Skip to main content
Log in

Bayesian survival analysis of logistic exponential distribution for adaptive progressive Type-II censored data

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

To reduce total test time and increase the efficiency of statistical analysis of a life-testing experiment adaptive progressive Type-II censoring scheme has been proposed. This paper addresses the statistical inference of the unknown parameters, reliability, and hazard rate functions of logistic exponential distribution under adaptive progressive Type-II censored samples. Maximum likelihood estimates (MLEs) and maximum product spacing estimates (MPSEs) for the model parameters, reliability, and hazard rate functions can not be obtained explicitly, hence these are derived numerically using the Newton–Raphson method. Bayes estimates for the unknown parameters and reliability and hazard rate functions are computed under squared error loss function (SELF) and linear exponential loss function (LLF). It has been observed that the Bayes estimates are not in explicit forms, hence an approximation method such as Markov Chain Monte Carlo (MCMC) method is employed. Further, asymptotic confidence intervals (ACIs) and highest posterior density (HPD) credible intervals for the unknown parameters, reliability, and hazard rate functions are constructed. Besides, point and interval Bayesian predictions have been derived for future samples. A Monte Carlo simulation study has been carried out to compare the performance of the proposed estimates. Furthermore, three different optimality criteria have been considered to obtain the optimal censoring plan. Two real-life data sets, one from electronic industry and other one from COVID-19 data set containing the daily death rate from France are re-analyzed to demonstrate the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

AB:

Average bias

ACI:

Asymptotic confidence interval

AL:

Average length

APC-II:

Adaptive progressive Type-II censoring

ALT:

Accelerated life testing

BCI:

Bayesian credible interval

BPI:

Bayesian predictive interval

CDF:

Cumulative distribution function

CP:

Coverage probability

HPD:

Highest posterior density

K–S:

Kolmogorov–Smirnov

LE:

Logistic exponential

LF:

Likelihood function

LLF:

Linear exponential loss function

MCMC:

Markov chain Monte Carlo

MLE:

Maximum likelihood estimation

MPS:

Maximum product spacing

MPSE:

Maximum product spacing estimation

MH:

Metropolis–Hastings

MSE:

Mean squared error

N–R:

Newton–Raphson

PDF:

Probability density function

P–P:

Probability–probability

PSF:

Product spacing function

Q–Q:

Quantile–quantile

SELF:

Squared error loss function

VCM:

Variance–covariance matrix

References

  • Ahmed EA (2014) Bayesian estimation based on progressive Type-II censoring from two-parameter bathtub-shaped lifetime model: an Markov chain Monte Carlo approach. J Appl Stat 41(4):752–768

    Article  MathSciNet  MATH  Google Scholar 

  • Ali S, Dey S, Tahir MH, Mansoor M (2020) Two-parameter logistic-exponential distribution: some new properties and estimation methods. Am J Math Manag Sci 1–29

  • Almarashi AM, Algarni A, Okasha H, Nassar M (2022) On reliability estimation of Nadarajah–Haghighi distribution under adaptive type-I progressive hybrid censoring scheme. Qual Reliab Eng Int 38(2):817–833

    Article  Google Scholar 

  • Almetwally EM, Almongy HM, ElSherpieny E (2019) Adaptive type-II progressive censoring schemes based on maximum product spacing with application of generalized Rayleigh distribution. J Data Sci 17(4):802–831

    Article  Google Scholar 

  • Alrumayh A, Weera W, Khogeer HA, Almetwally EM (2023) Optimal analysis of adaptive type II progressive censored for new unit-lindley model. J King Saud Univ Sci 35(2):102462

    Article  Google Scholar 

  • Ateya SF, Amein M, Mohammed HS (2022) Prediction under an adaptive progressive type-ii censoring scheme for Burr type-XII distribution. Commun Stat Theory Methods 51(12):4029–4041

    Article  MathSciNet  MATH  Google Scholar 

  • Balakrishnan N, Childs A, Chandrasekar B (2002) An efficient computational method for moments of order statistics under progressive censoring. Stat Probab Lett 60(4):359–365

    Article  MathSciNet  MATH  Google Scholar 

  • Balakrishnan N, Cramer E (2014) The art of progressive censoring. Stat Ind Technol

  • Basak I, Basak P, Balakrishnan N (2006) On some predictors of times to failure of censored items in progressively censored samples. Comput Stat Data Anal 50(5):1313–1337

    Article  MathSciNet  MATH  Google Scholar 

  • Basu S, Singh SK, Singh U (2018) Bayesian inference using product of spacings function for progressive hybrid type-I censoring scheme. Statistics 52(2):345–363

