Skip to main content
Log in

Customized synthesis of functional bismuth phosphate using different methods: photocatalytic and photoluminescence properties enhancement

  • Original Paper
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

In this work, bismuth phosphate photocatalysts have been obtained via co-precipitation and solid-state methods. The synthesized samples were calcinated at uniform temperature and were analyzed by scanning electron microscopy, X-ray diffraction, energy dispersive X-ray analysis and Raman spectroscopy. The photocatalytic activity of the synthesized samples was evaluated by the degradation of anionic and cationic organic dyes [Rhodamine B and Orange G] in aqueous medium under UV light irradiation (λ > 254 nm). The results showed that the synthesis technique considerably affects the morphology, structure, photoluminescent and photocatalytic process properties. Indeed, samples obtained through solid-state reaction approach exhibited higher catalytic activity in comparison with those prepared via co-precipitation method. Photoluminescence experiments revealed unexpected emissions in the green-orange range, with the presence of two bands characteristic of the two monoclinic phases of BiPO4.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li J, Cui W, Chen P et al (2020) Unraveling the mechanism of binary channel reactions in photocatalytic formaldehyde decomposition for promoted mineralization. Appl Catal B Environ 260:118130. https://doi.org/10.1016/j.apcatb.2019.118130

    Article  Google Scholar 

  2. Liu Y, Zhu Y, Xu J et al (2013) Degradation and mineralization mechanism of phenol by BiPO4 photocatalysis assisted with H2O2. Appl Catal B Environ 142–143:561–567. https://doi.org/10.1016/j.apcatb.2013.05.049

    Article  Google Scholar 

  3. Im J-K, Son H-S, Kang Y-M, Zoh K-D (2012) Carbamazepine degradation by photolysis and titanium dioxide photocatalysis. Water Environ Res 84:554–561. https://doi.org/10.2175/106143012x13373550427273

    Article  Google Scholar 

  4. Ahmed S, Rasul MG, Martens WN et al (2010) Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination 261:3–18. https://doi.org/10.1016/j.desal.2010.04.062

    Article  Google Scholar 

  5. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96. https://doi.org/10.1021/cr00033a004

    Article  Google Scholar 

  6. Palmisano G, García-López E, Marcì G et al (2010) Advances in selective conversions by heterogeneous photocatalysis. Chem Commun 46:7074–7089. https://doi.org/10.1039/c0cc02087g

    Article  Google Scholar 

  7. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chemie - Int Ed 52:2–39. https://doi.org/10.1002/anie.201207199

    Article  Google Scholar 

  8. Abdelhamid HN (2020) High performance and ultrafast reduction of 4-nitrophenol using metal-organic frameworks. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2020.104404

    Article  Google Scholar 

  9. Etman AS, Abdelhamid HN, Yuan Y et al (2018) Facile water-based strategy for synthesizing MoO3-x nanosheets: efficient visible light photocatalysts for dye degradation. ACS Omega 3:2201–2209. https://doi.org/10.1021/acsomega.8b00012

    Article  Google Scholar 

  10. Huignard A, Gacoin T, Boilot J (2000) Synthesis and luminescence properties of colloidal YVO4: Eu phosphors arnaud. Chem Mater 12:1090–1094. https://doi.org/10.1021/cm990722t

    Article  Google Scholar 

  11. Riwotzki K, Haase M (2001) Colloidal YVO4: Eu and YP0.95V0.05O4: Eu nanoparticles : luminescence and energy transfer processes. J Phys Chem B 105:12709–12713

    Article  Google Scholar 

  12. Obregón S, Colón G (2014) Heterostructured Er3+ doped BiVO4 with exceptional photocatalytic performance by cooperative electronic and luminescence sensitization mechanism. Appl Catal B Environ 158–159:242–249. https://doi.org/10.1016/j.apcatb.2014.04.029

    Article  Google Scholar 

  13. Jan T, Azmat S, Wahid B et al (2018) Chemically synthesized ZnO-Bi2O3(BZO) nanocomposites with tunable optical, photoluminescence and antibacterial characteristics. Mater Sci Semicond Process 84:71–75. https://doi.org/10.1016/j.mssp.2018.05.007

