Skip to main content
Log in

Mechanistic Interaction of Microbe in Dye Degradation and the Role of Inherently Modified Organisms: a Review

  • Review
  • Published:
Water Conservation Science and Engineering Aims and scope Submit manuscript

Abstract

Dyes color various materials, including leather, paper, cosmetics, and textiles. Wastewater contains different dyes that have negative impacts on humans and the environment. Dye-containing wastewater has been treated using several well-known procedures, including physicochemical and biological degradation. Interestingly, the breakdown of industrial dyes by fungus, yeast, and algae is considered an innovative treatment technology to control chemicals and secondary water pollution. The present review discusses the degradation of industrial dyes using a microbial community with a special focus on the microbial degradation mechanism of dye molecules. The influences of different parameters (e.g., pH, temperature, concentrations of dyes, soluble salts, the effects of CO2 and nitrogen, and dye structure) have been discussed to achieve optimal dye degradation potential of microbes. In addition, the role of genetically modified organisms (GMOs) and the utilization of various enzymes in dyes biodegradation are also highlighted along with prospects. This review also critically sketches the most recent advancements and advanced bioreactors for dye degradation. It is anticipated that the treatment of industrial dyes using microbial community is an advanced technology to establish a pollution-free natural environment and successfully achieve one of the sustainable development goals (SDGs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All relevant data have been mentioned in the form of Tables.

References

  1. Holkar CR, Jadhav AJ, Pinjari DV, Mahamuni NM, Pandit AB (2016) A critical review on textile wastewater treatments: possible approaches. J Environ Manag 182:351–366. https://doi.org/10.1016/j.jenvman.2016.07.090

    Article  CAS  Google Scholar 

  2. Rani B, Maheshwari R, Yadav R, Pareek D, Sharma A (2013) Resolution to provide safe drinking water for sustainability of future perspectives. Res J Chem Env Sci 1:50–54

    Google Scholar 

  3. Chen HL, Burns LD (2006) Environmental analysis of textile products. Cloth Text Res J 24:248–261. https://doi.org/10.1177/0887302X06293065

    Article  Google Scholar 

  4. Bharathi KS, Ramesh ST (2013) Removal of dyes using agricultural waste as low-cost adsorbents: a review. Appl Water Sci 3:773–790. https://doi.org/10.1007/s13201-013-0117-y

    Article  Google Scholar 

  5. Olukanni OD, Osuntoki AA, Gbenle GO (2006) Textile effluent biodegradation potentials of textile effluent-adapted and non-adapted bacteria, African. J Biotechnol 5:1980–1984. https://doi.org/10.4314/ajb.v5i20.55924

    Article  CAS  Google Scholar 

  6. Çelik L (2012) Biodegradation of reactive red 195 azo dye by the bacterium Rhodopseudomonas palustris 51ATA, African. J Microbiol Res 6:120–126. https://doi.org/10.5897/ajmr11.1059

    Article  Google Scholar 

  7. Park C, Lee M, Lee B, Kim SW, Chase HA, Lee J, Kim S (2007) Biodegradation and biosorption for decolorization of synthetic dyes by Funalia trogii. Biochem Eng J 36:59–65. https://doi.org/10.1016/j.bej.2006.06.007

    Article  CAS  Google Scholar 

  8. Mohan SV, Bhaskar YV, Karthikeyan J (2004) Biological decolourization of simulated azo dye in aqueous phase by algae Spirogyra species. Int J Environ Pollut 21:211–222. https://doi.org/10.1504/IJEP.2004.004190

    Article  CAS  Google Scholar 

  9. Kuhad RC, Sood N, Tripathi KK, Singh A, Ward OP (2004) Developments in microbial methods for the treatment of dye effluents. Adv Appl Microbiol 56:185–213. https://doi.org/10.1016/S0065-2164(04)56006-9

    Article  CAS  Google Scholar 

  10. Xu M, Guo J, Sun G (2007) Biodegradation of textile azo dye by Shewanella decolorationis S12 under microaerophilic conditions. Appl Microbiol Biotechnol 76:719–726. https://doi.org/10.1007/s00253-007-1032-7

    Article  CAS  Google Scholar 

  11. Cao XL, Yan YN, Zhou FY, Sun SP (2020) Tailoring nanofiltration membranes for effective removing dye intermediates in complex dye-wastewater. J Membr Sci 595. https://doi.org/10.1016/j.memsci.2019.117476

  12. Varjani S, Upasani VN (2019) Comparing bioremediation approaches for agricultural soil affected with petroleum crude: a case study. Indian J Microbiol 59:356–364. https://doi.org/10.1007/s12088-019-00814-0

    Article  CAS  Google Scholar 

  13. Swaminathan K, Sandhya S, Sophia AC, Pachhade K, Subrahmanyam YV (2003) Decolorization and degradation of H-acid and other dyes using ferrous – hydrogen peroxide system. Chemosphere 50:619–625

    Article  CAS  Google Scholar 

  14. Behnajady MA (2004) Photodestruction of Acid Orange 7 ( AO7 ) in aqueous solutions by UV / H 2 O 2 : influence of operational parameters. Chemosphere 55:129–134. https://doi.org/10.1016/j.chemosphere.2003.10.054

    Article  CAS  Google Scholar 

  15. Arslan I, Akmehmet I, Bahnemann DW (2002) Advanced oxidation of a reactive dyebath effluent : comparison of O 3 , H 2 O 2 / UV-C and TiO 2 / UV-A processes. Water res 36:1143–1154

    Article  Google Scholar 

  16. Al-kdasi A, Idris A (2005) Treatment of textile wastewater by advanced oxidation processes – a review. Global nest: the Int J 6:222–230

    Google Scholar 

  17. Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80. https://doi.org/10.1007/s002530100686

    Article  CAS  Google Scholar 

  18. McMullan G, Meehan C, Conneely A, Kirby N, Robinson T, Nigam P, Banat IM, Marchant R, Smyth WF (2001) Microbial decolourization and degradation of textile dyes. Appl Microbiol Biotechnol 56:81–87. https://doi.org/10.1007/s002530000587

