Skip to main content

Advertisement

Log in

Influence of rice husk ash (RHA) with gypsum and ichu fibers in the processing of geopolymers

  • Technical Paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

Cement production consumes enormous amounts of fossil fuels, generating significant CO2 emissions, seriously impacting the environment, and tons of rice husk ash (RHA) are generated annually as a result of energy production activities, much of which goes unused and is deposited in landfills, causing serious environmental damage. The present research aims to study the mechanical and microstructural properties of geopolymer with RHA, gypsum and ichu fiber, with alkaline activators of sodium hydroxide and sodium silicate. Geopolymers at 8, 10, 12 and 14 molar of sodium hydroxide with proportions of 10, 20, 30, 40 and 50% of gypsum and 0.5, 1.0, 1.5 and 2.0% of ichu fiber were elaborated and subjected to mechanical strength and microstructure analysis. The results revealed that the best combination was 12 molar with 20% gypsum and 1.5% ichu fiber, with compressive, flexural and tensile strengths of 9.72, 7.99 and 2.25 MPa; respectively, SEM images showed the generation of a large amount of geopolymeric products by the reaction of OH with the aluminosilicate components of the RHA in an alkaline source. XRD shows as crystalline phases albite, quartz, orthoclase, aphthalite and also amorphous crystalline phase. FTIR spectra showed related to H–O–H and O–H stretching vibrations of broad bands around 3450 cm−1, thermogravimetric analysis shows that the residual mass at the end of the test at 990 °C is 90.6%. It is concluded that sodium hydroxide, sodium silicate together with RHA, gypsum and ichu fibers can be used as reactive materials to produce geopolymers with good mechanical characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Authors

Fig. 2

Source: Authors

Fig. 3
Fig. 4

Source: Authors

Fig. 5

Source: Authors

Fig. 6

Source: Authors

Fig. 7

Source: Authors

Fig. 8

Source: Authors

Fig. 9

Source: Authors

Fig. 10

Source: Authors

Fig. 11

Source: Authors

Fig. 12

Source: Authors

Fig. 13

Source: Authors

Fig. 14

Source: Authors

Fig. 15

Source: Authors

Fig. 16

Source: Authors

Fig. 17

Source: Authors

Fig. 18

Source: Authors

Fig. 19

Source: Authors

Fig. 20

Source: Authors

Fig. 21

Source: Authors

Fig. 22

Source: Authors

Fig. 23

Source: Authors

Fig. 24

Source: Authors

Fig. 25

Source: Authors

Fig. 26

Source: Authors

Fig. 27

Source: Authors

Fig. 28

Source: Authors

Fig. 29

Source: Authors

Similar content being viewed by others

References

  1. Tun TZ, Bonnet Ś, Gheewala SH (2021) Emission reduction pathways for a sustainable cement industry in Myanmar. Sustain Prod Consum 27:449–461

    Article  Google Scholar 

  2. Ali M, Sidur R, Hossain M (2011) A review on emission analysis in cement industries. Renew Sust Energ Rev 15(5):2252–2261

    Article  Google Scholar 

  3. Torres M, Puertas F (2017) La activación alcalina de diferentes aluminosilicatos como una alternativa al Cemento Portland: cementos activados alcalinamente o geopolímeros. Rev Ing Constr 32(2):05

    Article  Google Scholar 

  4. Shehata N, Sayed ET, Abdelkareem MA (2021) Recent progress in environmentally friendly geopolymers: a review. Sci Total Environ 762:143166

    Article  Google Scholar 

  5. Babaee M, Castel A (2016) Chloride-induced corrosion of reinforcement in low-calcium fly ash-based geopolymer concrete. Cem Concr Res 88:96–107

    Article  Google Scholar 

  6. Nguyen HT (2021) Microstructure stability and thermal resistance of ash-based geopolymer with sodium silicate solution at high temperature. Int J Eng Res Afr 53:101–111

    Article  Google Scholar 

  7. Han Y, Lin R, Wang X (2021) Performance and sustainability of quaternary composite paste comprising limestone, calcined Hwangtoh clay, and granulated blast furnace slag. J Build Eng 43:102655

    Article  Google Scholar 

  8. Sharma K, Kumar A (2022) Investigation of compaction, specific gravity, unconfined compressive strength and cbr of a composite having copper slag and rice husk ash mixed using an alkali activator. Innov Infrastruct Solut 7:185

