Skip to main content
Log in

Facile Fabrication of Amino-Functionalized Silicon Flakes for Removal of Organophosphorus Herbicide: In Silico Optimization

  • Original Paper
  • Published:
Water Conservation Science and Engineering Aims and scope Submit manuscript

Abstract

In the present study, a toxic herbicide (glyphosate) was remediated through adsorption using biogenic conversion of amino-functionalized silica nanoparticles (silica NPs). The glyphosate adsorption and silica NPs were characterized using kinetics, isotherm and thermodynamics models, pH zero point charge measurements, BET surface analysis, X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy/energy-dispersive X-ray spectroscopy and regeneration study. The adsorption data were optimized by ANN multi-layer perceptron and multiple linear regression. The equilibrium glyphosate adsorption data were fitted to Freundlich, Langmuir, Temkin and Dubinin-Radushkevich (D-R) isotherm models. The adsorption capacity values recorded for the Freundlich and Langmuir models were 233.34 L/mg and 212.76 mg/g, respectively, at the maximum saturation dose. The fast rate-determining kinetics data were described by a pseudo-second-order model at different concentrations. The thermodynamics parameters clearly revealed that the adsorption of glyphosate was endothermic and spontaneous in nature. Finally, the optimized conditions were recorded as follows: initial glyphosate concentration 39.99 mg/L, pH 12.66, dose 0.299 g, contact time 60 min, and temperature 100 °C, with 98.99% removal. More importantly, the silicon NPs were easily recovered in different media, with acetic acid medium showing excellent regeneration. The present findings suggest that silicon NPs are a promising adsorbent for glyphosate removal from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Samuel L, Wang R, Dubois G, Allen R, Wojtecki R, la YH (2017) Amine-functionalized, multi-arm star polymers: a novel platform for removing glyphosate from aqueous media. Chemosphere 169:437–442. https://doi.org/10.1016/j.chemosphere.2016.11.049

    Article  CAS  Google Scholar 

  2. Slager RE, Poole JA, LeVan TD, Sandler DP, Alavanja MC, Hoppin JA (2009) Rhinitis associated with pesticide exposure among commercial pesticide applicators in the agricultural health study. Occup Environ Med 66:718–724. https://doi.org/10.1136/oem.2008.041798

    Article  CAS  Google Scholar 

  3. Waiman CV, Arroyave JM, Chen H et al (2016) The simultaneous presence of glyphosate and phosphate at the goethite surface as seen by XPS, ATR-FTIR and competitive adsorption isotherms. Colloids Surf Physicochem Eng Asp 498:121–127. https://doi.org/10.1016/j.colsurfa.2016.03.049

    Article  CAS  Google Scholar 

  4. Bai SH, Ogbourne SM (2016) Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination. Environ Sci Pollut Res Int 23:18988–19001. https://doi.org/10.1007/s11356-016-7425-3

    Article  CAS  Google Scholar 

  5. Paganelli A, Gnazzo V, Acosta H, López SL, Carrasco AE (2010) Glyphosate-based herbicides produce teratogenic effects on vertebrates by impairing retinoic acid signaling. Chem Res Toxicol 23:1586–1595. https://doi.org/10.1021/tx1001749

    Article  CAS  Google Scholar 

  6. Trasande L, Aldana SI, Trachtman H, Kannan K, Morrison D, Christakis DA, Whitlock K, Messito MJ, Gross RS, Karthikraj R, Sathyanarayana S (2020) Glyphosate exposures and kidney injury biomarkers in infants and young children. Environ Pollut 256:113334. https://doi.org/10.1016/j.envpol.2019.113334

    Article  CAS  Google Scholar 

  7. Drinking Water Treatability Database. https://iaspub.epa.gov/tdb/pages/contaminant/contaminantOverview.do?contaminantId=10480. Accessed 23 Jan 2020

  8. Barja BC, dos Santos AM (1998) An ATR−FTIR study of glyphosate and its Fe(III) complex in aqueous solution. Environ Sci Technol 32:3331–3335. https://doi.org/10.1021/es9800380