    Article  Google Scholar 

  14. Bao N, Liu Y, Li ZW et al (2016) Construction of order mesoporous (Eu-La)/ZnO composite material and its luminescent characters. J Lumin 177:409–415. https://doi.org/10.1016/j.jlumin.2016.05.025

    Article  Google Scholar 

  15. Ajmal M, Ali T, Ahmad Mian S et al (2017) Effects of Ce3+-doping concentration on the luminescent properties of La2O3:Ce3+phosphors. Mater Today Proc 4:4924–4929. https://doi.org/10.1016/j.matpr.2017.04.097

    Article  Google Scholar 

  16. Ait Ahsaine H, Slassi A, Naciri Y et al (2018) Photo/electrocatalytic properties of nanocrystalline ZnO and La-doped ZnO: combined DFT fundamental semiconducting properties and experimental study. ChemistrySelect 3:7778–7791. https://doi.org/10.1002/slct.201801729

    Article  Google Scholar 

  17. Ansari AA, Aldalbahi A, Labis JP et al (2018) Highly biocompatible, monodispersed and mesoporous La(OH)3:Eu@mSiO2core-shell nanospheres: Synthesis and luminescent properties. Colloids Surf B Biointerfaces 163:133–139. https://doi.org/10.1016/j.colsurfb.2017.12.026

    Article  Google Scholar 

  18. García-Murillo A, de Carrillo-Romo JF, Oliva-Uc J et al (2017) Effects of Eu content on the luminescent properties of Y2O3:Eu3+ aerogels and Y(OH)3 Y2O3:Eu3+@SiO2 glassy aerogels. Ceram Int J 43:12196–12204. https://doi.org/10.1016/j.ceramint.2017.06.079

    Article  Google Scholar 

  19. Taoufyq A, Mauroy V, Guinneton F et al (2015) Role of the chemical substitution on the luminescence properties of solid solutions Ca(1–x)Cd(x)WO4 (0 ≤ x ≤ 1). Mater Res Bull 70:40–46. https://doi.org/10.1016/j.materresbull.2015.04.006

    Article  Google Scholar 

  20. Ait Ahsaine H, Ezahri M, Benlhachemi A et al (2015) Structural, vibrational study and UV photoluminescence properties of the system Bi(2–x)Lu(x)WO6 (0.1 ≤ x ≤ 1). RSC Adv 5:96242–96252. https://doi.org/10.1039/c5ra19424e

    Article  Google Scholar 

  21. Bakiz B, Hallaoui A, Taoufyq A et al (2018) Luminescent properties under X-ray excitation of Ba(1–x)PbxWO4 disordered solid solution. J Solid State Chem 258:146–155. https://doi.org/10.1016/j.jssc.2017.10.014

    Article  Google Scholar 

  22. Hallaoui A, Taoufyq A, Arab M et al (2016) Structural, vibrational and photoluminescence properties of Sr(1–x)PbxMoO4 solid solution synthesized by solid state reaction. Mater Res Bull 79:121–132. https://doi.org/10.1016/j.materresbull.2016.03.015

    Article  Google Scholar 

  23. Emam HE, Abdelhamid HN, Abdelhameed RM (2018) Self-cleaned photoluminescent viscose fabric incorporated lanthanide-organic framework (Ln-MOF). Dye Pigment 159:491–498. https://doi.org/10.1016/j.dyepig.2018.07.026

    Article  Google Scholar 

  24. Kassem AA, Abdelhamid HN, Fouad DM, Ibrahim SA (2020) Hydrogenation reduction of dyes using metal-organic framework-derived CuO@C. Microporous Mesoporous Mater 305:110340. https://doi.org/10.1016/j.micromeso.2020.110340

    Article  Google Scholar 

  25. Abdelhamid HN, Huang Z, El-Zohry AM et al (2017) A fast and scalable approach for synthesis of hierarchical porous zeolitic imidazolate frameworks and one-pot encapsulation of target molecules. Inorg Chem 56:9139–9146. https://doi.org/10.1021/acs.inorgchem.7b01191

