Skip to main content
Log in

Statistical Estimation of Exponential Power Distribution on Different Progressive Type-II Censoring Schemes

  • Research Article
  • Published:
Journal of the Indian Society for Probability and Statistics Aims and scope Submit manuscript

Abstract

In recent life-testing experiments, Progressive Type-II (PT2) censoring has been used by several researchers in various problems. However, one drawback of PT2 is that the length of the experiment might be fairly long. Progressive Type-II hybrid (PT2H) and later adaptive progressive Type-II (APT2) censorings were used to overcome this disadvantage. This study investigates the advantages and disadvantages of these censoring techniques using the Exponential Power (EP) distribution. The EP distribution is known for its ability to model increasing and bathtub-shaped failure rates, and it has gained acceptance in several domains, especially in the areas of reliability-related decision-making and cost analysis. This makes the EP model a useful alternative to the most widely used Weibull distribution in some instances. To assess the efficiency of both Maximum Likelihood Estimators and Bayesian estimators generated through PT2, PT2H, and APT2, we have conducted a comprehensive simulation study. Additionally, we compare the performance of PT2, PT2H, and APT2 when applied to the EP distribution with popular time models using real data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akdam N, Kinaci I, Saracoglu B (2017) Statistical inference of stress-strength reliability for the exponential power (ep) distribution based on progressive type-ii censored samples. Hacettepe J Math Stat 46(2):239–253

    Article  MathSciNet  Google Scholar 

  • Almetwally E, Almongy H, Rastogi M, Ibrahim M (2020) Maximum product spacing estimation of weibull distribution under adaptive type-ii progressive censoring schemes. Ann Data Sci 7(2):257–279

    Article  Google Scholar 

  • Ateya SF, Mohammed HS (2017) Statistical inferences based on an adaptive progressive type-ii censoring from exponentiated exponential distribution. J Egypt Math Soc 25(4):393–399

    Article  MathSciNet  Google Scholar 

  • Balakrishnan N (2007) Progressive censoring methodology: an appraisal. TEST 16(2):211–259

    Article  MathSciNet  Google Scholar 

  • Balakrishnan N, Aggarwala R (2000) Progressive censoring: theory, methods, and applications. BirkhÄauser, Boston

    Book  Google Scholar 

  • Balakrishnan N, Burkschat M, Cramer E, Hofmann G (2008) Fisher information based progressive censoring plans. Comput Stat Data Anal 53(2):366–380

    Article  MathSciNet  Google Scholar 

  • Balakrishnan N, Cramer E (2014) The art of progressive censoring. In: Statistics for industry and technology

  • Balakrishnan N, Kundu D (2013) Hybrid censoring: models, inferential results and applications. Comput Stat Data Anal 57(1):166–209

    Article  MathSciNet  Google Scholar 

  • Burkschat M (2008) On optimality of extremal schemes in progressive type ii censoring. J Stat Plan Inference 138(6):1647–1659

    Article  MathSciNet  Google Scholar 

  • Burkschat M, Cramer E, Kamps U (2006) On optimal schemes in progressive censoring. Stat Probab Lett 76(10):1032–1036

    Article  MathSciNet  Google Scholar 

  • Chen S-M, Bhattacharyya GK (1987) Exact confidence bounds for an exponential parameter under hybrid censoring. Commun Stat Theory Methods 16(8):2429–2442

    Article  MathSciNet  Google Scholar 

  • Chen Z (2000) A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function. Stat Probab Lett 49(2):155–161

    Article  MathSciNet  Google Scholar 

  • Childs A, Chandrasekar B, Balakrishnan N, Kundu D (2003) Exact likelihood inference based on type-i and type-ii hybrid censored samples from the exponential distribution. Ann Inst Stat Math 55(2):319–330

    Article  MathSciNet  Google Scholar 

  • Dasgupta R (2011) On the distribution of burr with applications. Sankhya B 73:1–19