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng R, Amin N (1983) Estimating parameters in continuous univariate distributions with a shifted origin. J R Stat Soc: Ser B (Methodol) 45(3):394–403

    MathSciNet  MATH  Google Scholar 

  • Dahmen K, Burkschat M, Cramer E (2012) A-and D-optimal progressive type-II censoring designs based on Fisher information. J Stat Comput Simul 82(6):879–905

    Article  MathSciNet  MATH  Google Scholar 

  • Dey S, Elshahhat A (2022) Analysis of Wilson–Hilferty distribution under progressive type-II censoring. Qual Reliab Eng Int

  • Dey S, Elshahhat A, Nassar M (2022) Analysis of progressive type-II censored gamma distribution. Comput Stat 1–28

  • Dey T, Dey S, Kundu D (2016) On progressively type-II censored two-parameter Rayleigh distribution. Commun Stat Simul Comput 45(2):438–455

    Article  MathSciNet  MATH  Google Scholar 

  • Dombi J, Jonas T, Toth ZE, Arva G (2019) The omega probability distribution and its applications in reliability theory. Qual Reliab Eng Int 35(2):600–626

    Article  Google Scholar 

  • Dutta S, Kayal S (2022) Estimation and prediction for Burr type III distribution based on unified progressive hybrid censoring scheme. J Appl Stat 1–33

  • Dutta S, Kayal S (2022) Estimation of parameters of the logistic exponential distribution under progressive type-I hybrid censored sample. Qual Technol Quant Manag 19(2):234–258

    Article  Google Scholar 

  • El-Sherpieny E-SA, Almetwally EM, Muhammed HZ (2020) Progressive type-II hybrid censored schemes based on maximum product spacing with application to Power Lomax distribution. Physica A 553:1242–51

    Article  MathSciNet  MATH  Google Scholar 

  • Elshahhat A, Nassar M (2021) Bayesian survival analysis for adaptive type-II progressive hybrid censored Hjorth data. Comput Stat 36(3):1965–1990

    Article  MathSciNet  MATH  Google Scholar 

  • Friendly M, Fox J, Chalmers P, Monette G, Sanchez G (2021) Package ‘matlib’. https://cran.microsoft.com/web/packages/matlib/matlib.pdf

  • Greene WH (2003) Econometric analysis. Pearson Education India, Noida

    Google Scholar 

  • Hasselman B, Hasselman MB (2018) Package ‘nleqslv’. R package version 3(2)

  • Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1):97–109

    Article  MathSciNet  MATH  Google Scholar 

  • Hjorth U (1980) A reliability distribution with increasing, decreasing, constant and bathtub-shaped failure rates. Technometrics 22(1):99–107

    Article  MathSciNet  MATH  Google Scholar 

  • Jha MK, Dey S, Alotaibi RM, Tripathi YM (2020) Reliability estimation of a multicomponent stress-strength model for unit Gompertz distribution under progressive type II censoring. Qual Reliab Eng Int 36(3):965–987

    Article  Google Scholar 

  • Kayal T, Tripathi YM, Singh DP, Rastogi MK (2017) Estimation and prediction for Chen distribution with bathtub shape under progressive censoring. J Stat Comput Simul 87(2):348–366

    Article  MathSciNet  MATH  Google Scholar 

  • Kohansal A, Bakouch HS (2021) Estimation procedures for Kumaraswamy distribution parameters under adaptive type-II hybrid progressive censoring. Commun Stat Simul Comput 50(12):4059–4078

    Article  MathSciNet  MATH  Google Scholar 

  • Kundu D (2008) Bayesian inference and life testing plan for the Weibull distribution in presence of progressive censoring. Technometrics 50(2):144–154

    Article  MathSciNet  Google Scholar 

  • Kundu D, Pradhan B (2009) Estimating the parameters of the generalized exponential distribution in presence of hybrid censoring. Commun Stat Theory Methods 38(12):2030–2041

    Article  MathSciNet  MATH  Google Scholar 

  • Kuş C (2007) A new lifetime distribution. Comput Stat Data Anal 51(9):4497–4509

    Article  MathSciNet  MATH  Google Scholar 

  • Lan Y, Leemis LM (2008) The logistic-exponential survival distribution. Nav Res Logist 55(3):252–264

    Article  MathSciNet  MATH  Google Scholar 

  • Mahto A, Dey S, Mani Tripathi Y (2020) Statistical inference on progressive-stress accelerated life testing for the logistic exponential distribution under progressive type-II censoring. Qual Reliab Eng Int 36(1):112–124

