Skip to main content
Log in

Estimation of Parameters of Life for an Inverted Nadarajah–Haghighi Distribution from Type-II Progressively Censored Samples

  • Research Article
  • Published:
Journal of the Indian Society for Probability and Statistics Aims and scope Submit manuscript

Abstract

In this paper, the estimating problems of the model parameters, reliability and hazard functions of an inverted Nadarajah–Haghighi distribution when sample is available from Type-II progressive censoring scheme have been considered. The maximum likelihood and maximum product of spacings estimators have been obtained for any function of the model parameters. The normality property of the classical estimators is used to construct the approximate confidence intervals for the unknown parameters and some related functions of them such as the reliability characteristics. Using independent gamma informative priors, the Bayes estimators of the unknown parameters are derived under squared error loss function. Since the Bayes estimators are obtained in a complex form, so we have been used two approximation techniques, namely: Tierney–Kadane approximation method and Metropolis–Hastings algorithm to carry out the Bayes estimates and also to construct the associate highest posterior density credible intervals. To evaluate the performance of the proposed methods, a Monte Carlo simulation study is carried out. To suggest the optimum censoring scheme among different competing censoring plans, four optimality criteria have been considered. One real-life data set is analyzed to discuss how the applicability of the proposed methods in real phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abd AL-Fattah AM, El-Helbawy AA, Al-Dayian GR (2017) Inverted Kumaraswamy distribution: properties and estimation. Pak J Stat 33:37–61

    MathSciNet  Google Scholar 

  • Abouammoh AM, Alshingiti AM (2009) Reliability estimation of generalized inverted exponential distribution. J Stat Comput Sim 79:1301–1315

    MathSciNet  MATH  Google Scholar 

  • Anatolyev S, Kosenok G (2005) An alternative to maximum likelihood based on spacings. Econom Theor 21:472–476

    MathSciNet  MATH  Google Scholar 

  • Ashour SK, El-Sheikh AA, Elshahhat A (2019) Inferences and optimal censoring schemes for progressively first-failure censored Nadarajah-Haghighi distribution. Sankhyā Ser A Ind J Stat. https://doi.org/10.1007/s13171-019-00175-2

    Article  Google Scholar 

  • Balakrishnan N, Cramer E (2014) The art of progressive censoring. Springer/Birkhäuser, New York

    MATH  Google Scholar 

  • Balakrishnan N, Sandhu RA (1995) A simple simulational algorithm for generating progressive Type-II censored samples. Am Stat 49:229–230

    Google Scholar 

  • Barlow RE, Proschan F (1981) Statistical theory of reliability and life testing: probability models. Springer, Silver Spring

    MATH  Google Scholar 

  • Basak P, Balakrishnan N (2012) Estimation for the three-parameter inverse Gaussian distribution under progressive Type-II censoring. J Stat Comput Simul 82:1055–1072

    MathSciNet  MATH  Google Scholar 

  • Basu S, Singh SK, Singh U (2018) Bayesian inference using product of spacings function for progressive hybrid Type-I censoring scheme. Statistics 52:345–363

    MathSciNet  MATH  Google Scholar 

  • Bourguignon M, Lima MDCS, Leão J, Nascimento AD, Pinho LGB, Cordeiro GM (2015) A new generalized gamma distribution with applications. Am J Math Manag Sci 34:309–342

    Google Scholar 

  • Chen MH, Shao QM (1999) Monte Carlo estimation of Bayesian credible and HPD intervals. J Comput Graph Stat 8:69–92

    MathSciNet  Google Scholar 

  • Cheng RCH, Amin NAK (1983) Estimating parameters in continuous univariate distributions with a shifted origin. J R Stat Soc B 45:394–403

    MathSciNet  MATH  Google Scholar 

  • Cohen AC (1991) Truncated and censored samples: theory and applications. Dekker, New York

    MATH  Google Scholar 

  • Dey S, Dey T (2014) On progressively censored generalized inverted exponential distribution. J Appl Stat 41:2557–2576

    MathSciNet  MATH  Google Scholar 

  • Dey S, Singh S, Tripathi YM, Asgharzadeh A (2016) Estimation and prediction for a progressively censored generalized inverted exponential distribution. Stat Methodol 32:185–202