    Article  MathSciNet  Google Scholar 

  • Efron B (1982) The jackknife, the bootstrap and other resampling plans. In: SIAM

  • Epstein B (1954) Truncated life tests in the exponential case. Ann Math Stat 25:555–564

    Article  MathSciNet  Google Scholar 

  • Gajjar A, Khatri C (1969) Progressively censored samples from log-normal and logistic distributions. Technometrics 11(4):793–803

    Article  Google Scholar 

  • Gupta RD, Kundu D (2001) Exponentiated exponential family: an alternative to gamma and weibull distributions. Biom J J Math Methods Biosci 43(1):117–130

    MathSciNet  Google Scholar 

  • Hastings WK (1970) Monte carlo sampling methods using markov chains and their applications. Biometrika. https://doi.org/10.1093/biomet/57.1.97

    Article  MathSciNet  Google Scholar 

  • Hemmati F, Khorram E (2017) On adaptive progressively type-ii censored competing risks data. Commun Stat Simul Comput 46(6):4671–4693

    Article  MathSciNet  Google Scholar 

  • Herd GR (1956) Estimation of the parameters of a population from a multi-censored sample. Iowa State University

  • Jeong H-S, Park J-I, Yum B-J (1996) Development of r, t hybrid sampling plans for exponential lifetime distributions. J Appl Stat 23(6):601–608

    Article  Google Scholar 

  • Kundu D (2007) On hybrid censored weibull distribution. J Stat Plan Inference 137(7):2127–2142

    Article  MathSciNet  Google Scholar 

  • Kundu D, Joarder A (2006) Analysis of type-ii progressively hybrid censored data. Comput Stat Data Anal 50(10):2509–2528

    Article  MathSciNet  Google Scholar 

  • Lawless JF (2011) Statistical models and methods for lifetime data. Wiley

  • Leemis LM (1986) Lifetime distribution identities. IEEE Trans Reliab 35(2):170–174

    Article  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092

    Article  Google Scholar 

  • Mohan R, Chacko M (2021) Estimation of parameters of kumaraswamy-exponential distribution based on adaptive type-ii progressive censored schemes. J Stat Comput Simul 91(1):81–107

    Article  MathSciNet  Google Scholar 

  • Ng HKT, Kundu D, Chan PS (2009) Statistical analysis of exponential lifetimes under an adaptive type-ii progressive censoring scheme. Naval Res Logist (NRL) 56(8):687–698

    Article  MathSciNet  Google Scholar 

  • Rajarshi S, Rajarshi M (1988) Bathtub distributions: a review. Commun Stat Theory Methods 17(8):2597–2621

    Article  MathSciNet  Google Scholar 

  • Smith RM, Bain LJ (1975) An exponential power life-testing distribution. Commun Stat Theory Methods 4(5):469–481

    Google Scholar 

  • Wu S-J (2008) Estimation of the two-parameter bathtub-shaped lifetime distribution with progressive censoring. J Appl Stat 35(10):1139–1150

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors are equally contributed to this work. All authors have read and agreed to the published version of this manuscript.

Corresponding author

Correspondence to K. K. Anakha.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A.

Appendix A.