    Article  Google Scholar 

  9. Chokkalingam P, El-Hassan H, El-Dieb A (2022) Development and characterization of ceramic waste powder-slag blended geopolymer concrete designed using Taguchi method. Constr Build Mater 349:128744

    Article  Google Scholar 

  10. Choeycharoen P, Sornlar W, Wannagon A (2022) A sustainable bottom ash-based alkali-activated materials and geopolymers synthesized by using activator solutions from industrial wastes. J Build Eng 54:104659

    Article  Google Scholar 

  11. Kathirvel P, Sreekumaran S (2021) Sustainable development of ultra high performance concrete using geopolymer technology. Rev Ing Constr 39:102267

    Google Scholar 

  12. Verma M, Dev N, Rahman I, Nigam M, Ahmed M, Mallick J (2022) Geopolymer concrete: a material for sustainable development in Indian construction industries. Crystals 12(4):514

    Article  Google Scholar 

  13. Somna R, Saowapun T, Somna K, Chindaprasirt P (2022) Rice husk ash and fly ash geopolymer hollow block based on NaOH activated. Case Stud Constr Mater 16:e01092

    Google Scholar 

  14. Kumar Das S, Adediran A, Rodrigue Kaze C, Mohammed Mustakim S, Leklou N (2022) Production, characteristics, and utilization of rice husk ash in alkali activated materials: an overview of fresh and hardened state properties. Constr Build Mater 345:128341

    Article  Google Scholar 

  15. Mahdi SN, Hossiney N, Abdullah MM (2022) Strength and durability properties of geopolymer paver blocks made with fly ash and brick kiln rice husk ash. Case Stud. Constr. Mater. 16:e00800

    Google Scholar 

  16. Pham VP, Tran VT (2020) Rice husk ash burnt in simple conditions for soil stabilization. Geotech Sustain Infrastruct Dev Lect Notes Civ Eng 62:717–721

    Article  Google Scholar 

  17. Rithuparna R, Jittin V, Bahurudeen A (2021) Influence of different processing methods on the recycling potential of agro-waste ashes for sustainable cement production: a review. J Clean Prod 316:128242

    Article  Google Scholar 

  18. Newaz Khan MN, Jamil MA, Karim MR (2015) Utilization of rice husk ash for sustainable construction: a review. Res J Appl Sci Eng Technol 9(12):1119–1127

    Article  Google Scholar 

  19. Mohd Basri MS, Mustapha F, Mazlan N, Ishak MR (2021) Rice husk ash-based geopolymer binder: compressive strength, optimize composition, FTIR spectroscopy, microstructural, and potential as fire-retardant material. Polymers 13(24):4373

    Article  Google Scholar 

  20. Yadav AK, Gaurav K, Kishor R, Suman SK (2017) Stabilization of alluvial soil for subgrade using rice husk ash, sugarcane bagasse ash and cow dung ash for rural roads. Int J Pavement Res Technol 10(3):254–261

    Article  Google Scholar 

  21. Abd-Ali MS, Kadhim SJ (2020) Experimental study on influence of Iraqi rice husk ash as supplementary material on the performance of concrete. IOP Conf Ser Mater Sci Eng 870:012050

    Article  Google Scholar 

  22. Mounika G, Baskar R, Sri Kalyana Rama J (2022) Rice husk ash as a potential supplementary cementitious material in concrete solution towards sustainable construction. Innov Infrastruct Solut 7:51

    Article  Google Scholar 

  23. Öztürk O (2021) Engineering performance of reinforced lightweight geopolymer concrete beams produced by ambient curing. Struct Concr 23:2076

    Article  Google Scholar 

  24. Alsaif A, Albidah A, Abadel A, Abbas H, Al-Salloum Y (2022) Development of metakaolin-based geopolymer rubberized concrete: fresh and hardened properties. Arch Civ Mech Eng 22(3):144

    Article  Google Scholar 

  25. Topçu İB, Sofuoğlu T (2021) Properties of geopolymers produced with sugar press filter waste and fly ash under certain curing conditions. J Build Eng 44:102938

    Article  Google Scholar 

  26. Tarekegn M, Getachew K, Kenea G (2022) Experimental investigation of concrete characteristics strength with partial replacement of cement by hybrid coffee husk and sugarcane bagasse ash. Adv Mater Sci Eng 5363766:2022

