Skip to main content

Advertisement

Log in

Degradation of Emerging Amoxicillin Compound from Water Using the Electro-Fenton Process with an Aluminum Anode

  • Original Paper
  • Published:
Water Conservation Science and Engineering Aims and scope Submit manuscript

Abstract

The removal efficiency of the emerging antibiotic waste, amoxicillin, from aqueous media was investigated using the electro-Fenton method with an aluminum anode through the one-factor-at-a-time method, and all the experiments were performed in a useful volume of 750 ml. While the optimum conditions were achieved, the removal kinetic of the contaminant from the environment was investigated. Optimal values of the process parameters including the concentration of the contaminant, process time, initial pH of the samples, electrolyte concentration, electrode distance, and the applied current density were determined as 100 mg.l−1, 90 min, neutral pH, 0.02 M Na2SO4, 5.5 cm, and 5.5 mA.cm−2, respectively. In order to find the optimum conditions, in addition to pollutant removal efficiency, energy consumption was also analyzed. The application of aluminum anodes was found to enhance the efficiency of the process in neutral pH (roughly 95% removal rate), which may be introduced as a potential solution for limitations of the conventional electro-Fenton process in degrading recalcitrant compounds such as amoxicillin. Finally, the obtained results were presented and discussed in detail.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Weng X, Cai W, Lin S, Chen Z (2017) Degradation mechanism of amoxicillin using clay supported nanoscale zero-valent iron. Appl Clay Sci 147:137–142. https://doi.org/10.1016/j.clay.2017.07.023

    Article  CAS  Google Scholar 

  2. Singh V, Pandey B, Suthar S (2018) Phytotoxicity of amoxicillin to the duckweed Spirodela polyrhiza: growth, oxidative stress, biochemical traits and antibiotic degradation. Chemosphere 201:492–502. https://doi.org/10.1016/j.chemosphere.2018.03.010

    Article  CAS  Google Scholar 

  3. Kıdak R, Doğan Ş (2018) Medium-high frequency ultrasound and ozone based advanced oxidation for amoxicillin removal in water. Ultrason Sonochem 40:131–139. https://doi.org/10.1016/j.ultsonch.2017.01.033

    Article  CAS  Google Scholar 

  4. Ensano BMB, Borea L, Naddeo V, Belgiorno V, de Luna MDG, Balakrishnan M, Ballesteros FC Jr (2019) Applicability of the electrocoagulation process in treating real municipal wastewater containing pharmaceutical active compounds. J Hazard Mater 361:367–373. https://doi.org/10.1016/j.jhazmat.2018.07.093

    Article  CAS  Google Scholar 

  5. Ayodele OB, Lim JK, Hameed BH (2012) Pillared montmorillonite supported ferric oxalate as heterogeneous photo-Fenton catalyst for degradation of amoxicillin. Appl Catal A-Gen 413:301–309. https://doi.org/10.1016/j.apcata.2011.11.023

    Article  CAS  Google Scholar 

  6. Jafari K, Heidari M, Rahmanian O (2018) Wastewater treatment for Amoxicillin removal using magnetic adsorbent synthesized by ultrasound process. Ultrason Sonochem 45:248–256. https://doi.org/10.1016/j.ultsonch.2018.03.018

    Article  CAS  Google Scholar 

  7. Ahmadzadeh S, Asadipour A, Pournamdari M, Behnam B, Rahimi HR, Dolatabadi M (2017) Removal of ciprofloxacin from hospital wastewater using electrocoagulation technique by aluminum electrode: optimization and modelling through response surface methodology. Process Saf Environ 109:538–547. https://doi.org/10.1016/j.psep.2017.04.026

    Article  CAS  Google Scholar 

  8. Wang S (2008) A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes Pigments 76(3):714–720. https://doi.org/10.1016/j.dyepig.2007.01.012