    Article  Google Scholar 

  • Maiti K, Kayal S (2021) Estimation of parameters and reliability characteristics for a generalized Rayleigh distribution under progressive type-II censored sample. Commun Stat Simul Comput 50(11):3669–3698

    Article  MathSciNet  MATH  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092

    Article  MATH  Google Scholar 

  • Mohie El-Din M, Abu-Youssef S, Ali NS, Abd El-Raheem A (2017) Classical and Bayesian inference on progressive-stress accelerated life testing for the extension of the exponential distribution under progressive type-II censoring. Qual Reliab Eng Int 33(8):2483–2496

    Article  MATH  Google Scholar 

  • Mohie El-Din M, Shafay A, Nagy M (2018) Statistical inference under adaptive progressive censoring scheme. Comput Stat 33(1):31–74

    Article  MathSciNet  MATH  Google Scholar 

  • Nassar M, Abo-Kasem O (2017) Estimation of the inverse Weibull parameters under adaptive type-II progressive hybrid censoring scheme. J Comput Appl Math 315:228–239

    Article  MathSciNet  MATH  Google Scholar 

  • Nassar M, Abo-Kasem O, Zhang C, Dey S (2018) Analysis of Weibull distribution under adaptive type-II progressive hybrid censoring scheme. J Indian Soc Probab Stat 19(1):25–65

    Article  Google Scholar 

  • Ng HKT, Kundu D, Chan PS (2009) Statistical analysis of exponential lifetimes under an adaptive type-II progressive censoring scheme. Nav Res Logist (NRL) 56(8):687–698

    Article  MathSciNet  MATH  Google Scholar 

  • Ng H, Luo L, Hu Y, Duan F (2012) Parameter estimation of three-parameter Weibull distribution based on progressively type-II censored samples. J Stat Comput Simul 82(11):1661–1678

    Article  MathSciNet  MATH  Google Scholar 

  • Panahi H, Moradi N (2020) Estimation of the inverted exponentiated Rayleigh distribution based on adaptive Type II progressive hybrid censored sample. J Comput Appl Math 364:1123–45

    Article  MathSciNet  MATH  Google Scholar 

  • Plummer M, Best N, Cowles K, Vines K (2015) Package ‘coda’. http://cran.r-project.org/web/packages/coda/coda.pdf. Accessed 25 January 2015

  • Pradhan B, Kundu D (2013) Inference and optimal censoring schemes for progressively censored Birnbaum–Saunders distribution. J Stat Plan Inference 143(6):1098–1108

    Article  MathSciNet  MATH  Google Scholar 

  • Rastogi MK, Tripathi YM (2012) Estimating the parameters of a Burr distribution under progressive type II censoring. Stat Methodol 9(3):381–391

    Article  MathSciNet  MATH  Google Scholar 

  • Rastogi MK, Tripathi YM, Wu S-J (2012) Estimating the parameters of a bathtub-shaped distribution under progressive type-II censoring. J Appl Stat 39(11):2389–2411

    Article  MathSciNet  MATH  Google Scholar 

  • Saha M, Dey S, Maiti SS (2019) Bootstrap confidence intervals of \(C_{pTk}\) for two parameter logistic exponential distribution with applications. Int J Syst Assur Eng Manag 10(4):623–631

    Article  Google Scholar 

  • Shakhatreh MK, Lemonte AJ, Moreno-Arenas G (2019) The log-normal modified Weibull distribution and its reliability implications. Reliab Eng Syst Saf 188:6–22

    Article  Google Scholar 

  • Singh DP, Tripathi YM, Rastogi MK, Dabral N (2017) Estimation and prediction for a burr type-III distribution with progressive censoring. Commun Stat Theory Methods 46(19):9591–9613

    Article  MathSciNet  MATH  Google Scholar 

  • Singh S, Arabi Belaghi R, Noori Asl M (2019) Estimation and prediction using classical and Bayesian approaches for Burr III model under progressive type-I hybrid censoring. Int J Syst Assur Eng Manag 10(4):746–764

    Article  Google Scholar 

  • Sirvanci M, Yang G (1984) Estimation of the Weibull parameters under type I censoring. J Am Stat Assoc 79(385):183–187

    Article  MathSciNet  MATH  Google Scholar 

  • Valiollahi R, Raqab MZ, Asgharzadeh A, Alqallaf F (2018) Estimation and prediction for power Lindley distribution under progressively type II right censored samples. Math Comput Simul 149:32–47

    Article  MathSciNet  MATH  Google Scholar 

  • Van Staden PJ, King RA (2016) Kurtosis of the logistic-exponential survival distribution. Commun Stat Theory Methods 45(23):6891–6899