    Google Scholar 

  27. Kotop MA, El-Feky M, Alharbi YR, Abadel AA, Binyahya AS (2021) Engineering properties of geopolymer concrete incorporating hybrid nano-materials. Ain Shams Eng J 12(4):3641–3647

    Article  Google Scholar 

  28. Saloni, Parveen, Lim YY, Pham TM, Jatin, Kumar J (2021) Sustainable alkali activated concrete with fly ash and waste marble aggregates: strength and durability studies. Constr Build Mater 283:122795

    Article  Google Scholar 

  29. Lianasari A, Atmajayanti A, Efendi B, Sitidaon N (2015) Sifat mekanik beton geopolimer berbasis solid material abu terbang (fly ash) dan abu sekam padi (rice husk ash) dengan alkaline activator sodium silikat dan sodium hidroksida. E-J Univ Atma Jaya Yogyak. http://e-journal.uajy.ac.id/id/eprint/7451

  30. Hossain SS, Roy PK, Bae C-J (2021) Utilization of waste rice husk ash for sustainable geopolymer: a review. Constr Build Mater 310:125218

    Article  Google Scholar 

  31. Chao-Lung H, Trong-Phuoc H (2015) Effect of alkali-activator and rice husk ash content on strength development of fly ash and residual rice husk ash-based geopolymers. Constr Build Mater 101:1–9

    Article  Google Scholar 

  32. Zabihi SM, Tavakoli H, Mohseni E (2018) Engineering and microstructural properties of fiber-reinforced rice husk-ash based geopolymer concrete. J Mater Civ Eng 30(8):04018183

    Article  Google Scholar 

  33. Januar F, Monita O, Iskandar R (2016) Perancangan mortar geopolimer abu sekam. J Online Mhs Fak Tek Univ Riau 3(2):1–8

    Google Scholar 

  34. Handayani L, Aprilia S, Abdullah, Rahmawati C, Aulia TB, Ludvig P, Ahmad J (2022) Sodium silicate from rice husk ash and their effects as geopolymer cement. Polymers 14(14):2920

    Article  Google Scholar 

  35. Rosyadi A (2021) Prototipe semen geopolimer berbasis fly ash tipe C dengan Pengaruh Substitusi Abu Limbah Sekam Padi. http://repository.its.ac.id/id/eprint/83825

  36. Ilmiah R (2017) Pengaruh Penambahan Abu Sekam Padi Sebagai Pozzolan Pada Binder geopolimer menggunakan alkali aktifator sodium silikat (Na2SiO3) serta sodium hidroksida (NaOH). http://repository.its.ac.id/id/eprint/2962

  37. Kallamalayil Nassar A, Kathirvel P (2023) Effective utilization of agricultural waste in synthesizing activator for sustainable geopolymer technology. Const Build Mater 362:129681

    Article  Google Scholar 

  38. An Q, Pan H, Zhao Q, Du S, Wang D (2022) Strength development and microstructure of recycled gypsum-soda residue-GGBS based geopolymer. Constr Build Mater 331:127312

    Article  Google Scholar 

  39. Cong P, Mei L (2021) Using silica fume for improvement of fly ash/slag based geopolymer activated with calcium carbide residue and gypsum. Constr Build Mater 275:122171

    Article  Google Scholar 

  40. Gholampour A, Danish A, Ozbakkaloglu T, HeumYeon J, Gencel O (2022) Mechanical and durability properties of natural fiber-reinforced geopolymers containing lead smelter slag and waste glass sand. Constr Build Mater 352:129043

    Article  Google Scholar 

  41. Ramakrishna G, Sundararajan T (2019) Long-term strength and durability evaluation of sisal fiber composites. In: Durability and life prediction in biocomposites, fibre-reinforced composites and hybrid composites, pp 211–255

  42. Matalkah F, Soroushian P, Balchandra A, Peyvandi A (2017) Characterization of alkali-activated nonwood biomass ash-based geopolymer concrete. J Mater Civ Eng 29(4):04016270

    Article  Google Scholar 

  43. Yang X, Zhang Y, Lin C (2022) Microstructure analysis and effects of single and mixed activators on setting time and strength of coal gangue-based geopolymers. Gels 8(13):195

    Article  Google Scholar 

  44. Mahmood A, Noman MT, Pechočiaková M, Amor N, Petrů M, Abdelkader M, Militký J, Sozcu S, Ul Hassan SZ (2021) Geopolymers and fiber-reinforced concrete composites in civil engineering. Polymers 13(13):2099