    Article  CAS  Google Scholar 

  19. Banerjee UC P. Education, critical reviews in environmental science and technology(2007) Removal of dyes from the effluent of textile and dyestuff manufacturing industry: a review of emerging techniques with reference to biological treatment. Crit Rev Environ Sci Technol:219–238. https://doi.org/10.1080/10643380590917932

  20. Van Der Zee FP, Villaverde S (2005) Combined anaerobic – aerobic treatment of azo dyes — a short review of bioreactor studies. Water res 39:1425–1440. https://doi.org/10.1016/j.watres.2005.03.007

    Article  CAS  Google Scholar 

  21. Banat IM, Nigam P, Singh D, Marchant R (1997) Microbial decolorization of textile-dye- containing effluents : a review. Bioresour Technol 58:217–227

    Article  Google Scholar 

  22. Imran M, Crowley DE, Khalid A, Hussain S, Mumtaz MW, Arshad M (2015) Microbial biotechnology for decolorization of textile wastewaters. Rev Environ Sci Biotechnol 14:73–92. https://doi.org/10.1007/s11157-014-9344-4

    Article  CAS  Google Scholar 

  23. Shindhal T, Rakholiya P, Varjani S, Pandey A, Ngo HH, Guo W, Ng HY, Taherzadeh MJ (2021) A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered 12:70–87. https://doi.org/10.1080/21655979.2020.1863034

    Article  CAS  Google Scholar 

  24. Varjani SJ, Upasani VN (2017) A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. Int Biodeterior Biodegrad 120:71–83. https://doi.org/10.1016/j.ibiod.2017.02.006

    Article  CAS  Google Scholar 

  25. Kumar A, Kumar A, Singh R, Singh R, Pandey S, Rai A, Singh VK, Rahul B (2019) Genetically engineered bacteria for the degradation of dye and other organic compounds. In: Abatement of environmental pollutants. Elsevier, pp 331–350. https://doi.org/10.1016/B978-0-12-818095-2.00016-3

    Chapter  Google Scholar 

  26. Jin RF, Zhou JT, Zhang AL, Wang J (2008) Bioaugmentation of the decolorization rate of acid red GR by genetically engineered microorganism Escherichia coli JM109 (pGEX-AZR). World J Microbiol Biotechnol 24:23–29. https://doi.org/10.1007/s11274-007-9433-4

    Article  CAS  Google Scholar 

  27. Al-Amrani WA, Lim PE, Seng CE, Wan Ngah WS (2014) Factors affecting bio-decolorization of azo dyes and COD removal in anoxic-aerobic REACT operated sequencing batch reactor. J Taiwan Inst Chem Eng 45:609–616. https://doi.org/10.1016/j.jtice.2013.06.032

    Article  CAS  Google Scholar 

  28. Khan R, Bhawana P, Fulekar MH (2013) Microbial decolorization and degradation of synthetic dyes: a review. Rev Environ Sci Biotechnol 12:75–97. https://doi.org/10.1007/s11157-012-9287-6

    Article  CAS  Google Scholar 

  29. Varjani S, Rakholiya P, Ng HY, You S, Teixeira JA (2020) Microbial degradation of dyes: an overview. Bioresour Technol 314. https://doi.org/10.1016/j.biortech.2020.123728

  30. Ajaz M, Shakeel S, Rehman A (2020) Microbial use for azo dye degradation—a strategy for dye bioremediation. Int Microbiol 23:149–159. https://doi.org/10.1007/s10123-019-00103-2

    Article  CAS  Google Scholar 

  31. Ihsanullah I, Jamal A, Ilyas M, Zubair M, Khan G, Atieh MA (2020) Bioremediation of dyes: current status and prospects. J Water Process Eng 38:101680. https://doi.org/10.1016/j.jwpe.2020.101680

    Article  Google Scholar 

  32. R. Shyamala Gowri, R. Vijayaraghavan, P. Meenambigai, Microbial degradation of reactive dyes-a review, 2014. http://www.ijcmas.com.

    Google Scholar 

  33. Pavlikova M (2020) Microbial degradation of wool industry wastewater. IOP Conf Ser Earth Environ Sci 444. https://doi.org/10.1088/1755-1315/444/1/012042

  34. Gürses A, Güneş K, Şahin E (2020) Removal of dyes and pigments from industrial effluents. In: Green chemistry and water remediation: Research and applications. Elsevier, pp 135–187. https://doi.org/10.1016/B978-0-12-817742-6.00005-0

    Chapter  Google Scholar 

  35. Wang H, Su JQ, Zheng XW, Tian Y, Xiong XJ, Zheng TL (2009) Bacterial decolorization and degradation of the reactive dye Reactive Red 180 by Citrobacter sp. CK3. Int Biodeterior Biodegrad 63:395–399. https://doi.org/10.1016/j.ibiod.2008.11.006

    Article  CAS  Google Scholar 

  36. Chung YC, Chen CY (2009) Degradation of azo dye reactive violet 5 by TiO2 photocatalysis. Environ Chem Lett 7:347–352. https://doi.org/10.1007/s10311-008-0178-6

    Article  CAS  Google Scholar 

  37. Manzoor J, Sharma M (2019) Impact of textile dyes on human health and environment. IGI Global, pp 162–169. https://doi.org/10.4018/978-1-7998-0311-9.ch008

    Book  Google Scholar 

  38. Ben Mansour H, Ayed-Ajmi Y, Mosrati R, Corroler D, Ghedira K, Barillier D, Chekir-Ghedira L (2010) Acid violet 7 and its biodegradation products induce chromosome aberrations, lipid peroxidation, and cholinesterase inhibition in mouse bone marrow. Environ Sci Pollut Res 17:1371–1378. https://doi.org/10.1007/s11356-010-0323-1