    MathSciNet  MATH  Google Scholar 

  • Dias CR, Alizadeh M, Cordeiro GM (2018) The beta Nadarajah–Haghighi distribution. Hacet J Math Stat 47:1302–1320

    MathSciNet  Google Scholar 

  • Dube M, Krishna H, Garg R (2016) Generalized inverted exponential distribution under progressive first-failure censoring. J Stat Comput Sim 86:1095–1114

    MathSciNet  MATH  Google Scholar 

  • El-Sherpieny ESA, Almetwally EM, Muhammed HZ (2020) Progressive Type-II hybrid censored schemes based on maximum product spacing with application to power Lomax distribution. Phys A Stat Mech Appl. https://doi.org/10.1016/j.physa.2020.124251

    Article  Google Scholar 

  • Eliwa MS, El-Morshedy M, Ibrahim M (2019) Inverse Gompertz distribution: properties and different estimation methods with application to complete and censored data. Ann Data Sci 6:321–339

    Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB (2004) Bayesian data analysis, 2nd edn. Chapman and Hall/CRC, USA

    MATH  Google Scholar 

  • Ghitany ME, Tuan VK, Balakrishnan N (2014) Likelihood estimation for a general class of inverse exponentiated distributions based on complete and progressively censored data. J Stat Comput Simul 84:96–106

    MathSciNet  MATH  Google Scholar 

  • Glen AG (2011) On the inverse gamma as a survival distribution. J Qual Technol 43:158–166

    Google Scholar 

  • Greene WH (2012) Econometric analysis, 7th edn. Pearson Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  • Gupta RD, Kundu D (2006) On the comparison of Fisher information of the Weibull and GE distributions. J Stat Plan Inference 136:3130–3144

    MathSciNet  MATH  Google Scholar 

  • Henningsen A, Toomet O (2011) maxlik: a package for maximum likelihood estimation in R. Comput Stat 26:443–458

    MathSciNet  MATH  Google Scholar 

  • Keller AZ, Kamath ARR, Perera UD (1982) Reliability analysis of CNC machine tools. Reliab Eng 3:449–473

    Google Scholar 

  • Keller AZ, Giblin MT, Farnworth NR (1985) Reliability analysis of commercial vehicle engines. Reliab Eng 10:15–25

    Google Scholar 

  • Khan MN, Saboor A, Cordeiro GM, Nazir M, Pescim RR (2018) A weighted Nadarajah and Haghighi distribution. U Politeh Buch Ser A 80:133–140

    MathSciNet  MATH  Google Scholar 

  • Krishna H, Kumar K (2013) Reliability estimation in generalized inverted exponential distribution with progressively Type II censored sample. J Stat Comput Simul 83:1007–1019

    MathSciNet  MATH  Google Scholar 

  • Kumar D, Kumar M (2019) A new generalization of the extended exponential distribution with an application. Ann Data Sci 6:441–462

    Google Scholar 

  • Kundu D (2008) Bayesian inference and life testing plan for the Weibull distribution in presence of progressive censoring. Technometrics 50:144–154

    MathSciNet  Google Scholar 

  • Kundu D, Gupta RD (2008) Generalized exponential distribution: Bayesian estimations. Comput Stat Data Ann 52:1873–1883

    MathSciNet  MATH  Google Scholar 

  • Kundu D, Pradhan B (2009) Bayesian inference and life testing plans for generalized exponential distribution. Sci China Ser A 52:1373–1388

    MathSciNet  MATH  Google Scholar 

  • Lawless JF (2003) Statistical models and methods for lifetime data, 2nd edn. Wiley, NJ

    MATH  Google Scholar 

  • Lee K, Cho Y (2017) Bayesian and maximum likelihood estimations of the inverted exponentiated half logistic distribution under progressive Type-II censoring. J Appl Stat 44:811–832

    MathSciNet  MATH  Google Scholar 

  • Lehmann EL, Shaffer JP (1988) Inverted distributions. Am Stat 42:191–194

    MathSciNet  Google Scholar 

  • Lemonte AJ (2013) A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function. Comput Stat Data Ann 62:149–170