    Article  Google Scholar 

  45. Correia EA, Torres SM, Alexandre ME, Gomes KC, Barbosa NP, Barros SD (2013) Mechanical performance of natural fibers reinforced geopolymer composites. Mater Sci Forum 758:139–145

    Article  Google Scholar 

  46. Ranjithkumar M, Chandrasekaran P, Rajeshkumar G (2022) Characterization of sustainable natural fiber reinforced geopolymer composites. Polym Compos 43(6):3691–3698

    Article  Google Scholar 

  47. ASTM C1602M (2006) Standard specification for mixing water used in the production of hydraulic cement concrete. ASTM International

  48. ASTM C136 (2001) Standard test method for sieve analysis of fine and coarse aggregates. ASTM International

  49. ASTM C29 (2017) Standard test method for bulk density ("Unit Weight") and voids in aggregate. ASTM International

  50. ASTM C128 (2016) Standard test method for relative density (specific gravity) and absorption of fine aggregate. ASTM International

  51. ASTM C127 (2016) Standard test method for relative density (specific gravity) and absorption of coarse aggregate. ASTM International

  52. ASTM C566 (2019) Standard test method for total evaporable moisture content of aggregate by drying. ASTM International

  53. ASTM C131 (2020) Standard test method for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine. ASTM International

  54. ASTM C117 (2017) Standard test method for materials finer than 75-μm (No. 200) sieve in mineral aggregates by washing. ASTM International

  55. Hossain SS, Roy PK, Chang-Jun B (2021) Utilization of waste rice husk ash for sustainable geopolymer: a review. Constr Build Mater 310:125218

    Article  Google Scholar 

  56. ASTM C618 (2022) Standard specification for coal fly ash and raw or calcined natural Pozzolan for use in concrete. ASTM International

  57. García CJ, Navarro A, Ramírez J (2015) Estudio del yeso tradicional y sus aplicaciones en la arquitectura del pallars sobirá. https://core.ac.uk/download/pdf/46111557.pdf

  58. Gire Quispe A, Caceres Lupaca AG (2019) Evaluación de La Influencia del tratamiento superficial sobre el comportamiento mecánico de fibras de Ichu en biocompuestos a base de Pla. http://repositorio.unsa.edu.pe/handle/UNSA/11140

  59. Mori S, Charca S, Flores E, Salvastrano H (2019) Physical and thermal properties of novel native Andean natural fibers. J Natl Fibers 18(4):475–491

    Article  Google Scholar 

  60. Tenazoa C, Savastano H, Charca S, Quintana M, Flores E (2019) The effect of alkali treatment on chemical and physical properties of ichu and cabuya fibers. J Natl Fibers 18:923

    Article  Google Scholar 

  61. Candiotti S, Mantari JL, Flores CE, Charca S (2020) Assessment of the mechanical properties of peruvian Stipa Obtusa fibers for their use as reinforcement in composite materials. Compos A 135:105950

    Article  Google Scholar 

  62. ASTM C188 (2017) Standard test method for density of hydraulic cement. ASTM International

  63. ASTM D3822, "Standard Test Method for Tensile Properties of Single Textile Fibers," ASTM International, 2020.

  64. Teewara S, Mitzi F (2017) Effect of manufacturing process on the mechanisms and mechanical properties of fly ash-based geopolymer in ambient curing temperature. Mater Manuf Processes 32(5):461–467

    Article  Google Scholar 

  65. Weather Spark (2022) https://es.weatherspark.com/s/19294/2/Tiempo-promedio-en-el-oto%C3%B1o-en-Chiclayo-Per%C3%BA#Figures-SolarEnergy

  66. ASTM C39/C39M (2019) ASTM C39/C39M standard test method for compressive strength of cylindrical concrete specimens. ASTM International

  67. ASTM C138/C138M (2017) ASTM C138/C138M standard test method for density (unit weight), yield, and air content (gravimetric) of concrete—eLearning course. ASTM International

  68. ASTM C469/C469M (2021) Standard test method for static modulus of elasticity and Poisson’s ratio of concrete in compression. ASTM International

  69. ASTM C78 (2022) Standard test method for flexural strength of concrete (using simple beam with third-point loading). ASTM International

  70. ASTM C496 (1996) Standard test method for splitting tensile strength of cylindrical concrete specimens. ASTM International