    Article  MathSciNet  MATH  Google Scholar 

  • Wang F (2000) A new model with bathtub-shaped failure rate using an additive Burr XII distribution. Reliab Eng Syst Saf 70(3):305–312

    Article  Google Scholar 

  • Wingo DR (1993) Maximum likelihood estimation of Burr XII distribution parameters under type II censoring. Microelectron Reliab 33(9):1251–1257

    Article  Google Scholar 

  • Wu S-J (2008) Estimation of the two-parameter bathtub-shaped lifetime distribution with progressive censoring. J Appl Stat 35(10):1139–1150

    Article  MathSciNet  MATH  Google Scholar 

  • Ye Z-S, Chan P-S, Xie M, Ng HKT (2014) Statistical inference for the extreme value distribution under adaptive type-II progressive censoring schemes. J Stat Comput Simul 84(5):1099–1114

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor in Chief, an Associate Editor and two anonymous reviewers for their positive remarks and useful comments. The author S. Dutta, thanks the Council of Scientific and Industrial Research (C.S.I.R. Grant No. 09/983(0038)/2019-EMR-I), India, for the financial assistantship received to carry out this research work. The authors thank the research facilities received from the Department of Mathematics, National Institute of Technology Rourkela, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhankar Dutta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

1.1 Proof of Theorem 2.1

Equation (2.3) can be written as

$$\begin{aligned} l(\alpha , \lambda |\textbf{x})&= m \log \alpha + m \log \lambda + \lambda \sum _{i=1}^{m} x_i + (\alpha -1) \sum _{i=1}^{m} \log (e^{\lambda x_i}-1) \\&\quad -2 \sum _{i=1}^{m} \log \bigg [1+ (e^{\lambda x_i}-1)^{\alpha }\bigg ] - \sum _{i=1}^{J} R_i \log \bigg [1+ (e^{\lambda x_i}-1)^{\alpha }\bigg ] \\& \quad - R_m^* \log \bigg [1+ (e^{\lambda x_m}-1)^{\alpha }\bigg ]. \end{aligned}$$

We will show that for \((\alpha ,\lambda ) \in (0,\infty ) \times (0,\infty )\), the maximum of \(l(\alpha ,\lambda )\) exists and it is unique.

From Sect.  2.3, it has been observed that \(\frac{\partial ^2l}{\partial \alpha ^2}<0\) and \(\frac{\partial ^2l}{\partial \lambda ^2}<0\). Hence, for fixed \(\lambda (\alpha )\), \(l(\alpha ,\lambda |{\bf x})\) is strictly concave function of \(\alpha (\lambda )\). Moreover, for fixed \(\lambda\),

$$\begin{aligned} \lim \limits _{\alpha \rightarrow 0} l(\alpha ,\lambda |{\bf x})= -\infty \quad \text{ and } \quad \lim \limits _{\alpha \rightarrow \infty } l(\alpha ,\lambda |{\bf x})= -\infty , \end{aligned}$$

and for fixed \(\alpha\),

$$\begin{aligned} \lim \limits _{\lambda \rightarrow 0} l(\alpha ,\lambda |{\bf x})= -\infty \quad \text{ and } \quad \lim \limits _{\lambda \rightarrow \infty } l(\alpha ,\lambda |{\bf x})= -\infty . \end{aligned}$$

Therefore, for fixed \(\lambda (\alpha )\), \(l(\alpha ,\lambda |{\bf x})\) is unimodal function with respect to \(\alpha (\lambda )\). Furthermore,

$$\begin{aligned} \lim \limits _{\alpha \rightarrow 0,\lambda \rightarrow 0} l(\alpha ,\lambda |{\bf x})&= -\infty ,~ \lim \limits _{\alpha \rightarrow \infty ,\lambda \rightarrow 0} l(\alpha ,\lambda |{\bf x})= -\infty ,\\ \lim \limits _{\alpha \rightarrow 0,\lambda \rightarrow \infty } l(\alpha ,\lambda |{\bf x})&= -\infty ,~ \lim \limits _{\alpha \rightarrow \infty ,\lambda \rightarrow \infty } l(\alpha ,\lambda |{\bf x})= -\infty . \end{aligned}$$

Now, the rest of the proof follows from that of Theorem 1 of Dey et al. (2016) (see pp. 453–54). Thus, it is omitted. \(\square\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, S., Dey, S. & Kayal, S. Bayesian survival analysis of logistic exponential distribution for adaptive progressive Type-II censored data. Comput Stat (2023). https://doi.org/10.1007/s00180-023-01376-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00180-023-01376-y

Keywords

Navigation