    MathSciNet  MATH  Google Scholar 

  • Lemonte AJ, Cordeiro GM, Moreno-Arenas G (2016) A new useful three-parameter extension of the exponential distribution. Statistics 50:312–337

    MathSciNet  MATH  Google Scholar 

  • Lindley DV (1980) Approximate Bayesian methods. Trab Estadistica 31:223–245

    MathSciNet  MATH  Google Scholar 

  • Lynch SM (2007) Introduction to applied Bayesian statistics and estimation for social scientists. Springer, New York

    MATH  Google Scholar 

  • Marinho PRD, Silva RB, Bourguignon M, Cordeiro GM, Nadarajah S (2019) AdequacyModel: an R package for probability distributions and general purpose optimization. PLoS ONE. https://doi.org/10.1371/journal.pone.0221487

    Article  Google Scholar 

  • Marshall AW, Olkin I (2007) Life distributions: structure of nonparametric, semiparametric, and parametric families. Springer series in statistics. Springer, New York

    MATH  Google Scholar 

  • Maurya RK, Tripathi YM, Sen T, Rastogi MK (2019a) On progressively censored inverted exponentiated Rayleigh distribution. J Stat Comput Simul 89(2019a):492–518

    MathSciNet  MATH  Google Scholar 

  • Maurya RK, Tripathi YM, Sen T, Rastogi MK (2019b) Inference for an inverted exponentiated Pareto distribution under progressive censoring. J Stat Theory Pract. https://doi.org/10.1007/s42519-018-0002-y

    Article  MathSciNet  MATH  Google Scholar 

  • Nadarajah S, Haghighi F (2011) An extension of the exponential distribution. Statistics 45:543–558

    MathSciNet  MATH  Google Scholar 

  • Ng HKT, Chan PS, Balakrishnan N (2004) Optimal progressive censoring plans for the Weibull distribution. Technometrics 46:470–481

    MathSciNet  Google Scholar 

  • Ng HKT, Luo L, Hu Y, Duan F (2012) Parameter estimation of three-parameter Weibull distribution based on progressively Type-II censored samples. J Stat Comput Simul 82:1661–1678

    MathSciNet  MATH  Google Scholar 

  • Oguntunde PE, Adejumo AO, Owoloko EA (2017) Exponential inverse exponential (EIE) distribution with applications to lifetime data. Asian J Sci Res 10:169–177

    Google Scholar 

  • Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6:7–11

    Google Scholar 

  • Potdar KG, Shirke DT (2013) Inference for the parameters of generalized inverted family of distributions. ProbStat Forum 6:18–28

    MathSciNet  MATH  Google Scholar 

  • Pradhan B, Kundu D (2009) On progressively censored generalized exponential distribution. Test 18:497–515

    MathSciNet  MATH  Google Scholar 

  • Pradhan B, Kundu D (2013) Inference and optimal censoring schemes for progressively censored Birnbaum–Saunders distribution. J Stat Plan Inference 143:1098–1108

    MathSciNet  MATH  Google Scholar 

  • Rastogi MK, Tripathi YM (2014) Estimation for an inverted exponentiated Rayleigh distribution under type II progressive censoring. J Appl Stat 41:2375–2405

    MathSciNet  MATH  Google Scholar 

  • Sen T, Tripathi YM, Bhattacharya R (2018) Statistical inference and optimum life testing plans under Type-II hybrid censoring scheme. Ann Data Sci 5:679–708

    Google Scholar 

  • Seong Y, Lee K (2019) Estimating the parameters of exponentiated logistic distribution under progressive censoring scheme. J Korean Data Inf Sci Soc APPL 30:1441–1452

    Google Scholar 

  • Singh RK, Singh SK, Singh U (2016) Maximum product spacings method for the estimation of parameters of generalized inverted exponential distribution under progressive Type-II censoring. J Stat Manag Syst 19:219–245

    Google Scholar 

  • Sultan KS, Alsadat NH, Kundu D (2014) Bayesian and maximum likelihood estimations of the inverse Weibull parameters under progressive Type-II censoring. J Stat Comput Simul 84:2248–2265

    MathSciNet  MATH  Google Scholar 

  • Tahir MH, Cordeiro GM, Ali S, Dey S, Manzoor A (2018) The inverted Nadarajah–Haghighi distribution: estimation methods and applications. J Stat Comput Simul 88:2775–2798