    Article  CAS  Google Scholar 

  39. Fernandes FH, de Aragão Umbuzeiro G, Salvadori DMF (2019) Genotoxicity of textile dye CI Disperse Blue 291 in mouse bone marrow. Mutat Res Genet Toxicol Environ Mutagen 837:48–51. https://doi.org/10.1016/j.mrgentox.2018.10.003

    Article  CAS  Google Scholar 

  40. Ferraz ERA, Oliveira GAR, Grando MD, Lizier TM, Zanoni MVB, Oliveira DP (2013) Photoelectrocatalysis based on Ti/TiO2 nanotubes removes toxic properties of the azo dyes Disperse Red 1, Disperse Red 13 and Disperse Orange 1 from aqueous chloride samples. J Environ Manag 124:108–114. https://doi.org/10.1016/j.jenvman.2013.03.033

    Article  CAS  Google Scholar 

  41. Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems: an overview. Indian J Pharmacol 43:246–253. https://doi.org/10.4103/0253-7613.81505

    Article  CAS  Google Scholar 

  42. Karimifard S, Alavi Moghaddam MR (2018) Application of response surface methodology in physicochemical removal of dyes from wastewater: a critical review. Sci Total Environ 640–641:772–797. https://doi.org/10.1016/j.scitotenv.2018.05.355

    Article  CAS  Google Scholar 

  43. Ayed L, El Ksibi I, Charef A, El Mzoughi R (2021) Hybrid coagulation-flocculation and anaerobic-aerobic biological treatment for industrial textile wastewater: pilot case study. J Text Inst 112:200–206. https://doi.org/10.1080/00405000.2020.1731273

    Article  CAS  Google Scholar 

  44. Jafari Chermahini Z, Najafi Chermahini A, Dabbagh HA, Rezaei B, Irannejad N (2017) Synthesis of new dyes containing double tetrazole groups for sensitization of TiO2 nanoparticles in dye-sensitized solar cells. J Iran Chem Soc 14:1549–1556. https://doi.org/10.1007/s13738-017-1096-y

    Article  CAS  Google Scholar 

  45. Donkadokula NY, Kola AK, Naz I, Saroj D (2020) A review on advanced physico-chemical and biological textile dye wastewater treatment techniques. Rev Environ Sci Biotechnol 19:543–560. https://doi.org/10.1007/s11157-020-09543-z

    Article  CAS  Google Scholar 

  46. Kumar P, Agnihotri R, Wasewar KL, Uslu H, Yoo CK (2012) Status of adsorptive removal of dye from textile industry effluent. Desalin Water Treat 50:226–244. https://doi.org/10.1080/19443994.2012.719472

    Article  CAS  Google Scholar 

  47. Varjani SJ, Rana DP, Jain AK, Bateja S, Upasani VN (2015) Synergistic ex-situ biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from on shore sites of Gujarat, India. Int Biodeterior Biodegrad 103:116–124. https://doi.org/10.1016/j.ibiod.2015.03.030

    Article  CAS  Google Scholar 

  48. Bhatia D, Sharma NR, Singh J, Kanwar RS (2017) Biological methods for textile dye removal from wastewater: a review. Crit Rev Environ Sci Technol 47:1836–1876. https://doi.org/10.1080/10643389.2017.1393263

    Article  CAS  Google Scholar 

  49. Varjani S, Upasani VN (2019) Influence of abiotic factors, natural attenuation, bioaugmentation and nutrient supplementation on bioremediation of petroleum crude contaminated agricultural soil. J Environ Manag 245:358–366. https://doi.org/10.1016/j.jenvman.2019.05.070

    Article  CAS  Google Scholar 

  50. Ali H (2010) Biodegradation of synthetic dyes - a review, water. Air Soil Pollut 213:251–273. https://doi.org/10.1007/s11270-010-0382-4

    Article  CAS  Google Scholar 

  51. Vijaykumar MH, Vaishampayan PA, Shouche YS, Karegoudar TB (2007) Decolourization of naphthalene-containing sulfonated azo dyes by Kerstersia sp. strain VKY1. Enzym Microb Technol 40:204–211. https://doi.org/10.1016/j.enzmictec.2006.04.001

    Article  CAS  Google Scholar 

  52. Lin YH, Leu JY (2008) Kinetics of reactive azo-dye decolorization by Pseudomonas luteola in a biological activated carbon process. Biochem Eng J 39:457–467. https://doi.org/10.1016/j.bej.2007.10.015

    Article  CAS  Google Scholar 

  53. Coughlin MF, Kinkle BK, Bishop PL (2002) Degradation of acid orange 7 in an aerobic biofilm. Chemosphere 46:11–19. https://doi.org/10.1016/S0045-6535(01)00096-0

    Article  CAS  Google Scholar 

  54. Kishor R, Purchase D, Saratale GD, Ferreira LFR, Bilal M, Iqbal HMN, Bharagava RN (2021) Environment friendly degradation and detoxification of Congo red dye and textile industry wastewater by a newly isolated Bacillus cohnni (RKS9). Environ Technol Innov 22:101425. https://doi.org/10.1016/j.eti.2021.101425

    Article  CAS  Google Scholar 

  55. Pereira LDO, Lelo RV, Coelho GC, Magalhães F (2019) Degradation of textile dyes from synthetic and wastewater samples using TiO2/C/Fe magnetic photocatalyst and TiO2. J Iran Chem Soc 16:2281–2289. https://doi.org/10.1007/s13738-019-01694-3

    Article  CAS  Google Scholar 

  56. Chen KC, Wu JY, Liou DJ, Hwang SCJ (2003) Decolorization of the textile dyes by newly isolated bacterial strains. J Biotechnol 101:57–68. https://doi.org/10.1016/S0168-1656(02)00303-6

    Article  CAS  Google Scholar 

  57. Pajerski W, Ochonska D, Brzychczy-wloch M, Indyka P (2019) Attachment efficiency of gold nanoparticles by Gram-positive and Gram-negative bacterial strains governed by surface charges. J Nanopart Res 21:1–12