    Article  CAS  Google Scholar 

  9. Ren G, Zhou M, Su P, Liang L, Yang W, Mousset E (2018) Highly energy-efficient removal of acrylonitrile by peroxi-coagulation with modified graphite felt cathode: Influence factors, possible mechanism. Chem Eng J 343:467–476. https://doi.org/10.1016/j.cej.2018.02.115

    Article  CAS  Google Scholar 

  10. Garcia-Segura S, Eiband MMS, de Melo JV, Martínez-Huitle CA (2017) Electrocoagulation and advanced electrocoagulation processes: a general review about the fundamentals, emerging applications and its association with other technologies. J Electroanal Chem 801:267–299. https://doi.org/10.1016/j.jelechem.2017.07.047

    Article  CAS  Google Scholar 

  11. Nidheesh PV (2018) Removal of organic pollutants by peroxi coagulation. Environ Chem Lett 16(4):1283–1292. https://doi.org/10.1007/s10311-018-0752-5

    Article  CAS  Google Scholar 

  12. Radwan M, Alalm MG, Eletriby H (2018) Optimization and modeling of electro-Fenton process for treatment of phenolic wastewater using nickel and sacrificial stainless steel anodes. J Water Process Eng 22:155–162. https://doi.org/10.1016/j.jwpe.2018.02.003

    Article  Google Scholar 

  13. Ding J, Jiang M, Zhao G, Wei L, Wang S, Zhao Q (2020) Treatment of leachate concentrate by electrocoagulation coupled with electro-Fenton-like process: efficacy and mechanisms. Sep Purif Technol 255:17668. https://doi.org/10.1016/j.seppur.2020.117668

    Article  CAS  Google Scholar 

  14. Dindas GB, Çalışkan Y, Çelebi EE, Tekbaş M, Bektaş N, Yatmaz HC (2020) Treatment of pharmaceutical wastewater by combination of electrocoagulation, electro-Fenton and photocatalytic oxidation processes. J Environ Chem Eng 8(3):103777. https://doi.org/10.1016/j.jece.2020.103777

    Article  CAS  Google Scholar 

  15. Hamdi N, Proietto F, Ben Amor H, Galia A, Inguanta R, Ammar S, Gadri A, Scialdone O (2020) Effective removal and mineralization of 8-hydroxyquinoline-5-sulfonic acid through a pressurized electro-Fenton-like process with Ni− Cu− Al layered double hydroxide. ChemElectroChem 7(11):2457–2465. https://doi.org/10.1002/celc.202000463

    Article  CAS  Google Scholar 

  16. Guvenc SY, Dincer K, Varank G (2019) Performance of electrocoagulation and electro-Fenton processes for treatment of nanofiltration concentrate of biologically stabilized landfill leachate. J Water Process Eng 31:100863. https://doi.org/10.1016/j.jwpe.2019.100863

    Article  Google Scholar 

  17. Ghalebizade M, Ayati B (2019) Acid orange 7 treatment and fate by electro-peroxone process using novel electrode arrangement. Chemosphere 235:1007–1014. https://doi.org/10.1016/j.chemosphere.2019.06.211

    Article  CAS  Google Scholar 

  18. Dassanayake KB, Jayasinghe GY, Surapaneni A, Hetherington C (2015) A review on alum sludge reuse with special reference to agricultural applications and future challenges. Waste Manag 38:321–335. https://doi.org/10.1016/j.wasman.2014.11.025

    Article  CAS  Google Scholar 

  19. Sopaj F, Oturan N, Pinson J, Podvorica FI, Oturan MA (2019) Effect of cathode material on electro-Fenton process efficiency for electrocatalytic mineralization of the antibiotic sulfamethazine. Chem Eng J 384:123249. https://doi.org/10.1016/j.cej.2019.123249

