AF, Maldonado-Hódar FJ (2018) Physicochemical properties of new cellulose-TiO2 composites for the removal of water pollutants: developing specific interactions and performances by cellulose functionalization. J Environ Chem Eng 6(4):5032–5041. https://doi.org/10.1016/j.jece.2018.07.043

    Article  Google Scholar 

  141. Ng HKM, Leo CP (2019) The coherence between TiO2 nanoparticles and microfibrillated cellulose in thin film for enhanced dispersal and photodegradation of dye. Prog Org Coat 132:70–75. https://doi.org/10.1016/j.porgcoat.2019.02.017

    Article  Google Scholar 

  142. Hamad H, Bailón-García E, Morales-Torres S, Carrasco-Marín F, Pérez-Cadenas AF, Maldonado-Hódar FJ (2020) A new platform for facile synthesis of hybrid TiO2 nanostructures by various functionalizations of cellulose to be used in highly-efficient photocatalysis. Mater Lett 274:128016. https://doi.org/10.1016/j.matlet.2020.128016

    Article  Google Scholar 

  143. Virkutyte J, Jegatheesan V, Varma RS (2012) Visible light activated TiO2/microcrystalline cellulose nanocatalyst to destroy organic contaminants in water. Bioresour Technol 113:288–293. https://doi.org/10.1016/j.biortech.2011.12.090

    Article  Google Scholar 

  144. Yang J, Luo X (2021) Ag-doped TiO2 immobilized cellulose-derived carbon beads: One-Pot preparation, photocatalytic degradation performance and mechanism of ceftriaxone sodium. Appl Surf Sci 542:148724. https://doi.org/10.1016/j.apsusc.2020.148724

    Article  Google Scholar 

  145. Chai YD, Pang YL, Lim S, Chong WC (2020) Sonocatalytic degradation of Congo Red using biomass-based cellulose/TiO2 composite. Mater Today Proc 42:52–55

    Google Scholar 

  146. Rathod M, Moradeeya PG, Haldar S, Basha S (2018) Nanocellulose/TiO2 composites: preparation, characterization and application in the photocatalytic degradation of a potential endocrine disruptor, mefenamic acid, in aqueous media. Photochem Photobiol Sci 17(10):1301–1309

    Article  Google Scholar 

  147. Grüneberger F, Künniger T, Huch A, Zimmermann T, Arnold M (2015) Nanofibrillated cellulose in wood coatings: dispersion and stabilization of ZnO as UV absorber. Prog Org Coat 87:112–121. https://doi.org/10.1016/j.porgcoat.2015.05.025

    Article  Google Scholar 

  148. Li M, Feng Q, Liu H, Wu Y, Wang Z (2021) In situ growth of nano-ZnO/GQDs on cellulose paper for dual repelling function against water and bacteria. Mater Lett 283:128838

    Article  Google Scholar 

  149. Shi C, Zhang L, Bian H, Shi Z, Ma J, Wang Z (2021) Construction of Ag–ZnO/cellulose nanocomposites via tunable cellulose size for improving photocatalytic performance. J Clean Prod 288:125089. https://doi.org/10.1016/j.jclepro.2020.125089

    Article  Google Scholar 

  150. Dehghani M, Nadeem H, Singh Raghuwanshi V, Mahdavi H, Banaszak Holl MM, Batchelor W (2020) ZnO/cellulose nanofiber composites for sustainable sunlight-driven dye degradation. ACS Appl Nano Mater 3(10):10284–10295

    Article  Google Scholar 

  151. An VN, Van TT, Nhan HT (2020) Investigating methylene blue adsorption and photocatalytic activity of ZnO/CNC nanohybrids. J Nanomater 2020:1–10

    Article  Google Scholar 

  152. Li X, Zhang L, Wang Z, Wu S, Ma J (2021) Cellulose controlled zinc oxide nanoparticles with adjustable morphology and their photocatalytic performances. Carbohydr Polym 259:117752

    Article  Google Scholar 

  153. Khatri V et al (2014) ZnO-modified cellulose fiber sheets for antibody immobilization. Carbohydr Polym 109:139–147

    Article  Google Scholar 

  154. Akhtar J et al (2016) Synthesis of silver nanoparticles impregnated cellulose composite material: its possible role in wound healing and photocatalysis. IET Nanobiotechnol

  155. Sarina S, Waclawik ER, Zhu H (2013) Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation. Green Chem 15(7):1814–1833. https://doi.org/10.1039/C3GC40450A