    Article  CAS  Google Scholar 

  58. Ezhilarasu A (2016) International Journal of Advanced Research in Biological Sciences Textile industry Dye degrading by bacterial strain Bacillus sp. Int J Adv Res Biol Sci 3:211–226

    CAS  Google Scholar 

  59. Kishor R, Purchase D, Saratale GD, Romanholo Ferreira LF, Hussain CM, Mulla SI, Bharagava RN (2021) Degradation mechanism and toxicity reduction of methyl orange dye by a newly isolated bacterium Pseudomonas aeruginosa MZ520730. J Water Process Eng 43:102300. https://doi.org/10.1016/j.jwpe.2021.102300

    Article  Google Scholar 

  60. Yu Z, Wen X (2005) Screening and identification of yeasts for decolorizing synthetic dyes in industrial wastewater. Int Biodeterior Biodegrad 56:109–114. https://doi.org/10.1016/j.ibiod.2005.05.006

    Article  CAS  Google Scholar 

  61. Jadhav UU, Dawkar VV, Ghodake GS, Govindwar SP (2008) Biodegradation of Direct Red 5B, a textile dye by newly isolated Comamonas sp. UVS. J Hazard Mater 158:507–516. https://doi.org/10.1016/j.jhazmat.2008.01.099

    Article  CAS  Google Scholar 

  62. Bellut K, Krogerus K, Arendt EK (2020) Lachancea fermentati strains isolated from kombucha : fundamental insights , and practical application in low alcohol beer brewing. Front Microbiol 11:1–21. https://doi.org/10.3389/fmicb.2020.00764

    Article  Google Scholar 

  63. Meehan C, Banat IM, McMullan G, Nigam P, Smyth F, Marchant R (2000) Decolorization of Remazol Black-B using a thermotolerant yeast, Kluyveromyces marxianus IMB3. Environ Int 26:75–79. https://doi.org/10.1016/S0160-4120(00)00084-2

    Article  CAS  Google Scholar 

  64. Saratale GD, Der Chen S, Lo YC, Saratale RG, Chang JS (2008) Outlook of biohydrogen production from lignocellulosic feedstock using dark fermentation - a review. J Sci Ind Res (India) 67:962–979

    CAS  Google Scholar 

  65. Safarikova M, Ptáčková L, Kibriková I, Šafařík I (2005) Biosorption of water-soluble dyes on magnetically modified Saccharomyces cerevisiae subsp. uvarum cells. Chemosphere 59:831–835. https://doi.org/10.1016/j.chemosphere.2004.10.062

    Article  CAS  Google Scholar 

  66. Kiayi Z, Lotfabad TB, Heidarinasab A, Shahcheraghi F (2019) Microbial degradation of azo dye carmoisine in aqueous medium using Saccharomyces cerevisiae ATCC 9763. J Hazard Mater 373:608–619. https://doi.org/10.1016/j.jhazmat.2019.03.111

    Article  CAS  Google Scholar 

  67. Rafii F, Franklin W, Cerniglia CE (1990) Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora. Appl Environ Microbiol 56:2146–2151. https://doi.org/10.1128/aem.56.7.2146-2151.1990

    Article  CAS  Google Scholar 

  68. Rodríguez Couto S (2009) Dye removal by immobilized fungi. Biotechnol Adv 27:227–235. https://doi.org/10.1016/j.biotechadv.2008.12.001

    Article  CAS  Google Scholar 

  69. Li S, Huang J, Chen G, Parkin IP (2019) Nanoscale advances remediation by Aspergillus niger biosorbent †:168–176. https://doi.org/10.1039/c8na00132d

  70. Nozaki K, Beh CH, Mizuno M, Isobe T, Shiroishi M, Kanda T, Amano Y (2008) Screening and investigation of dye decolorization activities of basidiomycetes. J Biosci Bioeng 105:69–72. https://doi.org/10.1263/jbb.105.69

    Article  CAS  Google Scholar 

  71. Enayatzamir K, Tabandeh F, Yakhchali B, Alikhani HA, Rodríguez Couto S (2009) Assessment of the joint effect of laccase and cellobiose dehydrogenase on the decolouration of different synthetic dyes. J Hazard Mater 169:176–181. https://doi.org/10.1016/j.jhazmat.2009.03.088

    Article  CAS  Google Scholar 

  72. Kaushik P, Malik A (2009) Fungal dye decolourization: recent advances and future potential. Environ Int 35:127–141. https://doi.org/10.1016/j.envint.2008.05.010

    Article  CAS  Google Scholar 

  73. Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187. https://doi.org/10.1016/j.biotechadv.2003.08.011

    Article  CAS  Google Scholar 

  74. Novotný Č, Svobodová K, Kasinath A, Erbanová P (2004) Biodegradation of synthetic dyes by Irpex lacteus under various growth conditions. Int Biodeterior Biodegrad 54:215–223. https://doi.org/10.1016/j.ibiod.2004.06.003

    Article  CAS  Google Scholar 

  75. Forss J, Welander U (2009) Decolourization of reactive azo dyes with microorganisms growing on soft wood chips. Int Biodeterior Biodegrad 63:752–758. https://doi.org/10.1016/j.ibiod.2009.05.005

    Article  CAS  Google Scholar 

  76. Matavulj M, Molitoris H (2009) Marine fungi: degraders of poly-3-hydroxyalkanoate based plastic materials, Zb. Matice Srp Za Prir Nauk:253–265. https://doi.org/10.2298/zmspn0916253m

  77. El-Rahim WMA, Moawad H, Azeiz AZA, Sadowsky MJ (2021) Biodegradation of azo dyes by bacterial or fungal consortium and identification of the biodegradation products. Egypt J Aquat Res 47:269–276. https://doi.org/10.1016/j.ejar.2021.06.002

    Article  Google Scholar 

  78. Daneshvar N, Ayazloo M, Khataee AR, Pourhassan M (2007) Biological decolorization of dye solution containing malachite green by microalgae Cosmarium sp. Bioresour Technol 98:1176–1182. https://doi.org/10.1016/j.biortech.2006.05.025