PT2

$$\begin{aligned} \frac{\partial ^{2}\log L_{1}}{\partial \alpha ^{2}}=&-\frac{m}{\alpha ^{2}}+\sum _{i=1}^{m}\left[ 1-(1+(\lambda x_{i})^{\alpha })e^{(\lambda x_{i})^{\alpha }}\right] (\lambda x_{i})^{\alpha }\log ^{2}(\lambda x_{i})-\\&\sum _{i=1}^{m}R_{i}\left[ 1+(\lambda x_{i})^{\alpha }\right] (\lambda x_{i})^{\alpha }\log ^{2}(\lambda x_{i})e^{(\lambda x_{i})^{\alpha }}\\ \frac{\partial ^{2}\log L_{1}}{\partial \alpha \partial \lambda }=&\frac{m}{\lambda }+\sum _{i=1}^{m}\bigl \{\lambda ^{\alpha -1}x_{i}^{\alpha }\left[ 1-(1+R_{i})e^{(\lambda x_{i})^{\alpha }}\right] \left( \alpha \log (\lambda x_{i})+1\right) \\&-\alpha \lambda ^{2\alpha -1}x_{i}^{2\alpha }(1+R_{i})e^{(\lambda x_{i})^{\alpha }}\log (\lambda x_{i})\bigr \}\\ =&\frac{\partial ^{2}\log L_{1}}{\partial \lambda \partial \alpha }\\ \frac{\partial ^{2}\log L_{1}}{\partial \lambda ^{2}}=&-\frac{m\alpha }{\lambda ^{2}}+\sum _{i=1}^{m}\alpha x_{i}^{\alpha }\\&\left[ (\alpha -1)\lambda ^{\alpha -2}\left( 1-(1+R_{i})e^{(\lambda x_{i})^{\alpha }}\right) -\alpha \lambda ^{2\alpha -2}x_{i}^{\alpha }(1+R_{i})e^{(\lambda x_{i})^{\alpha }}\right] \end{aligned}$$

PT2H

$$\begin{aligned} \frac{\partial ^2\log L_{2}}{\partial \alpha ^2}=&-\frac{D}{\alpha ^2}+\sum _{i=1}^{D}(\lambda x_{i})^{\alpha }(\log (\lambda x_{i}))^2\left( (1-e^{(\lambda x_{i})^{\alpha }})-(\lambda x_{i})^\alpha e^{(\lambda x_{i})^{\alpha }}\right) \\&-\sum _{i=1}^{D}R_{i}(\log (\lambda x_{i}))^{2}(\lambda x_{i})^{\alpha }e^{(\lambda x_{i})^{\alpha }}((\lambda x_{i}^\alpha +1))\\&-(n-D-\sum _{i=1}^{D}R_{i})(\lambda T)^\alpha (\log (\lambda T))^2 e^{(\lambda T)^\alpha }((\lambda T)^\alpha +1)\\ \frac{\partial ^2\log L_{2}}{\partial \alpha \partial \lambda }=&\frac{D}{\lambda }-\sum _{i=1}^{D}\lambda ^{\alpha -1}x_{i}^{\alpha }\left( \alpha (\lambda x_{i})^{\alpha }\log (\lambda x_{i})e^{(\lambda x_{i})^{\alpha }}-(1-e^{(\lambda x_{i})^{\alpha }})(\log (\lambda x_{i})^{\alpha }+1)\right) \\&-\sum _{i=1}^{D}R_{i}\lambda ^{\alpha -1}x_{i}^{\alpha }e^{(\lambda x_{i}^{\alpha })}\left( \alpha (\lambda x_{i})^\alpha \log (\lambda x_{i})+\log (\lambda x_{i})^{\alpha }+1\right) \\&-(n-D-\sum _{i=1}^{D}R_{i})\lambda ^{\alpha -1}T^{\alpha }e^{(\lambda T)^{\alpha }}\left( \alpha (\lambda T)^\alpha \log (\lambda T)+\log (\lambda T)^{\alpha }+1\right) \\&=\frac{\partial ^2\log L_{2}}{\partial \lambda \partial \alpha }\\ \frac{\partial ^2\log L_{2}}{\partial \lambda ^2}=&-\frac{D\alpha }{\lambda ^2}+\alpha \sum _{i=1}^{D}\lambda ^{\alpha -2}x_{i}^{\alpha }\left( (\alpha -1)(1-e^{(\lambda x_{i})^{\alpha }})-\alpha (\lambda x_{i})^{\alpha }e^{(\lambda x_{i})^{\alpha }}\right) \\&-\alpha \sum _{i=1}^{D}R_{i}\lambda ^{\alpha -2}x_{i}^{\alpha }e^{(\lambda x_{i})^{\alpha }}(\alpha (\lambda x_{i})^{\alpha }+\alpha -1)\\&-(n-D-\sum _{i=1}^{D}R_{i})\alpha \lambda ^{\alpha -1} T^{\alpha }e^{(\lambda T)^{\alpha }}(\alpha (\lambda T)^{\alpha }+\alpha -1) \end{aligned}$$