    MathSciNet  MATH  Google Scholar 

  • Tierney T, Kadane JB (1986) Accurate approximations for posterior moments and marginal densities. J Am Stat Assoc 81:82–86

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Elshahhat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Fisher’s Elements of the MLEs

Differentiating (8) with respect to \(\alpha\) and \(\lambda\), hence, the elements of the observed Fisher information matrix (24) are becomes

$$\begin{aligned} {\mathcal {L}}_{\alpha \alpha }&=\frac{{\partial ^2 \ell }}{{\partial \alpha ^2 }} = - \frac{m}{{\alpha ^2 }} - \mathop \sum \nolimits _{i = 1}^m {\psi ^{''}_\alpha \left( {x_i ;\alpha ,\lambda } \right) } + \mathop \sum \nolimits _{i = 1}^m {R_i \exp \left( {1 - \psi \left( {x_i ;\alpha ,\lambda } \right) } \right) } \\&\times \left[ {1 - \exp \left( {1 - \psi \left( {x_i ;\alpha ,\lambda } \right) } \right) } \right] ^{ - 2} \left\{ {\left[ {1 - \exp \left( {1 - \psi \left( {x_i ;\alpha ,\lambda } \right) } \right) } \right] } \right. \\&\left. \times \left\{ {\psi ^{''}_\alpha \left( {x_i ;\alpha ,\lambda } \right) - \left( {\psi ^{'}_\alpha \left( {x_i ;\alpha ,\lambda } \right) } \right) ^2 } \right\} - \left( {\psi ^{'}_\alpha \left( {x_i ;\alpha ,\lambda } \right) } \right) ^2 \exp \left( {1 - \psi \left( {x_i ;\alpha ,\lambda } \right) } \right) \right\} , \\ {\mathcal {L}}_{\lambda \lambda }&=\frac{{\partial ^2 \ell }}{{\partial \lambda ^2 }} = - \frac{m}{{\lambda ^2 }} - (\alpha - 1)\mathop \sum \nolimits _{i = 1}^m {x_i^{ - 2} \left( {1 + \lambda x_i^{ - 1} } \right) ^{ - 2} } - \mathop \sum \nolimits _{i = 1}^m {\psi ^{''}_\lambda \left( {x_i ;\alpha ,\lambda } \right) } \\&+ \mathop \sum \nolimits _{i = 1}^m {R_i \exp \left( {1 - \psi \left( {x_i ;\alpha ,\lambda } \right) } \right) \left[ {1 - \exp \left( {1 - \psi \left( {x_i ;\alpha ,\lambda } \right) } \right) } \right] ^{ - 2} } \\&\times \left\{ {\left[ {1 - \exp \left( {1 - \psi \left( {x_i ;\alpha ,\lambda } \right) } \right) } \right] \left[ {\psi ^{''}_\lambda \left( {x_i ;\alpha ,\lambda } \right) - \left( {\psi ^{'}_\lambda \left( {x_i ;\alpha ,\lambda } \right) } \right) ^2 } \right] } \right. \\&\left. - \left( {\psi ^{'}_\lambda \left( {x_i ;\alpha ,\lambda } \right) } \right) ^2 \exp \left( {1 - \psi \left( {x_i ;\alpha ,\lambda } \right) } \right) \right\} ,\\ {\mathcal {L}}_{\alpha \lambda }&=\frac{{\partial ^2 \ell }}{{\partial \alpha \partial \lambda }} = \mathop \sum \nolimits _{i = 1}^m {x_i^{ - 1} \left( {1 + \lambda x_i^{ - 1} } \right) ^{ - 1} } - \mathop \sum \nolimits _{i = 1}^m {\psi ^{''}_{\alpha \lambda } \left( {x_i ;\alpha ,\lambda } \right) } \\&+ \mathop \sum \nolimits _{i = 1}^m {R_i } \exp \left( {1 - \psi \left( {x_i ;\alpha ,\lambda } \right) } \right) \left[ {1 - \exp \left( {1 - \psi \left( {x_i ;\alpha ,\lambda } \right) } \right) } \right] ^{ - 2} \\&\times \left\{ {\left[ {1 - \exp \left( {1 - \psi \left( {x_i ;\alpha ,\lambda } \right) } \right) } \right] \left[ {\psi ^{''}_{\alpha \lambda } \left( {x_i ;\alpha ,\lambda } \right) - \psi ^{'}_\alpha \left( {x_i ;\alpha ,\lambda } \right) \psi ^{'}_\lambda \left( {x_i ;\alpha ,\lambda } \right) } \right] } \right. \\&\left. - \psi ^{'}_\alpha \left( {x_i ;\alpha ,\lambda } \right) \psi ^{'}_\lambda \left( {x_i ;\alpha ,\lambda } \right) \exp \left( {1 - \psi \left( {x_i ;\alpha ,\lambda } \right) } \right) \right\} , \end{aligned}$$