    Article  CAS  Google Scholar 

  9. Yadav IC, Devi NL, Syed JH, Cheng Z, Li J, Zhang G, Jones KC (2015) Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: a comprehensive review of India. Sci Total Environ 511:123–137. https://doi.org/10.1016/j.scitotenv.2014.12.041

    Article  CAS  Google Scholar 

  10. Sharma A, Lee B-K (2015) Synthesis and characterization of anionic/nonionic surfactant-interceded iron-doped TiO2 to enhance sorbent/photo-catalytic properties. J Solid State Chem 229:1–9. https://doi.org/10.1016/j.jssc.2015.04.042

    Article  CAS  Google Scholar 

  11. Sharma A, Lee B-K (2017) Photocatalytic reduction of carbon dioxide to methanol using nickel-loaded TiO2 supported on activated carbon fiber. Catal Today 298:158–167. https://doi.org/10.1016/j.cattod.2017.05.003

    Article  CAS  Google Scholar 

  12. Sharma A, Lee B-K (2014) Cd(II) removal and recovery enhancement by using acrylamide–titanium nanocomposite as an adsorbent. Appl Surf Sci 313:624–632. https://doi.org/10.1016/j.apsusc.2014.06.034

    Article  CAS  Google Scholar 

  13. Sharma A, Verma N, Sharma A et al (2010) Iron doped phenolic resin based activated carbon micro and nanoparticles by milling: synthesis, characterization and application in arsenic removal. Chem Eng Sci 65:3591–3601. https://doi.org/10.1016/j.ces.2010.02.052

    Article  CAS  Google Scholar 

  14. Yang L, Sheng M, Li Y, Xue W, Li K, Cao G (2020) A hybrid process of Fe-based catalytic ozonation and biodegradation for the treatment of industrial wastewater reverse osmosis concentrate. Chemosphere 238:124639. https://doi.org/10.1016/j.chemosphere.2019.124639

    Article  CAS  Google Scholar 

  15. Chen A, Zeng G, Chen G et al (2012) Novel thiourea-modified magnetic ion-imprinted chitosan/TiO2 composite for simultaneous removal of cadmium and 2,4-dichlorophenol. Chem Eng J 191:85–94. https://doi.org/10.1016/j.cej.2012.02.071

    Article  CAS  Google Scholar 

  16. Zhou C, Jia D, Liu M et al (2017) Removal of glyphosate from aqueous solution using nanosized copper hydroxide modified resin: equilibrium isotherms and kinetics. J Chem Eng Data 62:3585–3592. https://doi.org/10.1021/acs.jced.7b00569

    Article  CAS  Google Scholar 

  17. Jiang X, Ouyang Z, Zhang Z et al (2018) Mechanism of glyphosate removal by biochar supported nano-zero-valent iron in aqueous solutions. Colloids Surf Physicochem Eng Asp 547:64–72. https://doi.org/10.1016/j.colsurfa.2018.03.041

    Article  CAS  Google Scholar 

  18. Chen F, Zhao E, Kim T, Wang J, Hableel G, Reardon PJT, Ananthakrishna SJ, Wang T, Arconada-Alvarez S, Knowles JC, Jokerst JV (2017) Organosilica nanoparticles with an intrinsic secondary amine: an efficient and reusable adsorbent for dyes. ACS Appl Mater Interfaces 9:15566–15576. https://doi.org/10.1021/acsami.7b04181

    Article  CAS  Google Scholar 

  19. Ueda Yamaguchi N, Bergamasco R, Hamoudi S (2016) Magnetic MnFe2O4–graphene hybrid composite for efficient removal of glyphosate from water. Chem Eng J 295:391–402. https://doi.org/10.1016/j.cej.2016.03.051

    Article  CAS  Google Scholar 

  20. Auffan M, Rose J, Proux O, Borschneck D, Masion A, Chaurand P, Hazemann JL, Chaneac C, Jolivet JP, Wiesner MR, Geen AV, Bottero JY (2008) Enhanced adsorption of arsenic onto Maghemites nanoparticles: as(III) as a probe of the surface structure and heterogeneity. Langmuir 24:3215–3222. https://doi.org/10.1021/la702998x