    Article  CAS  Google Scholar 

  79. Vijayaraghavan K, Yun YS (2007) Utilization of fermentation waste (Corynebacterium glutamicum) for biosorption of Reactive Black 5 from aqueous solution. J Hazard Mater 141:45–52. https://doi.org/10.1016/j.jhazmat.2006.06.081

    Article  CAS  Google Scholar 

  80. Omar HH (2008) Algal decolorization and degradation of monoazo and diazo dyes, Pakistan. J Biol Sci 11:1310–1316. https://doi.org/10.3923/pjbs.2008.1310.1316

    Article  CAS  Google Scholar 

  81. Khataee AR, Dehghan G (2011) Optimization of biological treatment of a dye solution by macroalgae Cladophora sp. using response surface methodology. J Taiwan Inst Chem Eng 42:26–33. https://doi.org/10.1016/j.jtice.2010.03.007

    Article  CAS  Google Scholar 

  82. Alam MA, Wan C, Guo SL, Zhao XQ, Huang ZY, Yang YL, Chang JS, Bai FW (2014) Characterization of the flocculating agent from the spontaneously flocculating microalga Chlorella vulgaris JSC-7. J Biosci Bioeng 118:29–33. https://doi.org/10.1016/j.jbiosc.2013.12.021

    Article  CAS  Google Scholar 

  83. Acuner E, Dilek FB (2004) Treatment of tectilon yellow 2G by Chlorella vulgaris. Process Biochem 39:623–631. https://doi.org/10.1016/S0032-9592(03)00138-9

    Article  CAS  Google Scholar 

  84. Rodrigues de Almeida EJ, Christofoletti Mazzeo DE, Deroldo Sommaggio LR, Marin-Morales MA, Rodrigues de Andrade A, Corso CR (2019) Azo dyes degradation and mutagenicity evaluation with a combination of microbiological and oxidative discoloration treatments. Ecotoxicol Environ Saf 183:109484. https://doi.org/10.1016/j.ecoenv.2019.109484

    Article  CAS  Google Scholar 

  85. Dahlia MEM (2013) Evaluation of non-viable biomass of Laurencia papillosa for decolorization of dye waste water, African. J Biotechnol 12:2215–2223. https://doi.org/10.5897/ajb2013.11975

    Article  Google Scholar 

  86. Ren S, Guo J, Zeng G, Sun G (2006) Decolorization of triphenylmethane, azo, and anthraquinone dyes by a newly isolated Aeromonas hydrophila strain. Appl Microbiol Biotechnol 72:1316–1321. https://doi.org/10.1007/s00253-006-0418-2

    Article  CAS  Google Scholar 

  87. Wang H, Zheng XW, Su JQ, Tian Y, Xiong XJ, Zheng TL (2009) Biological decolorization of the reactive dyes Reactive Black 5 by a novel isolated bacterial strain Enterobacter sp. EC3. J Hazard Mater 171:654–659. https://doi.org/10.1016/j.jhazmat.2009.06.050

    Article  CAS  Google Scholar 

  88. Dawkar VV, Jadhav UU, Ghodake GS, Govindwar SP (2009) Effect of inducers on the decolorization and biodegradation of textile azo dye Navy blue 2GL by Bacillus sp. VUS, Biodegradation 20:777–787. https://doi.org/10.1007/s10532-009-9266-y

    Article  CAS  Google Scholar 

  89. Jirasripongpun K, Nasanit R, Niruntasook J, Chotikasatian B (2007) Decolorization and degradation of CI Reactive Red 195 by Enterobacter sp, Thammasat Int. J Sci Technol 12:6–11

    Google Scholar 

  90. Saratale RG, Saratale GD, Chang JS, Govindwar SP (2009) Decolorization and biodegradation of textile dye Navy blue HER by Trichosporon beigelii NCIM-3326. J Hazard Mater 166:1421–1428. https://doi.org/10.1016/j.jhazmat.2008.12.068

    Article  CAS  Google Scholar 

  91. Annuar MSM, Adnan S, Vikineswary S, Chisti Y (2009) Kinetics and energetics of azo dye decolorization by Pycnoporus sanguineus. Water Air Soil Pollut 202:179–188. https://doi.org/10.1007/s11270-008-9968-5

    Article  CAS  Google Scholar 

  92. Sarnthima R, Khammuang S, Svasti J (2009) Extracellular ligninolytic enzymes by Lentinus polychrous Lév. under solid-state fermentation of potential agro-industrial wastes and their effectiveness in decolorization of synthetic dyes. Biotechnol Bioprocess Eng 14:513–522. https://doi.org/10.1007/s12257-008-0262-6

    Article  CAS  Google Scholar 

  93. Yang XQ, Zhao XX, Liu CY, Zheng Y, Qian SJ (2009) Decolorization of azo, triphenylmethane and anthraquinone dyes by a newly isolated Trametes sp. SQ01 and its laccase. Process Biochem 44:1185–1189. https://doi.org/10.1016/j.procbio.2009.06.015

    Article  CAS  Google Scholar 

  94. Ali H, Ahmad W, Haq T (2009) Decolorization and degradation of malachite green by Aspergillus flavus and Alternaria solani, African. J Biotechnol 8:1574–1576. https://doi.org/10.4314/ajb.v8i8.60239

    Article  CAS  Google Scholar 

  95. Parikh A, Madamwar D (2005) Textile dye decolorization using cyanobacteria. Biotechnol Lett 27:323–326. https://doi.org/10.1007/s10529-005-0691-7

    Article  CAS  Google Scholar 

  96. Do MH, Ngo HH, Guo W, Chang SW, Nguyen DD, Liu Y, Varjani S, Kumar M (2020) Microbial fuel cell-based biosensor for online monitoring wastewater quality: a critical review. Sci Total Environ 712:135612. https://doi.org/10.1016/j.scitotenv.2019.135612