    Article  Google Scholar 

  26. Zhang W, Ni Y, Huang W et al (2010) Hydrothermal synthesis, structure study and luminescent properties of YbPO4:Tb3+ nanoparticles. J Rare Earths 28:299–302. https://doi.org/10.1016/S1002-0721(10)60337-7

    Article  Google Scholar 

  27. Bühler G, Feldmann C (2006) Microwave-assisted synthesis of luminescent LaPO4:Ce, Tb nanocrystals in ionic liquids. Angew Chemie - Int Ed 45:4864–4867. https://doi.org/10.1002/anie.200600244

    Article  Google Scholar 

  28. Naciri Y, Chennah A, Jaramillo-Páez C et al (2019) Preparation, characterization and photocatalytic degradation of Rhodamine B dye over a novel Zn3(PO4)2/BiPO4 catalyst. J Environ Chem Eng 7:103075. https://doi.org/10.1016/j.jece.2019.103075

    Article  Google Scholar 

  29. Bouddouch A, Amaterz E, Taoufyq A et al (2020) Photocatalytic and photoluminescent properties of a system based on SmPO4 nanostructure phase. Mater Today Proc 27:3139–3144. https://doi.org/10.1016/j.matpr.2020.03.803

    Article  Google Scholar 

  30. Amaterz E, Tara A, Bouddouch A et al (2020) Hierarchical flower-like SrHPO4 electrodes for the photoelectrochemical degradation of Rhodamine B. J Appl Electrochem 50:569–581. https://doi.org/10.1007/s10800-020-01416-1

    Article  Google Scholar 

  31. Kalinkin MO, Yanchenko MY, Buldakova LY et al (2020) Photocatalytic activity of LiMgPO4 in the hydroquinone decomposition and related surface phenomena. React Kinet Mech Catal 129:1061–1076. https://doi.org/10.1007/s11144-020-01754-3

    Article  Google Scholar 

  32. Amaterz E, Bouddouch A, Tara A et al (2020) Correlation between photoluminescence and photoelectrochemical properties of SrHPO4/ BaHPO4/FTO anode material. Opt Mater (Amst) 109:110268. https://doi.org/10.1016/j.optmat.2020.110268

    Article  Google Scholar 

  33. Binas VD, Sambani K, Maggos T et al (2012) Synthesis and photocatalytic activity of Mn-doped TiO2 nanostructured powders under UV and visible light. Appl Catal B Environ 113–114:79–86. https://doi.org/10.1016/j.apcatb.2011.11.021

    Article  Google Scholar 

  34. Bouddouch A, Amaterz E, Haounati R et al (2010) Synthesis, characterization and luminescence properties of manganese phosphate Mn3(PO4)2. Mater Today Proc 3:2–7. https://doi.org/10.1016/j.matpr.2019.08.058

    Article  Google Scholar 

  35. Naciri Y, Hsini A, Ajmal Z et al (2020) Influence of Sr-doping on structural, optical and photocatalytic properties of synthesized Ca3(PO4)2. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2020.03.105

    Article  Google Scholar 

  36. Ge M (2014) Photodegradation of rhodamine B and methyl orange by Ag3PO4 catalyst under visible light irradiation. Chinese J Catal 35:1410–1417. https://doi.org/10.1016/S1872-2067(14)60079-6

    Article  Google Scholar 

  37. Lin H, Ye H, Xu B et al (2013) Ag3PO4 quantum dot sensitized BiPO4: a novel p-n junction Ag3PO4/BiPO4 with enhanced visible-light photocatalytic activity. Catal Commun 37:55–59. https://doi.org/10.1016/j.catcom.2013.03.026

    Article  Google Scholar 

  38. Guo J, Ouyang S, Zhou H et al (2013) Ag3PO4/In(OH)3 composite photocatalysts with adjustable surface-electric property for efficient photodegradation of organic syes under simulated solar-light irradiation. J Phys Chem C 117:17716–17724. https://doi.org/10.1021/jp4062972

    Article  Google Scholar 

  39. Zhang L, Zhang H, Huang H et al (2012) Ag3PO4/SnO2 semiconductor nanocomposites with enhanced photocatalytic activity and stability. New J Chem 36:1541–1544. https://doi.org/10.1039/c2nj40206h