where \(\psi ^{''}_\theta ( \cdot )\) is the second-partial derivative with respect to the parameter \(\theta\) such as

$$\begin{aligned} \psi ^{''}_\alpha \left( {x_i ;\alpha ,\lambda } \right)&= \psi \left( {x_i ;\alpha ,\lambda } \right) \left[ {\log \left( {1 + \lambda x_i^{ - 1} } \right) } \right] ^2 ,\mathrm{{ }}i = 1,2,\dots ,m,\\ \psi ^{''}_\lambda \left( {x_i ;\alpha ,\lambda } \right)&= \alpha \left( {\alpha - 1} \right) x_i^{ - 2} \left( {1 + \lambda x_i^{ - 1} } \right) ^{\alpha - 2} ,\mathrm{{ }}i = 1,2,\dots ,m,\\ \end{aligned}$$

and

$$\begin{aligned} \psi ^{''}_{\alpha \lambda } \left( {x_i ;\alpha ,\lambda } \right) = \psi ^{''}_{\lambda \alpha } \left( {x_i ;\alpha ,\lambda } \right) = \psi ^{'}_\lambda \left( {x_i ;\alpha ,\lambda } \right) \left[ {\alpha ^{ - 1} + \log \left( {1 + \lambda x_i^{ - 1} } \right) } \right] ,\mathrm{{ }}i = 1,2,\dots ,m. \end{aligned}$$

Appendix 2: Fisher’s Elements of the MPSEs

Differentiating (12) with respect to \(\alpha\) and \(\lambda\), hence, the elements of the observed Fisher information matrix (25) are becomes