    Article  Google Scholar 

  156. Tamuly C, Hazarika M, Bordoloi M, Das MR (2013) Photocatalytic activity of Ag nanoparticles synthesized by using Piper pedicellatum C.DC fruits. Mater Lett 102–103:1–4. https://doi.org/10.1016/j.matlet.2013.03.090

    Article  Google Scholar 

  157. Dai L, Liu R, Hu L-Q, Si C-L (2017) Simple and green fabrication of AgCl/Ag-cellulose paper with antibacterial and photocatalytic activity. Carbohydr Polym 174:450–455. https://doi.org/10.1016/j.carbpol.2017.06.107

    Article  Google Scholar 

  158. Dong Y-Y, Zhu Y-H, Ma M-G, Liu Q, He W-Q (2021) Synthesis and characterization of Ag@AgCl-reinforced cellulose composites with enhanced antibacterial and photocatalytic degradation properties. Sci Rep 11(1):1–9

    Google Scholar 

  159. Zou X-H, Zhao S-W, Zhang J-G, Sun H-L, Pan Q-J, Guo Y-R (2019) Preparation of ternary ZnO/Ag/cellulose and its enhanced photocatalytic degradation property on phenol and benzene in VOCs. Open Chem 17(1):779–787

    Article  Google Scholar 

  160. Naciri Y et al (2021) Photocatalytic oxidation of pollutants in gas-phase via Ag3PO4-based semiconductor photocatalysts: recent progress, new trends, and future perspectives. Crit Rev Environ Sci Technol 1–44

  161. Naciri Y et al (2020) Recent progress on the enhancement of photocatalytic properties of BiPO4 using π-conjugated materials. Adv Colloid Interface Sci 280:102160

    Article  Google Scholar 

  162. Ferraa S et al (2021) Evolution of the physicochemical and photocatalytic properties of BaO embedded in bismuth phosphovanadates glasses. Chem Phys Lett 763:138173

    Article  Google Scholar 

  163. Wang Q, Cai J, Zhang L (2014) In situ synthesis of Ag3PO4/cellulose nanocomposites with photocatalytic activities under sunlight. Cellulose 21(5):3371–3382

    Article  Google Scholar 

  164. Lebogang L, Bosigo R, Lefatshe K, Muiva C (2019) Ag3PO4/nanocellulose composite for effective sunlight driven photodegradation of organic dyes in wastewater. Mater Chem Phys 236:121756

    Article  Google Scholar 

  165. Mafra G et al (2021) Photocatalytic cellulose-paper: deepening in the sustainable and synergic combination of sorption and photodegradation. ACS Omega 6(14):9577–9586

    Article  Google Scholar 

  166. Zhang G, Chen L, Fu X, Wang H (2018) Cellulose microfiber-supported TiO2@Ag nanocomposites: a dual-functional platform for photocatalysis and in situ reaction monitoring. Ind Eng Chem Res 57(12):4277–4286

    Article  Google Scholar 

  167. Rahman QI, Ahmad M, Misra SK, Lohani M (2013) Effective photocatalytic degradation of rhodamine B dye by ZnO nanoparticles. Mater Lett 91:170–174

    Article  Google Scholar 

  168. Ye S, Zhang D, Liu H, Zhou J (2011) ZnO nanocrystallites/cellulose hybrid nanofibers fabricated by electrospinning and solvothermal techniques and their photocatalytic activity. J Appl Polym Sci 121(3):1757–1764

    Article  Google Scholar 

  169. Elfeky AS et al (2020) Multifunctional cellulose nanocrystal/metal oxide hybrid, photo-degradation, antibacterial and larvicidal activities. Carbohydr Polym 230:115711

    Article  Google Scholar 

  170. Ge M (2014) Photodegradation of rhodamine B and methyl orange by Ag3PO4 catalyst under visible light irradiation. Chin J Catal 35(8):1410–1417

    Article  Google Scholar 

  171. Tamaddon F, Nasiri A, Yazdanpanah G (2020) Photocatalytic degradation of ciprofloxacin using CuFe2O4@methyl cellulose based magnetic nanobiocomposite. MethodsX 7:100764

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rangabhashiyam Selvasembian or Pardeep Singh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, A., Sudhaik, A., Raizada, P. et al. An overview on cellulose-supported semiconductor photocatalysts for water purification. Nanotechnol. Environ. Eng. 6, 40 (2021). https://doi.org/10.1007/s41204-021-00135-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41204-021-00135-y

Keywords

Navigation