    Article  CAS  Google Scholar 

  21. Ghaedi M, Khafri HZ, Asfaram A, Goudarzi A (2016) Response surface methodology approach for optimization of adsorption of Janus green B from aqueous solution onto ZnO/Zn(OH)2-NP-AC: kinetic and isotherm study. Spectrochim Acta A Mol Biomol Spectrosc 152:233–240. https://doi.org/10.1016/j.saa.2015.06.128

    Article  CAS  Google Scholar 

  22. Marin P, Bergamasco R, Módenes AN et al (2019) Synthesis and characterization of graphene oxide functionalized with MnFe2O4 and supported on activated carbon for glyphosate adsorption in fixed bed column. Process Saf Environ Prot 123:59–71. https://doi.org/10.1016/j.psep.2018.12.027

    Article  CAS  Google Scholar 

  23. Yang Q, Wang J, Chen X et al (2018) The simultaneous detection and removal of organophosphorus pesticides by a novel Zr-MOF based smart adsorbent. J Mater Chem A 6:2184–2192. https://doi.org/10.1039/C7TA08399H

    Article  CAS  Google Scholar 

  24. Rovani S, Santos JJ, Corio P, Fungaro DA (2018) Highly pure silica nanoparticles with high adsorption capacity obtained from sugarcane waste ash. ACS Omega 3:2618–2627. https://doi.org/10.1021/acsomega.8b00092

    Article  CAS  Google Scholar 

  25. Vaibhav V, Vijayalakshmi U, Roopan SM (2015) Agricultural waste as a source for the production of silica nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 139:515–520. https://doi.org/10.1016/j.saa.2014.12.083

    Article  CAS  Google Scholar 

  26. Du H, Hamilton PD, Reilly MA et al (2009) A facile synthesis of highly water-soluble, core–shell organo-silica nanoparticles with controllable size via sol–gel process. J Colloid Interface Sci 340:202–208. https://doi.org/10.1016/j.jcis.2009.08.032

    Article  CAS  Google Scholar 

  27. Le VH, Thuc CNH, Thuc HH (2013) Synthesis of silica nanoparticles from Vietnamese rice husk by sol–gel method. Nanoscale Res Lett 8:1–10. https://doi.org/10.1186/1556-276X-8-58

    Article  CAS  Google Scholar 

  28. Corradi AB, Bondioli F, Ferrari AM et al (2006) Synthesis of silica nanoparticles in a continuous-flow microwave reactor. Powder Technol 167:45–48. https://doi.org/10.1016/j.powtec.2006.05.009

    Article  CAS  Google Scholar 

  29. Chang H, Park J-H, Jang HD (2008) Flame synthesis of silica nanoparticles by adopting two-fluid nozzle spray. Colloids Surf Physicochem Eng Asp 313–314:140–144. https://doi.org/10.1016/j.colsurfa.2007.04.083

    Article  CAS  Google Scholar 

  30. Wooldridge MS, Torek PV, Donovan MT et al (2002) An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner. Combust Flame 131:98–109. https://doi.org/10.1016/S0010-2180(02)00403-0

    Article  CAS  Google Scholar 

  31. Athinarayanan J, Periasamy VS, Alhazmi M et al (2015) Synthesis of biogenic silica nanoparticles from rice husks for biomedical applications. Ceram Int 41:275–281. https://doi.org/10.1016/j.ceramint.2014.08.069

    Article  CAS  Google Scholar 

  32. Mizutani T, Arai K, Miyamoto M, Kimura Y (2006) Application of silica-containing nano-composite emulsion to wall paint: a new environmentally safe paint of high performance. Prog Org Coat 55:276–283. https://doi.org/10.1016/j.porgcoat.2005.12.001

    Article  CAS  Google Scholar 

  33. Nayab S, Farrukh A, Oluz Z, Tuncel E, Tariq SR, ur Rahman H, Kirchhoff K, Duran H, Yameen B (2014) Design and fabrication of branched polyamine functionalized Mesoporous silica: an efficient absorbent for water remediation. ACS Appl Mater Interfaces 6:4408–4417. https://doi.org/10.1021/am500123k

    Article  CAS  Google Scholar 

  34. Lu H-T (2013) Synthesis and characterization of amino-functionalized silica nanoparticles. Colloid J 75:311–318. https://doi.org/10.1134/S1061933X13030125