  71. ASTM E1252-21 (2021) Standard practice for general techniques for obtaining infrared spectra for qualitative analysis. ASTM International

  72. ASTM E1131 (2020) Standard test method for compositional analysis by thermogravimetry—TGA. ASTM International

  73. Torres-Carrasco M, Puertas F (2017) Alkaline activation of different aluminosilicates as an alternative to Portland cement: alkali activated cements or geopolymers. Rev Ing Constr 32(2):5–12

    Article  Google Scholar 

  74. Davidovits J (2005) Geopolymers inorganic polymeric new materials. J Therm Anal Calorim 37(8):1633–1656

    Article  Google Scholar 

  75. Liew Y, Kamarudin H, Al Bakri AM, Bnhussain M, Luqman M, Khairul Nizar I, Ruzaidi C, Heah C (2012) Optimization of solids-to-liquid and alkali activator ratios of calcined kaolin geopolymeric powder. Constr Build Mater 37:440–451

    Article  Google Scholar 

  76. da Silva Alves LC, dos Reis Ferreira RA, Bellini Machado L, de Castro Motta LA (2019) Optimization of metakaolin-based geopolymer reinforced with sisal fibers. Ind Crops Prod 139:111551

    Article  Google Scholar 

  77. Bellum RR, Venkatesh C, Madduru SRC (2021) Influence of red mud on performance enhancement of fly ash-based geopolymer concrete. Innov Infrastruct Solut 6(4):215

    Article  Google Scholar 

  78. Diab MA (2022) Enhancing class F fly ash geopolymer concrete performance using lime and steam curing. J Eng Appl Sci 69(1):59

    Article  Google Scholar 

  79. Guo L, Zhou M, Wang X, Li C, Jia H (2022) Preparation of coal gangue-slag-fly ash geopolymer grouting materials. Constr Build Mater 328:126997

    Article  Google Scholar 

  80. Zhang M, Zhao M, Zhang G, El-Korchi T, Tao M (2017) A multiscale investigation of reaction kinetics, phase formation, and mechanical properties of metakaolin geopolymers. Cement Concr Compos 78:21–32

    Article  Google Scholar 

  81. Kljajević L, Nenadović M, Ivanović M, Bučevac D, Mirković M, Nikolić NM, Nenadović S (2022) Heat treatment of geopolymer samples obtained by varying concentration of sodium hydroxide as constituent of alkali activator. Gels 8(6):333

    Article  Google Scholar 

  82. Redaoui D, Sahnoune F, Heraiz M, Raghdi A (2017) Mechanism and kinetic parameters of the thermal decomposition of gibbsite Al(OH)3 by thermogravimetric analysis. Acta Phys Pol Ser 131(3):562–565

    Article  Google Scholar 

  83. Elimbi A, Tchakoute HK, Kondoh M, Dika Manga J (2014) Thermal behavior and characteristics of fired geopolymers produced from local Cameroonian metakaolin. Ceram Int 40(3):4515–4520

    Article  Google Scholar 

  84. Bayat A, Ooholamini H, Farahani M (2022) Effect of bauxite residue inclusion on the strength, shrinkage, and abrasion of alkali-activated slag concrete. Innov Infrastruct Solut 7:331

    Article  Google Scholar 

  85. Yavuz E, Kul Gul NI (2022) Characterization of class C and F fly ashes based geopolymers incorporating silica fume. Ceram Int 48(21):32213–32225

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Doctoral Program of Civil Engineering of the Universidad Nacional de Santa for providing advice for the realization of this article. We are grateful to the Graduate School of the Doctoral Program of the Universidad Nacional del Santa for providing us with the opportunity and excellent advice for the preparation of this article.

Funding

The present research work has no source of financing; it is financed by the authors’ own resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sócrates Pedro Muñoz Pérez.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethical approval

The article has not been submitted to more than one journal, is an original work with new findings presented in the article, has not been submitted elsewhere in any form or language.

Informed consent

Formal consent is not required for this type of research.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz Pérez, S.P., Charca Mamani, S., Villena Zapata, L.I. et al. Influence of rice husk ash (RHA) with gypsum and ichu fibers in the processing of geopolymers. Innov. Infrastruct. Solut. 8, 211 (2023). https://doi.org/10.1007/s41062-023-01176-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-023-01176-9

Keywords

Navigation