    Article  CAS  Google Scholar 

  97. Mishra B, Varjani S, Kumar G, Awasthi MK, Awasthi SK, Sindhu R, Binod P, Rene ER, Zhang Z (2021) Microbial approaches for remediation of pollutants: innovations, future outlook, and challenges. Energy Environ 32:1029–1058. https://doi.org/10.1177/0958305X19896781

    Article  CAS  Google Scholar 

  98. Karmakar M (2020) Recent trends in waste water treatment and water resource management. Springer, Singapore. https://doi.org/10.1007/978-981-15-0706-9

    Book  Google Scholar 

  99. Kisand V, Tuvikene L, Nõges T (2001) Role of phosphorus and nitrogen for bacteria and phytopankton development in a large shallow lake. Hydrobiologia 457:187–197. https://doi.org/10.1023/A:1012291820177

    Article  CAS  Google Scholar 

  100. Khan I, Saeed K, Ali N, Khan I, Zhang B, Sadiq M (2020) Heterogeneous photodegradation of industrial dyes: an insight to different mechanisms and rate affecting parameters. J Environ Chem Eng 8. https://doi.org/10.1016/j.jece.2020.104364

  101. Li N, Chen G, Zhao J, Yan B, Cheng Z, Meng L, Chen V (2019) Self-cleaning PDA/ZIF-67@PP membrane for dye wastewater remediation with peroxymonosulfate and visible light activation. J Membr Sci 591:117341. https://doi.org/10.1016/j.memsci.2019.117341

    Article  CAS  Google Scholar 

  102. Liu N, Xie X, Yang B, Zhang Q, Yu C, Zheng X, Xu L, Li R, Liu J (2017) Performance and microbial community structures of hydrolysis acidification process treating azo and anthraquinone dyes in different stages. Environ Sci Pollut Res 24:252–263. https://doi.org/10.1007/s11356-016-7705-y

    Article  CAS  Google Scholar 

  103. Varjani SJ, Upasani VN (2017) Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Bioresour Technol 232:389–397. https://doi.org/10.1016/j.biortech.2017.02.047

    Article  CAS  Google Scholar 

  104. Delpla I, Jung AV, Baures E, Clement M, Thomas O (2009) Impacts of climate change on surface water quality in relation to drinking water production. Environ Int 35:1225–1233. https://doi.org/10.1016/j.envint.2009.07.001

    Article  CAS  Google Scholar 

  105. Das A, Mishra S (2017) Removal of textile dye reactive green-19 using bacterial consortium: process optimization using response surface methodology and kinetics study. J Environ Chem Eng 5:612–627. https://doi.org/10.1016/j.jece.2016.10.005

    Article  CAS  Google Scholar 

  106. Gianfreda L, Rao MA (2004) Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzym Microb Technol 35:339–354. https://doi.org/10.1016/j.enzmictec.2004.05.006

    Article  CAS  Google Scholar 

  107. Kirby N, Marchant R, McMullan G (2000) Decolourisation of synthetic textile dyes by Phlebia tremellosa. FEMS Microbiol Lett 188:93–96. https://doi.org/10.1016/S0378-1097(00)00216-0

    Article  CAS  Google Scholar 

  108. Bento RMF, Almeida MR, Bharmoria P, Freire MG, Tavares APM (2020) Improvements in the enzymatic degradation of textile dyes using ionic-liquid-based surfactants. Sep Purif Technol 235:116191. https://doi.org/10.1016/j.seppur.2019.116191

    Article  CAS  Google Scholar 

  109. Iark D, dos Reis Buzzo AJ, Garcia JAA, Côrrea VG, Helm CV, Corrêa RCG, Peralta RA, Moreira RDFPM, Bracht A, Peralta RM (2019) Enzymatic degradation and detoxification of azo dye Congo red by a new laccase from Oudemansiella canarii. Bioresour Technol 289:121655. https://doi.org/10.1016/j.biortech.2019.121655

    Article  CAS  Google Scholar 

  110. Zille A, Gornacka B, Rehorek A, Cavaco-Paulo A (2005) Degradation of azo dyes by Trametes villosa laccase over long periods of oxidative conditions. Appl Environ Microbiol 71:6711–6718. https://doi.org/10.1128/AEM.71.11.6711-6718.2005

    Article  CAS  Google Scholar 

  111. Abadulla E, Tzanov T, Costa S, Cavaco A, Gübitz G (2013) Decolorization and Detoxification of Textile Dyes with a Laccase from Trametes hirsuta. Appl Environ Microbiol 66(2000):3357–3362. https://doi.org/10.1128/aem.66.8.3357-3362.2000

    Article  Google Scholar 

  112. Chang JS, Lin YC (2000) Fed-batch bioreactor strategies for microbial decolorization of azo dye using a Pseudomonas luteola strain. Biotechnol Prog 16:979–985. https://doi.org/10.1021/bp000116z

    Article  CAS  Google Scholar 

  113. Maier J, Kandelbauer A, Erlacher A, Cavaco-Paulo A, Gübitz GM (2004) A new alkali-thermostable azoreductase from Bacillus sp. strain SF. Appl Environ Microbiol 70:837–844. https://doi.org/10.1128/AEM.70.2.837-844.2004

    Article  CAS  Google Scholar 

  114. Ramalho PA, Scholze H, Cardoso MH, Ramalho MT, Oliveira-Campos AM (2002) Improved conditions for the aerobic reductive decolourization of azo dyes by Candida zeylanoides. Enzym Microb Technol 31:848–854. https://doi.org/10.1016/S0141-0229(02)00189-8

    Article  CAS  Google Scholar 

  115. Russ R, Rau J, Stolz A (2000) The function of cytoplasmic flavin reductases in the reduction of azo dyes by bacteria. Appl Environ Microbiol 66:1429–1434. https://doi.org/10.1128/AEM.66.4.1429-1434.2000