APT2

$$\begin{aligned} \frac{\partial ^2\log L_{3}}{\partial \alpha ^2}=&-\frac{m}{\alpha ^2}+\sum _{i=1}^{m}(\lambda x_{i})^\alpha (\log (\lambda x_{i}))^2\left( 1-(1+(\lambda x_{i})^\alpha )e^{(\lambda x_{i})^{\alpha }}\right) \\&-\sum _{i=1}^{j}R_{i}(\lambda x_{i})^{\alpha }(\log (\lambda x_{i}))^2e^{(\lambda x_{i})^\alpha }(1+(\lambda x_{i})^{\alpha })\\&-(n-m-\sum _{i=1}^{j}R_{i})(\lambda x_{m})^{\alpha }(\log (\lambda x_{m}))^2 e^{(\lambda x_{m})^\alpha }(1+(\lambda x_{m})^\alpha )\\ \frac{\partial ^2\log L_{3}}{\partial \alpha \partial \lambda }=&\frac{m}{\lambda }-\sum _{i=1}^{m}x_{i}^{\alpha }\lambda ^{\alpha -1}\left( \alpha (\lambda x_{i})^\alpha \log (\lambda x_{i})e^{(\lambda x_{i})^{\alpha }}-(1-e^{(\lambda x_{i})^{\alpha }})\left( \log (\lambda x_{i})^{\alpha }+1\right) \right) \\&-\sum _{i=1}^{j}R_{i}x_{i}^{\alpha }\lambda ^{\alpha -1}e^{(\lambda x_{i})^{\alpha }}\left( \alpha (\lambda x_{i})^{\alpha }\log (\lambda x_{i})+\log (\lambda x_{i})^{\alpha }+1\right) \\&-\left( n-m-\sum _{i=1}^{j}R_{i}\right) x_{m}^{\alpha }\lambda ^{\alpha -1}e^{(\lambda x_{m})^{\alpha }}\left( \alpha (\lambda x_{m})^{\alpha }\log (\lambda x_{m})+\log (\lambda x_{m})^{\alpha }+1\right) \\&=\frac{\partial ^2\log L_{3}}{\partial \lambda \partial \alpha }\\ \frac{\partial ^2\log L_{3}}{\partial \lambda ^{2}}=&-\frac{m\alpha }{\lambda ^{2}}+\alpha \sum _{i=1}^{m}x_{i}^{\alpha }\lambda ^{\alpha -2}\left( (\alpha -1)(1-e^{(\lambda x_{i})^{\alpha }})-\alpha (\lambda x_{i})^{\alpha }e^{(\lambda x_{i})^{\alpha }}\right) \\&-\alpha \sum _{i=1}^{j}R_{i}x_{i}^{\alpha }\lambda ^{\alpha -2}e^{(\lambda x_{i})^{\alpha }}\left( \alpha (\lambda x_{i})^{\alpha }+\alpha -1\right) \\&-\left( n-m-\sum _{i=1}^{j}R_{i}\right) \alpha x_{m}^{\alpha }\lambda ^{\alpha -2}e^{(\lambda x_{m})^\alpha }\left( \alpha (\lambda x_{m})^\alpha +\alpha -1\right) \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anakha, K.K., Chacko, V.M. Statistical Estimation of Exponential Power Distribution on Different Progressive Type-II Censoring Schemes. J Indian Soc Probab Stat (2023). https://doi.org/10.1007/s41096-023-00172-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41096-023-00172-7

Keywords

Navigation