    Article  Google Scholar 

  40. Cao J, Luo B, Lin H et al (2012) Visible light photocatalytic activity enhancement and mechanism of AgBr/Ag3PO4 hybrids for degradation of methyl orange. J Hazard Mater 217–218:107–115. https://doi.org/10.1016/j.jhazmat.2012.03.002

    Article  Google Scholar 

  41. Gu YQ, Wang B, Gu XQ et al (2014) Preparation and characterization of Co3(PO4)2/Ag3PO4 nanocomposites for visible-light photocatalysis. Wuli Huaxue Xuebao/ Acta Phys - Chim Sin 30:1909–1915. https://doi.org/10.3866/PKU.WHXB201408046

    Article  Google Scholar 

  42. Song L, Chen Z, Li T, Zhang S (2017) A novel Ni2+-doped Ag3PO4 photocatalyst with high photocatalytic activity and enhancement mechanism. Mater Chem Phys 186:271–279. https://doi.org/10.1016/j.matchemphys.2016.10.053

    Article  Google Scholar 

  43. Meng X, Hao M, Shi J et al (2017) Novel visible light response Ag3PO4/TiP2O7 composite photocatalyst with low Ag consumption. Adv Powder Technol 28:1047–1053. https://doi.org/10.1016/j.apt.2017.01.010

    Article  Google Scholar 

  44. Lu J, Wang Y, Liu F et al (2017) Fabrication of a direct Z-scheme type WO3/Ag3PO4 composite photocatalyst with enhanced visible-light photocatalytic performances. Appl Surf Sci 393:180–190. https://doi.org/10.1016/j.apsusc.2016.10.003

    Article  Google Scholar 

  45. Chi C, Pan J, You M et al (2018) The porous TiO2 nanotubes/Ag3PO4 heterojunction for enhancing sunlight photocatalytic activity. J Phys Chem Solids 114:173–178. https://doi.org/10.1016/j.jpcs.2017.11.028

    Article  Google Scholar 

  46. Chang T-S, Li G, Shin C-H et al (2000) Catalytic behavior of BiPO4 in the multicomponent bismuth phosphate system on the propylene ammoxidation. Catal Lett 68:229–234. https://doi.org/10.4028/www.scientific.net/MSF.544-545.23

    Article  Google Scholar 

  47. Zhu Y, Wang Y, Ling Q, Zhu Y (2017) Enhancement of full-spectrum photocatalytic activity over BiPO4/Bi2WO6 composites. Appl Catal B Environ 200:222–229. https://doi.org/10.1016/j.apcatb.2016.07.002

    Article  Google Scholar 

  48. Pan C, Zhu Y (2015) A review of BiPO4, a highly efficient oxyacid-type photocatalyst, used for environmental applications. Catal Sci Technol 5:3071–3083. https://doi.org/10.1039/c5cy00202h

    Article  Google Scholar 

  49. Pan C, Li D, Ma X et al (2011) Effects of distortion of PO4 tetrahedron on the photocatalytic performances of BiPO4. Catal Sci Technol 1:1399–1405. https://doi.org/10.1039/c1cy00261a

    Article  Google Scholar 

  50. Cheng L-W, Tsai J-C, Huang T-Y et al (2014) Controlled synthesis, characterization and photocatalytic activity of BiPO4 nanostructures with different morphologies. Mater Res Express 1:025023. https://doi.org/10.1088/2053-1591/1/2/025023

    Article  Google Scholar 

  51. Huang H, Chen G, Zhang Y (2014) Two Bi-based phosphate photocatalysts: Crystal structure, optical property and photocatalytic activity. Inorg Chem Commun 44:46–49. https://doi.org/10.1016/j.inoche.2014.02.047

    Article  Google Scholar 

  52. Saravanan R, Gupta VK, Narayanan V, Stephen A (2013) Comparative study on photocatalytic activity of ZnO prepared by different methods. J Mol Liq 181:133–141. https://doi.org/10.1016/j.molliq.2013.02.023

    Article  Google Scholar 

  53. Wang N, Lei L, Zhang XM et al (2011) A comparative study of preparation methods of nanoporous TiO2 films for microfluidic photocatalysis. Microelectron Eng 88:2797–2799. https://doi.org/10.1016/j.mee.2010.12.051