    Article  CAS  Google Scholar 

  116. Bilal M, Bagheri AR, Vilar DS, Aramesh N, Eguiluz KIB, Ferreira LFR, Ashraf SS, Iqbal HMN (2022) Oxidoreductases as a versatile biocatalytic tool to tackle pollutants for clean environment – a review. J Chem Technol Biotechnol 97:420–435. https://doi.org/10.1002/jctb.6743

    Article  CAS  Google Scholar 

  117. Saravanan A, Kumar PS, Vo DVN, Jeevanantham S, Karishma S, Yaashikaa PR (2021) A review on catalytic-enzyme degradation of toxic environmental pollutants: microbial enzymes, J Hazard Mater 419:126451. https://doi.org/https://doi.org/10.1016/j.jhazmat.2021.126451

  118. Wang X, Yao B, Su X (2018) Linking enzymatic oxidative degradation of lignin to organics detoxification. Int J Mol Sci 19. https://doi.org/10.3390/ijms19113373

  119. da Silva Vilar D, Bilal M, Bharagava RN, Kumar A, Kumar Nadda A, Salazar-Banda GR, Eguiluz KIB, Romanholo Ferreira LF (2022) Lignin-modifying enzymes: a green and environmental responsive technology for organic compound degradation. J Chem Technol Biotechnol 97:327–342. https://doi.org/10.1002/jctb.6751

    Article  CAS  Google Scholar 

  120. Kishor R, Saratale GD, Saratale RG, Romanholo Ferreira LF, Bilal M, Iqbal HMN, Bharagava RN (2021) Efficient degradation and detoxification of methylene blue dye by a newly isolated ligninolytic enzyme producing bacterium Bacillus albus MW407057. Colloids Surf B Biointerfaces 206:111947. https://doi.org/10.1016/j.colsurfb.2021.111947

    Article  CAS  Google Scholar 

  121. Schlosser D, Höfer C (2002) Laccase-catalyzed oxidation of Mn2+ in the presence of natural Mn3+ chelators as a novel source of extracellular H2O2 production and its impact on manganese peroxidase. Appl Environ Microbiol 68:3514–3521. https://doi.org/10.1128/AEM.68.7.3514-3521.2002

    Article  CAS  Google Scholar 

  122. Sosa-Martínez JD, Balagurusamy N, Montañez J, Peralta RA, Moreira RFPM, Bracht A, Peralta RM, Morales-Oyervides L (2020) Synthetic dyes biodegradation by fungal ligninolytic enzymes: process optimization, metabolites evaluation and toxicity assessment. J Hazard Mater 400:123254. https://doi.org/10.1016/j.jhazmat.2020.123254

    Article  CAS  Google Scholar 

  123. Chagas EP, Durrant LR (2001) Decolorization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajorcaju. Enzym Microb Technol 29:473–477. https://doi.org/10.1016/S0141-0229(01)00405-7

    Article  CAS  Google Scholar 

  124. Verma P, Madamwar D (2002) Production of ligninolytic enzymes for dye decolorization by cocultivation of white-rot fungi Pleurotus ostreatus and Phanerochaete chrysosporium under solid-state fermentation. Appl Biochem Biotechnol - Part A Enzym Eng Biotechnol 102–103:109–118. https://doi.org/10.1385/ABAB:102-103:1-6:109

    Article  Google Scholar 

  125. Wu FC, Tseng RL, Juang RS (2001) Enhanced abilities of highly swollen chitosan beads for color removal and tyrosinase immobilization. J Hazard Mater 81:167–177. https://doi.org/10.1016/S0304-3894(00)00340-X

    Article  CAS  Google Scholar 

  126. Kalme S, Jadhav S, Jadhav M, Govindwar S (2009) Textile dye degrading laccase from Pseudomonas desmolyticum NCIM 2112. Enzym Microb Technol 44:65–71. https://doi.org/10.1016/j.enzmictec.2008.10.005

    Article  CAS  Google Scholar 

  127. Kalme S, Ghodake G, Govindwar S (2007) Red HE7B degradation using desulfonation by Pseudomonas desmolyticum NCIM 2112. Int Biodeterior Biodegrad 60:327–333. https://doi.org/10.1016/j.ibiod.2007.05.006

    Article  CAS  Google Scholar 

  128. Selvaraj V, Swarna Karthika T, Mansiya C, Alagar M (2021) An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications. J Mol Struct 1224. https://doi.org/10.1016/j.molstruc.2020.129195

  129. Eichlerová I, Homolka L, Nerud F (2006) Synthetic dye decolorization capacity of white rot fungus Dichomitus squalens. Bioresour Technol 97:2153–2159. https://doi.org/10.1016/j.biortech.2005.09.014

    Article  CAS  Google Scholar 

  130. Sandhya S (2010) Biodegradation of azo dyes under anaerobic condition: role of azoreductase. Biodegradation of azo dyes, pp 39–57. https://doi.org/10.1007/698_2009_43

    Book  Google Scholar 

  131. Menon S, Agarwal H, Shanmugam VK (2021) Catalytical degradation of industrial dyes using biosynthesized selenium nanoparticles and evaluating its antimicrobial activities. Sustain Environ Res 31. https://doi.org/10.1186/s42834-020-00072-6

  132. Goszczynski S, Paszczynski A, Pasti-Grigsby MB, Crawford RL, Crawford DL (1994) New pathway for degradation of sulfonated azo dyes by microbial peroxidases of Phanerochaete chrysosporium and Streptomyces chromofuscus. J Bacteriol 176:1339–1347. https://doi.org/10.1128/jb.176.5.1339-1347.1994

    Article  CAS  Google Scholar 

  133. Cui D, Li G, Zhao M, Han S (2014) Decolourization of azo dyes by a newly isolated Klebsiella sp. strain Y3, and effects of various factors on biodegradation. Biotechnol Biotechnol Equip 28:478–486. https://doi.org/10.1080/13102818.2014.926053