$$\begin{aligned} H^{''}_\alpha&= \frac{{\partial ^2 H}}{{\partial \alpha ^2 }} = \sum \nolimits _{i = 1}^{m + 1} \{ {[ {F^{''}_\alpha \left( {x_{i - 1} ;\alpha ,\lambda } \right) - \left( {F^{'}_\alpha \left( {x_{i - 1} ;\alpha ,\lambda } \right) } \right) ^2 } ]F\left( {x_{i - 1} ;\alpha ,\lambda } \right) } \\&- [ {F^{''}_\alpha \left( {x_i ;\alpha ,\lambda } \right) - \left( {F^{'}_\alpha \left( {x_i ;\alpha ,\lambda } \right) } \right) ^2 } ]F\left( {x_i ;\alpha ,\lambda } \right) \} \\&\times \left( {F\left( {x_i ;\alpha ,\lambda } \right) - F\left( {x_{i - 1} ;\alpha ,\lambda } \right) } \right) ^{ - 1} - \left( {F\left( {x_i ;\alpha ,\lambda } \right) - F\left( {x_{i - 1} ;\alpha ,\lambda } \right) } \right) ^{ - 2} \\&\times \left[ {F^{'}_\alpha \left( {x_{i - 1} ;\alpha ,\lambda } \right) F\left( {x_{i - 1} ;\alpha ,\lambda } \right) - F^{'}_\alpha \left( {x_i ;\alpha ,\lambda } \right) F\left( {x_i ;\alpha ,\lambda } \right) } \right] ^2 , \\ H^{''}_\lambda&= \frac{{\partial ^2 H}}{{\partial \lambda ^2 }} = \sum \nolimits _{i = 1}^{m + 1} \{ {[ {F^{''}_\lambda \left( {x_{i - 1} ;\alpha ,\lambda } \right) - \left( {F^{'}_\lambda \left( {x_{i - 1} ;\alpha ,\lambda } \right) } \right) ^2 } ]F\left( {x_{i - 1} ;\alpha ,\lambda } \right) } \\&- [ {F^{''}_\lambda \left( {x_i ;\alpha ,\lambda } \right) - \left( {F^{'}_\lambda \left( {x_i ;\alpha ,\lambda } \right) } \right) ^2 } ]F\left( {x_i ;\alpha ,\lambda } \right) \}\\&\times \left( {F\left( {x_i ;\alpha ,\lambda } \right) - F\left( {x_{i - 1} ;\alpha ,\lambda } \right) } \right) ^{ - 1} - \left( {F\left( {x_i ;\alpha ,\lambda } \right) - F\left( {x_{i - 1} ;\alpha ,\lambda } \right) } \right) ^{ - 2} \\&\times \left[ {F^{'}_\lambda \left( {x_{i - 1} ;\alpha ,\lambda } \right) F\left( {x_{i - 1} ;\alpha ,\lambda } \right) - F^{'}_\lambda \left( {x_i ;\alpha ,\lambda } \right) F\left( {x_i ;\alpha ,\lambda } \right) } \right] ^2 , \\ H^{''}_{\alpha \lambda }&= \frac{{\partial ^2 H}}{{\partial \alpha \partial \lambda }} = \sum \nolimits _{i = 1}^{m + 1} \{ {[ {F^{''}_{\alpha \lambda } \left( {x_{i - 1} ;\alpha ,\lambda } \right) - F^{'}_\alpha \left( {x_{i - 1} ;\alpha ,\lambda } \right) F^{'}_\lambda \left( {x_{i - 1} ;\alpha ,\lambda } \right) } ]F\left( {x_{i - 1} ;\alpha ,\lambda } \right) } \\&- [ {F^{''}_{\alpha \lambda } \left( {x_i ;\alpha ,\lambda } \right) - F^{'}_\alpha \left( {x_i ;\alpha ,\lambda } \right) F^{'}_\lambda \left( {x_i ;\alpha ,\lambda } \right) }]F\left( {x_i ;\alpha ,\lambda } \right) \} \\&\times \left( {F\left( {x_i ;\alpha ,\lambda } \right) - F\left( {x_{i - 1} ;\alpha ,\lambda } \right) } \right) ^{ - 1} - \left( {F\left( {x_i ;\alpha ,\lambda } \right) - F\left( {x_{i - 1} ;\alpha ,\lambda } \right) } \right) ^{ - 2} \\&\times \left\{ {F^{'}_\alpha \left( {x_{i - 1} ;\alpha ,\lambda } \right) F\left( {x_{i - 1} ;\alpha ,\lambda } \right) - F^{'}_\alpha \left( {x_i ;\alpha ,\lambda } \right) F\left( {x_i ;\alpha ,\lambda } \right) } \right\} \\&\times \left\{ {F^{'}_\lambda \left( {x_{i - 1} ;\alpha ,\lambda } \right) F\left( {x_{i - 1} ;\alpha ,\lambda } \right) - F^{'}_\lambda \left( {x_i ;\alpha ,\lambda } \right) F\left( {x_i ;\alpha ,\lambda } \right) } \right\} , \\ M^{''}_\alpha&= \frac{{\partial ^2 M}}{{\partial \alpha ^2 }} = \sum \nolimits _{i = 1}^m {R_i \{ [{F^{''}_\alpha \left( {x_i ;\alpha ,\lambda } \right) - \left( {F^{'}_\alpha \left( {x_i ;\alpha ,\lambda } \right) } \right) ^2 }]F\left( {x_i ;\alpha ,\lambda } \right) \left( {1 - F\left( {x_i ;\alpha ,\lambda } \right) } \right) ^{ - 1} } \\&- [ {F^{'}_\alpha \left( {x_i ;\alpha ,\lambda } \right) F\left( {x_i ;\alpha ,\lambda } \right) } ]^2 \left( {1 - F\left( {x_i ;\alpha ,\lambda } \right) } \right) ^{ - 2} \}, \\ M^{''}_\lambda&= \frac{{\partial ^2 M}}{{\partial \lambda ^2 }} = \sum \nolimits _{i = 1}^m {R_i } \{ [ {F^{''}_\lambda \left( {x_i ;\alpha ,\lambda } \right) - \left( {F^{'}_\lambda \left( {x_i ;\alpha ,\lambda } \right) } \right) ^2 } ]F\left( {x_i ;\alpha ,\lambda } \right) \left( {1 - F\left( {x_i ;\alpha ,\lambda } \right) } \right) ^{ - 1} \\&- [ {F^{'}_\lambda \left( {x_i ;\alpha ,\lambda } \right) F\left( {x_i ;\alpha ,\lambda } \right) } ]^2 \left( {1 - F\left( {x_i ;\alpha ,\lambda } \right) } \right) ^{ - 2} \}, \\ M^{''}_{\alpha \lambda }&= \frac{{\partial ^2 M}}{{\partial \alpha \partial \lambda }} = \sum \nolimits _{i = 1}^m {R_i \{ [ {F^{''}_{\alpha \lambda } \left( {x_i ;\alpha ,\lambda } \right) - F^{'}_\alpha \left( {x_i ;\alpha ,\lambda } \right) F^{'}_\lambda \left( {x_i ;\alpha ,\lambda } \right) } ]F\left( {x_i ;\alpha ,\lambda } \right) \left( {1 - F\left( {x_i ;\alpha ,\lambda } \right) } \right) ^{ - 1} } \\&- F^{'}_\lambda \left( {x_i ;\alpha ,\lambda } \right) F^{'}_\alpha \left( {x_i ;\alpha ,\lambda } \right) \left( {F\left( {x_i ;\alpha ,\lambda } \right) } \right) ^2 \left( {1 - F\left( {x_i ;\alpha ,\lambda } \right) } \right) ^{ - 2} \}, \end{aligned}$$