    Article  CAS  Google Scholar 

  35. Niknam Shahrak M, Esfandyari M, Karimi M (2019) Efficient prediction of water vapor adsorption capacity in porous metal–organic framework materials: ANN and ANFIS modeling. J Iran Chem Soc 16:11–20. https://doi.org/10.1007/s13738-018-1476-y

    Article  CAS  Google Scholar 

  36. Özdemir U, Özbay B, Veli S, Zor S (2011) Modeling adsorption of sodium dodecyl benzene sulfonate (SDBS) onto polyaniline (PANI) by using multi linear regression and artificial neural networks. Chem Eng J 178:183–190. https://doi.org/10.1016/j.cej.2011.10.046

    Article  CAS  Google Scholar 

  37. Ghaedi M, Ghaedi AM, Abdi F, Roosta M, Vafaei A, Asghari A (2013) Principal component analysis- adaptive neuro-fuzzy inference system modeling and genetic algorithm optimization of adsorption of methylene blue by activated carbon derived from Pistacia khinjuk. Ecotoxicol Environ Saf 96:110–117. https://doi.org/10.1016/j.ecoenv.2013.05.015

    Article  CAS  Google Scholar 

  38. Sadhukhan B, Mondal NK, Chattoraj S (2016) Optimisation using central composite design (CCD) and the desirability function for sorption of methylene blue from aqueous solution onto Lemna major. Karbala Int J Mod Sci 2:145–155

    Article  Google Scholar 

  39. Sen K, Mondal NK, Chattoraj S, Datta JK (2016) Statistical optimization study of adsorption parameters for the removal of glyphosate on forest soil using the response surface methodology. Environ Earth Sci 76:22–15. https://doi.org/10.1007/s12665-016-6333-7

    Article  CAS  Google Scholar 

  40. Sen K, Datta JK, Mondal NK (2019) Glyphosate adsorption by Eucalyptus camaldulensis bark-mediated char and optimization through response surface modeling. Appl Water Sci 9:162–112. https://doi.org/10.1007/s13201-019-1036-3

    Article  CAS  Google Scholar 

  41. Ghosh SB, Mondal NK (2019) Application of Taguchi method for optimizing the process parameters for the removal of fluoride by Al-impregnated Eucalyptus bark ash. Environ Nanotechnol Monit Manag 11:100206. https://doi.org/10.1016/j.enmm.2018.100206

    Article  Google Scholar 

  42. Ghaedi M, Ghaedi AM, Negintaji E et al (2014) Random forest model for removal of bromophenol blue using activated carbon obtained from Astragalus bisulcatus tree. J Ind Eng Chem 20:1793–1803. https://doi.org/10.1016/j.jiec.2013.08.033

    Article  CAS  Google Scholar 

  43. Ghaedi M, Ghaedi AM, Hossainpour M et al (2014) Least square-support vector (LS-SVM) method for modeling of methylene blue dye adsorption using copper oxide loaded on activated carbon: kinetic and isotherm study. J Ind Eng Chem 20:1641–1649. https://doi.org/10.1016/j.jiec.2013.08.011

    Article  CAS  Google Scholar 

  44. Bhattacharyya S, Bhattacharjee S, Mondal NK (2015) A quantum backpropagation multilayer perceptron (QBMLP) for predicting iron adsorption capacity of calcareous soil from aqueous solution. Appl Soft Comput 27:299–312. https://doi.org/10.1016/j.asoc.2014.11.019

    Article  Google Scholar 

  45. Qu ZG, Wang H, Zhang W et al (2014) Prediction and experimental verification of CO2 adsorption on Ni/DOBDC using a genetic algorithm–Back-propagation neural network model. Ind Eng Chem Res 53:12044–12053. https://doi.org/10.1021/ie404396p

    Article  CAS  Google Scholar 

  46. Bhaumik R, Mondal NK (2016) Optimizing adsorption of fluoride from water by modified banana peel dust using response surface modelling approach. Appl Water Sci 6:115–135