    Article  CAS  Google Scholar 

  134. Mohana S, Shrivastava S, Divecha J, Madamwar D (2008) Response surface methodology for optimization of medium for decolorization of textile dye Direct Black 22 by a novel bacterial consortium. Bioresour Technol 99:562–569. https://doi.org/10.1016/j.biortech.2006.12.033

    Article  CAS  Google Scholar 

  135. Shanmugam BK, Easwaran SN, Lakra PRD, Mahadevan S (2017) Metabolic pathway and role of individual species in the bacterial consortium for biodegradation of azo dye: a biocalorimetric investigation. Chemosphere 188:81–89. https://doi.org/10.1016/j.chemosphere.2017.08.138

    Article  CAS  Google Scholar 

  136. Ayed L, Khelifi E, Ben Jannet H, Miladi H, Cheref A, Achour S, Bakhrouf A (2010) Response surface methodology for decolorization of azo dye Methyl Orange by bacterial consortium: produced enzymes and metabolites characterization. Chem Eng J 165:200–208. https://doi.org/10.1016/j.cej.2010.09.018

    Article  CAS  Google Scholar 

  137. Božić AL, Koprivanac N, Šunka P, Člupek M, Babický V (2004) Organic synthetic dye degradation by modified pinhole discharge. Czechoslov J Phys 54:958–963. https://doi.org/10.1007/BF03166514

    Article  Google Scholar 

  138. Moharikar A, Purohit HJ, Kumar R (2005) Microbial population dynamics at effluent treatment plants. J Environ Monit 7:552–558. https://doi.org/10.1039/b406576j

    Article  CAS  Google Scholar 

  139. Peter R, Mojca J, Primož P (2019) Genetically modified organisms (GMOs). Encycl Environ Heal 49:199–207. https://doi.org/10.1016/B978-0-444-63951-6.00481-2

    Article  Google Scholar 

  140. Tahri N, Bahafid W, Sayel H, El Ghachtouli N (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. Biodegrad - Life Sci. https://doi.org/10.5772/56194

  141. Saxena G, Kishor R, Saratale GD, R.N. (2020) Bharagava, Genetically modified organisms (GMOs) and their potential in environmental management: constraints, prospects, and challenges, Bioremediation Ind. Waste Environ Saf:1–19. https://doi.org/10.1007/978-981-13-3426-9_1

  142. Menn FM, Easter JP, Sayler GS (2008) Genetically engineered microorganisms and bioremediation. Biotechnol Second Complet Revis Ed 11–12:441–463. https://doi.org/10.1002/9783527620999.ch21m

    Article  Google Scholar 

  143. Jin R, Yang H, Zhang A, Wang J, Liu G (2009) Bioaugmentation on decolorization of CI Direct Blue 71 by using genetically engineered strain Escherichia coli JM109 (pGEX-AZR). J Hazard Mater 163:1123–1128. https://doi.org/10.1016/j.jhazmat.2008.07.067

    Article  CAS  Google Scholar 

  144. Chang JS, Lin CY (2001) Decolorization kinetics of a recombinant Escherichia coli strain harboring azo-dye-decolorizing determinants from Rhodococcus sp. Biotechnol Lett 23:631–636. https://doi.org/10.1023/A:1010306114286

    Article  CAS  Google Scholar 

  145. Tian F, Guo G, Zhang C, Yang F, Hu Z, Liu C, Wang SW (2019) Isolation, cloning and characterization of an azoreductase and the effect of salinity on its expression in a halophilic bacterium. Int J Biol Macromol 123:1062–1069. https://doi.org/10.1016/j.ijbiomac.2018.11.175

    Article  CAS  Google Scholar 

  146. Sandhya S, Sarayu K, Uma B, Swaminathan K (2008) Decolorizing kinetics of a recombinant Escherichia coli SS125 strain harboring azoreductase gene from Bacillus latrosporus RRK1. Bioresour Technol 99:2187–2191. https://doi.org/10.1016/j.biortech.2007.05.027

    Article  CAS  Google Scholar 

  147. Vikrant K, Giri BS, Raza N, Roy K, Kim KH, Rai BN, Singh RS (2018) Recent advancements in bioremediation of dye: current status and challenges. Bioresour Technol 253:355–367. https://doi.org/10.1016/j.biortech.2018.01.029

    Article  CAS  Google Scholar 

  148. Wang B, Wang Z, Chen T, Zhao X (2020) Development of novel bioreactor control systems based on smart sensors and actuators. Front bioeng biotechnol 8:1–15. https://doi.org/10.3389/fbioe.2020.00007

    Article  Google Scholar 

  149. Su CXH, Low LW, Teng TT, Wong YS (2016) Combination and hybridization of treatments in dye wastewater treatment: a review. J Environ Chem Eng 4:3618–3631. https://doi.org/10.1016/j.jece.2016.07.026

    Article  CAS  Google Scholar 

  150. Rahimnejad M, Adhami A, Darvari S, Zirepour A, Oh SE (2015) Microbial fuel cell as new technology for bioelectricity generation: a review. Alexandria Eng J 54:745–756. https://doi.org/10.1016/j.aej.2015.03.031

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Ministry of Higher Education Malaysia for supporting the research with Fundamental Research Grant Scheme (FRGS) the grant (FRGS/1/2022/STG04/USM/02/7) for the opportunity to carry out the research.

Funding

This work is supported fundamental research grant (FRGS/1/2022/STG04/USM/02/7) provided by the government of Malaysia.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the studies based on fundamental proof of concept. Anandita and Kashif Raees performed data collection, analysis, and drafting of the manuscript under the supervision of Mohammad Shahadat and Syed Wazed Ali. Mohammad Shahadat finally edited the manuscript with the help of supporting references. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Kashif Raees or Mohammad Shahadat.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anandita, Raees, K., Shahadat, M. et al. Mechanistic Interaction of Microbe in Dye Degradation and the Role of Inherently Modified Organisms: a Review. Water Conserv Sci Eng 8, 43 (2023). https://doi.org/10.1007/s41101-023-00219-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41101-023-00219-7

Keywords

Navigation