    Article  Google Scholar 

  54. Li X, Zhu Z, Zhao Q, Wang L (2011) Photocatalytic degradation of gaseous toluene over ZnAl2O4 prepared by different methods: a comparative study. J Hazard Mater 186:2089–2096. https://doi.org/10.1016/j.jhazmat.2010.12.111

    Article  Google Scholar 

  55. Evans P, Mantke S, Mills A et al (2007) A comparative study of three techniques for determining photocatalytic activity. J Photochem Photobiol A Chem 188:387–391. https://doi.org/10.1016/j.jphotochem.2006.12.040

    Article  Google Scholar 

  56. Hidaka H, Ajisaka K, Horikoshi S et al (2001) Comparative assessment of the efficiency of TiO2/OTE thin film electrodes fabricated by three deposition methods: photoelectrochemical degradation of the DBS anionic surfactant. J Photochem Photobiol A Chem 138:185–192. https://doi.org/10.1016/S1010-6030(00)00389-0

    Article  Google Scholar 

  57. Soto-Arreola A, Huerta-Flores AM, Mora-Hernández JM, Torres-Martínez LM (2018) Comparative study of the photocatalytic activity for hydrogen evolution of MFe2O4 (M = Cu, Ni) prepared by three different methods. J Photochem Photobiol A Chem 357:20–29. https://doi.org/10.1016/j.jphotochem.2018.02.016

    Article  Google Scholar 

  58. Zhu Y, Ling Q, Liu Y et al (2016) Photocatalytic performance of BiPO4 nanorods adjusted via defects. Appl Catal B Environ 187:204–211. https://doi.org/10.1016/j.apcatb.2016.01.012

    Article  Google Scholar 

  59. Pan C, Li D, Ma X et al (2011) Effects of distortion of PO4tetrahedron on the photocatalytic performances of BiPO4. Catal Sci Technol. https://doi.org/10.1039/c1cy00261a

    Article  Google Scholar 

  60. Pan C, Zhu Y (2015) A review of BiPO<inf>4</inf>, a highly efficient oxyacid-type photocatalyst, used for environmental applications. Catal Sci Technol. https://doi.org/10.1039/c5cy00202h

    Article  Google Scholar 

  61. Zhiu Y, Liu Y, Lv Y et al (2014) Enhancement of photocatalytic activity for BiPO4via phase junction. J Mater Chem A. https://doi.org/10.1039/c4ta01807a

    Article  Google Scholar 

  62. Zhang Y, Selvaraj R, Sillanpää M et al (2014) The influence of operating parameters on heterogeneous photocatalytic mineralization of phenol over BiPO4. Chem Eng J 245:117–123. https://doi.org/10.1016/j.cej.2014.02.028

    Article  Google Scholar 

  63. Bouddouch A, Amaterz E, Bakiz B et al (2020) Role of thermal decomposition process in the photocatalytic or photoluminescence properties of BiPO4 polymorphs. Water Environ Res 92:1874–1887. https://doi.org/10.1002/wer.1340

    Article  Google Scholar 

  64. Yun-jian W, Li-ping LI, Jing Z et al (2013) Synthesis, photoluminescence and photocatalytic performance of BiPO4 with different phase structures. Chem Res Chinese Univ 29:556–562. https://doi.org/10.1007/s40242-013-2277-6

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out in the laboratory materials and environment (LME), at the faculty of sciences Agadir, Ibn Zohr University, IM2NP laboratory, University of Toulon and financially supported by CAMPUS FRANCE [PHC TOUBKAL 2018 (French-Morocco bilateral program) Grant Number: 38999WE] and PPR project financed by the CNRST under number PPR/2015/32.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bouddouch.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouddouch, A., Amaterz, E., Bakiz, B. et al. Customized synthesis of functional bismuth phosphate using different methods: photocatalytic and photoluminescence properties enhancement. Nanotechnol. Environ. Eng. 6, 4 (2021). https://doi.org/10.1007/s41204-020-00097-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41204-020-00097-7

Keywords

Navigation