    Article  CAS  Google Scholar 

  47. Chairez I, García-Peña I, Cabrera A (2009) Dynamic numerical reconstruction of a fungal biofiltration system using differential neural network. J Process Control 19:1103–1110. https://doi.org/10.1016/j.jprocont.2008.12.009

    Article  CAS  Google Scholar 

  48. Rene ER, Veiga MC, Kennes C (2009) Experimental and neural model analysis of styrene removal from polluted air in a biofilter. J Chem Technol Biotechnol 84:941–948. https://doi.org/10.1002/jctb.2130

    Article  CAS  Google Scholar 

  49. Maghsoudi M, Ghaedi M, Zinali A et al (2015) Artificial neural network (ANN) method for modeling of sunset yellow dye adsorption using zinc oxide nanorods loaded on activated carbon: kinetic and isotherm study. Spectrochim Acta A Mol Biomol Spectrosc 134:1–9. https://doi.org/10.1016/j.saa.2014.06.106

    Article  CAS  Google Scholar 

  50. Kordatos K, Gavela S, Ntziouni A et al (2008) Synthesis of highly siliceous ZSM-5 zeolite using silica from rice husk ash. Microporous Mesoporous Mater 115:189–196. https://doi.org/10.1016/j.micromeso.2007.12.032

    Article  CAS  Google Scholar 

  51. Balakrishnan V, Ab Wab HA, Abdul Razak K, Shamsuddin S (2013) In vitro evaluation of cytotoxicity of colloidal amorphous silica nanoparticles designed for drug delivery on human cell lines. In: J. Nanomater. https://www.hindawi.com/journals/jnm/2013/729306/. Accessed 23 Jan 2020

  52. Bahrami A, Simon U, Soltani N et al (2017) Eco-fabrication of hierarchical porous silica monoliths by ice-templating of rice husk ash. Green Chem 19:188–195. https://doi.org/10.1039/C6GC02153K

    Article  CAS  Google Scholar 

  53. Yuvakkumar R, Elango V, Rajendran V, Kannan N (2014) High-purity nano silica powder from rice husk using a simple chemical method. J Exp Nanosci 9:272–281. https://doi.org/10.1080/17458080.2012.656709

    Article  CAS  Google Scholar 

  54. Mayakaduwa SS, Kumarathilaka P, Herath I, Ahmad M, al-Wabel M, Ok YS, Usman A, Abduljabbar A, Vithanage M (2016) Equilibrium and kinetic mechanisms of woody biochar on aqueous glyphosate removal. Chemosphere 144:2516–2521. https://doi.org/10.1016/j.chemosphere.2015.07.080

    Article  CAS  Google Scholar 

  55. Nourouzi MM, Chuah TG, Choong TSY (2010) Adsorption of glyphosate onto activated carbon derived from waste newspaper. Desalination Water Treat 24:321–326. https://doi.org/10.5004/dwt.2010.1461

    Article  CAS  Google Scholar 

  56. Ghaedi M, Ansari A, Bahari F et al (2015) A hybrid artificial neural network and particle swarm optimization for prediction of removal of hazardous dye brilliant green from aqueous solution using zinc sulfide nanoparticle loaded on activated carbon. Spectrochim Acta A Mol Biomol Spectrosc 137:1004–1015. https://doi.org/10.1016/j.saa.2014.08.011

    Article  CAS  Google Scholar 

  57. Lagergren S (1898) About the theory of so-called adsorption of soluble substances. K Suensk Vetenskapsakademiens Handl 24:1–39

    Google Scholar 

  58. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  59. Ho YS (2004) Comment on “Cadmium removal from aqueous solutions by chitin: kinetic and equilibrium studies”. Water Res 38:2962–2964, author reply 2965. https://doi.org/10.1016/S0043-1354(03)00427-5

    Article  CAS  Google Scholar 

  60. Boukhalfa N, Boutahala M, Djebri N, Idris A (2019) Kinetics, thermodynamics, equilibrium isotherms, and reusability studies of cationic dye adsorption by magnetic alginate/oxidized multiwalled carbon nanotubes composites. Int J Biol Macromol 123:539–548. https://doi.org/10.1016/j.ijbiomac.2018.11.102