    Article  CAS  Google Scholar 

  20. APHA, A.W.W.A. 2020. WEF (2020). Standard methods for the examination of water and wastewater, 22.

  21. Kong FX, Lin XF, Sun GD, Chen JF, Guo CM, Xie YF (2019) Enhanced organic removal for shale gas fracturing flowback water by electrocoagulation and simultaneous electro-peroxone process. Chemosphere 218:252–258. https://doi.org/10.1016/j.chemosphere.2018.11.055

    Article  CAS  Google Scholar 

  22. Limousy L, Ghouma I, Ouederni A, Jeguirim M (2017) Amoxicillin removal from aqueous solution using activated carbon prepared by chemical activation of olive stone. Pollut Res 24(11):9993–10004. https://doi.org/10.1007/s11356-016-7404-8

    Article  CAS  Google Scholar 

  23. Suhan MBK, Shuchi SB, Anis A, Haque Z, Islam MS (2020) Comparative degradation study of remazol black B dye using electro-coagulation and electro-Fenton process: kinetics and cost analysis. Environ Nanotechnol Monit Manag 14:100335. https://doi.org/10.1016/j.enmm.2020.100335

    Article  Google Scholar 

  24. Kaur R, Kushwaha JP, Singh N (2019) Amoxicillin electro-catalytic oxidation using Ti/RuO2 anode: mechanism, oxidation products and degradation pathway. Electrochim Acta 296:856–866. https://doi.org/10.1016/j.electacta.2018.11.114

    Article  CAS  Google Scholar 

  25. Naje AS, Chelliapan S, Zakaria Z, Ajeel MA, Alaba PA (2017) A review of electrocoagulation technology for the treatment of textile wastewater. Rev Chem Eng 33(3):263–292. https://doi.org/10.1515/revce-2016-0019

    Article  CAS  Google Scholar 

  26. Núñez J, Yeber M, Cisternas N, Thibaut R, Medina P, Carrasco C (2019) Application of electrocoagulation for the efficient pollutants removal to reuse the treated wastewater in the dyeing process of the textile industry. J Hazard Mater 371:705–711. https://doi.org/10.1016/j.jhazmat.2019.03.030

    Article  CAS  Google Scholar 

  27. Babuponnusami A, Muthukumar K (2014) A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng 2(1):557–572. https://doi.org/10.1016/j.jece.2013.10.011

    Article  CAS  Google Scholar 

  28. Li H, Hu J, Wang C, Wang X (2017) Removal of amoxicillin in aqueous solution by a novel chicken feather carbon: kinetic and equilibrium studies. Water Air Soil Pollut 228(6):201. https://doi.org/10.1007/s11270-017-3385-6

    Article  CAS  Google Scholar 

  29. Wang B, Xu X, Tang H, Mao Y, Chen H, Ji F (2020) Highly efficient adsorption of three antibiotics from aqueous solutions using glucose-based mesoporous carbon. Appl Surf Sci 528:147048. https://doi.org/10.1016/j.apsusc.2020.147048

    Article  CAS  Google Scholar 

  30. Ghernaout D, Alghamdi A, Ghernaout B (2019) Electrocoagulation process: a mechanistic review at the dawn of its modeling. J Environ Sci Allied Res 2:51–67

    Google Scholar 

  31. Bensadok KS, Benammar S, Lapicque F, Nezzal G (2008) Electrocoagulation of cutting oil emulsions using aluminium plate electrodes. J Hazard Mater 152(1):423–430. https://doi.org/10.1016/j.jhazmat.2007.06.121

    Article  CAS  Google Scholar 

  32. Izadi A, Hosseini M, Darzi GN, Bidhendi GN, Shariati FP (2018) Treatment of paper-recycling wastewater by electrocoagulation using aluminum and iron electrodes. J Environ Health Sci Eng 16(2):257–264. https://doi.org/10.1007/s40201-018-0314-6

    Article  CAS  Google Scholar 

  33. Nidheesh PV, Singh TA (2017) Arsenic removal by electrocoagulation process: recent trends and removal mechanism. Chemosphere 181:418–432. https://doi.org/10.1016/j.chemosphere.2017.04.082