where

$$\begin{aligned} F\left( {x_i ;\alpha ,\lambda } \right)&= \exp \left( {1 - \psi \left( {x_i ;\alpha ,\lambda } \right) } \right) ;\\ F\left( {x_{i - 1} ;\alpha ,\lambda } \right)&= \exp \left( {1 - \psi \left( {x_{i - 1} ;\alpha ,\lambda } \right) } \right) ,\\ F^{''}_\alpha \left( {x_i ;\alpha ,\lambda } \right)&= \left( {\log \left( {1 + \lambda x_i^{ - 1} } \right) } \right) ^2 \psi \left( {x_i ;\alpha ,\lambda } \right) ,\\ F^{''}_\alpha \left( {x_{i - 1} ;\alpha ,\lambda } \right)&= \left( {\log \left( {1 + \lambda x_{i - 1}^{ - 1} } \right) } \right) ^2 \psi \left( {x_{i - 1} ;\alpha ,\lambda } \right) ,\\ F^{''}_\lambda \left( {x_i ;\alpha ,\lambda } \right)&= \alpha \left( {\alpha - 1} \right) x_i^{ - 2} \left( {1 + \lambda x_i^{ - 1} } \right) ^{\alpha - 2} ,\\ F^{''}_\lambda \left( {x_{i - 1} ;\alpha ,\lambda } \right)&= \alpha \left( {\alpha - 1} \right) x_{i - 1}^{ - 2} \left( {1 + \lambda x_{i - 1}^{ - 1} } \right) ^{\alpha - 2} , \end{aligned}$$

and

$$\begin{aligned} F^{''}_{\alpha \lambda } \left( {x_i ;\alpha ,\lambda } \right) = x_i^{ - 1} \left( {1 + \lambda x_i^{ - 1} } \right) ^{ - 1} \psi \left( {x_i ;\alpha ,\lambda } \right) \left[ {\alpha \log \left( {1 + \lambda x_i^{ - 1} } \right) + 1} \right] . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elshahhat, A., Rastogi, M.K. Estimation of Parameters of Life for an Inverted Nadarajah–Haghighi Distribution from Type-II Progressively Censored Samples. J Indian Soc Probab Stat 22, 113–154 (2021). https://doi.org/10.1007/s41096-021-00097-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41096-021-00097-z

Keywords

Mathematics Subject Classification

Navigation