    Article  CAS  Google Scholar 

  61. Ertugay N, Bayhan YK (2010) The removal of copper (II) ion by using mushroom biomass (Agaricus bisporus) and kinetic modelling. Desalination 255:137–142. https://doi.org/10.1016/j.desal.2010.01.002

    Article  CAS  Google Scholar 

  62. Desta MB (2013) Batch sorption experiments: Langmuir and Freundlich isotherm studies for the adsorption of textile metal ions onto Teff straw (Eragrostis tef) agricultural waste. In: J. Thermodyn. https://www.hindawi.com/journals/jther/2013/375830/. Accessed 1 Jan 2020

  63. Liu B, Dong L, Yu Q, Li X, Wu F, Tan Z, Luo S (2016) Thermodynamic study on the protonation reactions of glyphosate in aqueous solution: Potentiometry, Calorimetry and NMR spectroscopy. J Phys Chem B 120:2132–2137. https://doi.org/10.1021/acs.jpcb.5b11550

    Article  CAS  Google Scholar 

  64. Scheufele FB, Módenes AN, Borba CE et al (2016) Monolayer–multilayer adsorption phenomenological model: kinetics, equilibrium and thermodynamics. Chem Eng J 284:1328–1341. https://doi.org/10.1016/j.cej.2015.09.085

    Article  CAS  Google Scholar 

  65. Castellini E, Lusvardi G, Malavasi G, Menabue L (2005) Thermodynamic aspects of the adsorption of hexametaphosphate on kaolinite. J Colloid Interface Sci 292:322–329. https://doi.org/10.1016/j.jcis.2005.05.065

    Article  CAS  Google Scholar 

  66. Li F, Wang Y, Yang Q, Evans DG, Forano C, Duan X (2005) Study on adsorption of glyphosate (N-phosphonomethyl glycine) pesticide on MgAl-layered double hydroxides in aqueous solution. J Hazard Mater 125:89–95. https://doi.org/10.1016/j.jhazmat.2005.04.037

    Article  CAS  Google Scholar 

  67. Habuka H, Ono N, Sakurai A, Naito T (2013) Molecular adsorption and desorption behavior on silicon surface in a complex ambient atmosphere containing vapors of Diethylphthalate, acetic acid and water. Am J Anal Chem 4:80–85. https://doi.org/10.4236/ajac.2013.47A011

    Article  CAS  Google Scholar 

  68. Herath I, Kumarathilaka P, Al-Wabel MI et al (2016) Mechanistic modeling of glyphosate interaction with rice husk derived engineered biochar. Microporous Mesoporous Mater 225:280–288. https://doi.org/10.1016/j.micromeso.2016.01.017

    Article  CAS  Google Scholar 

  69. Chen F, Zhou C, Li G, Peng F (2016) Thermodynamics and kinetics of glyphosate adsorption on resin D301. Arab J Chem 9:S1665–S1669. https://doi.org/10.1016/j.arabjc.2012.04.014

    Article  CAS  Google Scholar 

  70. Carneiro RTA, Taketa TB, Gomes Neto RJ et al (2015) Removal of glyphosate herbicide from water using biopolymer membranes. J Environ Manag 151:353–360. https://doi.org/10.1016/j.jenvman.2015.01.005

    Article  CAS  Google Scholar 

  71. Hu YS, Zhao YQ, Sorohan B (2011) Removal of glyphosate from aqueous environment by adsorption using water industrial residual. Desalination 271:150–156. https://doi.org/10.1016/j.desal.2010.12.014

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial and in-kind support was received from Swami Vivekananda Scholarship (Merit-Cum-Means) and the University of Burdwan, West Bengal, India. BIT-Mesra is gratefully acknowledged for SEM-EDS. Instrumental support was received from DST-FIST, DST-BOOST of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naba Kumar Mondal.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest with regard to this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 478 kb)

ESM 2

(DOCX 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, K., Mondal, N.K. Facile Fabrication of Amino-Functionalized Silicon Flakes for Removal of Organophosphorus Herbicide: In Silico Optimization. Water Conserv Sci Eng 5, 67–80 (2020). https://doi.org/10.1007/s41101-020-00085-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41101-020-00085-7

Keywords

Navigation