    Article  CAS  Google Scholar 

  34. Davarnejad R, Nikseresht M (2016) Dairy wastewater treatment using an electrochemical method: Experimental and statistical study. J Electroanal Chem 775(15):364–373. https://doi.org/10.1016/j.jelechem.2016.06.016

    Article  CAS  Google Scholar 

  35. Kim T, Kim TK, Zoh KD (2020) Removal mechanism of heavy metal (Cu, Ni, Zn, and Cr) in the presence of cyanide during electrocoagulation using Fe and Al electrodes. J Water Process Eng 33:101109. https://doi.org/10.1016/j.jwpe.2019.101109

    Article  Google Scholar 

  36. Chezeau B, Boudriche L, Vial C, Boudjemaa A (2020) Treatment of dairy wastewater by electrocoagulation process: advantages of combined iron/aluminum electrodes. Sep Sci Technol 55(14):2510–2527. https://doi.org/10.1080/01496395.2019.1638935

    Article  CAS  Google Scholar 

  37. Keyikoglu R, Can OT, Aygun A, Tek A (2019) Comparison of the effects of various supporting electrolytes on the treatment of a dye solution by electrocoagulation process. Colloids Interface Sci Commun 33:100210. https://doi.org/10.1016/j.colcom.2019.100210

    Article  CAS  Google Scholar 

  38. Tahreen A, Jami MS, Ali F (2020) Role of electrocoagulation in wastewater treatment: a developmental review. J Water Process Eng 37:101440. https://doi.org/10.1016/j.jwpe.2020.101440

    Article  Google Scholar 

  39. Ghosh S, Debsarkar A, Dutta A (2019) Technology alternatives for decontamination of arsenic-rich groundwater—a critical review. Environ Technol Innov 13:277–303. https://doi.org/10.1016/j.eti.2018.12.003

    Article  Google Scholar 

  40. Tiwari A, Sahu O (2017) Treatment of food-agro (sugar) industry wastewater with copper metal and salt: chemical oxidation and electro-oxidation combined study in batch mode. Water Resour Ind 17:19–25. https://doi.org/10.1016/j.wri.2016.12.001

    Article  Google Scholar 

  41. Hakizimana JN, Gourich B, Chafi M, Stiriba Y, Vial C, Drogui P, Naja J (2017) Electrocoagulation process in water treatment: a review of electrocoagulation modeling approaches. Desalination 404:1–21. https://doi.org/10.1016/j.desal.2016.10.011

    Article  CAS  Google Scholar 

  42. Zhang Y, Luo G, Wang Q, Zhang Y, Zhou M (2020) Kinetic study of the degradation of rhodamine B using a flow-through UV/electro-Fenton process with the presence of ethylenediaminetetraacetic acid. Chemosphere 240:124929. https://doi.org/10.1016/j.chemosphere.2019.124929

    Article  CAS  Google Scholar 

  43. Kalantary RR, Farzadkia M, Kermani M, Rahmatinia M (2018) Heterogeneous electro-Fenton process by Nano-Fe3O4 for catalytic degradation of amoxicillin: process optimization using response surface methodology. J Environ Chem Eng 6(4):4644–4652. https://doi.org/10.1016/j.jece.2018.06.043

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bita Ayati.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

- A commercially available aluminum plate was used as the anode for the electro-Fenton process.

- High decomposition rate of amoxicillin was achieved via relatively low-cost materials.

- A remarkable removal rate in neutral pH ranges was measured using the Al plate.

- Less energy was consumed compared to similar studies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayebi, B., Ayati, B. Degradation of Emerging Amoxicillin Compound from Water Using the Electro-Fenton Process with an Aluminum Anode. Water Conserv Sci Eng 6, 45–54 (2021). https://doi.org/10.1007/s41101-021-00101-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41101-021-00101-4

Keywords

Navigation