Skip to main content

Advertisement

Log in

Sustainable water resource management through conjunctive use of groundwater and surface water: a review

  • Review
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

The estimations and projections for the global population show that the population is rising dramatically. Because of this, meeting the demands for infrastructure, food, and domestic and industrial water for such a large population is a critical issue for many nations. In addition, the quality and quantity of the water resources are declining as a result of overuse, climate change, and population growth. These alarming situations require an intermediate intervention to conserve and optimize the water uses. The conjunctive use of surface water and groundwater is an old but less emphasized technique practiced in many countries to fulfill human needs partially. Conjunctive use of water has the advantages such as the utilization of poor/saline water, maintaining the groundwater levels, reduction in waterlogging and secondary soil salination, reliable water availability, and increase in crop production. In line with these advantages, this study reviews the literature regarding the conjunctive use of surface and groundwater for sustainable development of irrigated agriculture. The global scenario of water resources and how the conjunctive water use aids sustainable development is first reported. Climate change, groundwater quality and conjunctive use for various basins are discussed in detail. The capabilities of various simulation–optimization models to plan water resources efficiently are presented with case studies. Reported studies indicate that by practicing the conjunctive use not only water resources are conserved but the issues like secondary soil salination and waterlogging are alleviated. The research gaps and conclusions are provided based on the literature review that may be useful for policymakers and researchers for future research and to plan the water resources sustainably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All the data taken in the manuscript are based on the literature study carried out in conjunctive water use field and those are available on reasonable request.

References

  1. Abdalla OAE (2009) Groundwater modeling in semiarid central Sudan: adequacy and long-term abstraction. Arab J Geosci 2(4):321–335

    Article  Google Scholar 

  2. Abeysingha NS, Singh M, Islam A, Sehgal VK (2016) Climate change impacts on irrigated rice and wheat production in Gomti River basin of India: a case study. Springerplus. https://doi.org/10.1186/s40064-016-2905-y

    Article  Google Scholar 

  3. Afshar A, Khosravi M, Molajou A (2021) Assessing adaptability of cyclic and non-cyclic approach to conjunctive use of groundwater and surface water for sustainable management plans under climate change. Water Resour Manag 35(11):3463–3479

    Article  Google Scholar 

  4. Aladejana JA, Kalin RM, Sentenac P, Hassan I (2020) Assessing the impact of climate change on groundwater quality of the shallow coastal aquifer of eastern dahomey basin, Southwestern Nigeria. Water (Switzerland) 12(1):224

    Google Scholar 

  5. An-Vo D-A, Mushtaq S, Reardon-Smith K (2015) Estimating the value of conjunctive water use at a system-level using nonlinear programing model. J Econ Soc Policy 17(2):163–182

    Google Scholar 

  6. An Y, Lu W, Yan X (2018) A surrogate-based simulation–optimization approach application to parameters’ identification for the HydroGeoSphere model. Environ Earth Sci. https://doi.org/10.1007/s12665-018-7806-7

    Article  Google Scholar 

  7. Andrews ES, Chung FI, Lund LR (1992) Multilayered, property-based simulation of conjunctive facilities. J water Resour Plan Manag 118(1):32–53

    Article  Google Scholar 

  8. Anwar AA, Ahmad W (2020) Precision surface irrigation with conjunctive water use. Sustain Water Resour Manag. https://doi.org/10.1007/s40899-020-00434-3

    Article  Google Scholar 

  9. Baalousha HM (2016) Development of a groundwater flow model for the highly parameterized Qatar aquifers. Model Earth Syst Environ. https://doi.org/10.1007/s40808-016-0124-8

    Article  Google Scholar 

  10. Badham J, Elsawah S, Guillaume JHA, Hamilton SH, Hunt RJ, Jakeman AJ, Pierce SA, Snow VO, Babbar-Sebens M, Fu B, Gober P, Hill MC, Iwanaga T, Loucks DP, Merritt WS, Peckham SD, Richmond AK, Zare F, Ames D, Bammer G (2019) Effective modeling for integrated water resource management: a guide to contextual practices by phases and steps and future opportunities. Environ Model Softw 116(2018):40–56

    Article  Google Scholar 

  11. Barlow PM, Ahlfeld DP, Dickerman DC (2003) Conjunctive-management models for sustained yield of stream-aquifer systems. J Water Resour Plan Manag 129(1):35–48

    Article  Google Scholar 

  12. Bhanja SN, Mukherjee A (2019) In situ and satellite-based estimates of usable groundwater storage across India: Implications for drinking water supply and food security. Adv Water Resour 126(February):15–23

    Article  Google Scholar 

  13. Bhattarai DP, Shakya NM (2019) Conjunctive use of water resources in sustainable development of agriculture in Terai Nepal. J Inst Eng 15(2):210–217

    Article  Google Scholar 

  14. Bobade S, Dhawale A, Garg V, Tapase A, Kadam D, Patil NK (2021) Evaluation and comparison of morphometric parameters of Savitri watershed, India. Innov Infrastruct Solut 6(2):1–20

    Article  Google Scholar 

  15. Booker JF, Howitt RE, Michelsen AM, Young RA (2012) Economics and the modeling of water resources and policies. Nat Resour Model J 25(1):1–42

    Google Scholar 

  16. Cai X, Wallington K, Shafiee-Jood M, Marston L (2018) Understanding and managing the food-energy-water nexus—opportunities for water resources research. Adv Water Resour 111(2017):259–273

    Article  Google Scholar 

  17. Chen TC, Hsieh TS, Shichiyakh RA (2021) Sustainable operation of surface-groundwater conjunctive use systems in the agricultural sector. J Water Land Dev 51:25–29

    Google Scholar 

  18. Cheng G, Li X, Zhao W, Xu Z, Feng Q, Xiao S, Xiao H (2014) Integrated study of the water–ecosystem–economy in the Heihe River Basin. Natl Sci Rev 1(3):413–428

    Article  Google Scholar 

  19. Christelis V, Kopsiaftis G, Mantoglou A (2019) Performance comparison of multiple and single surrogate models for pumping optimization of coastal aquifers. Hydrol Sci J 64(3):336–349

    Article  Google Scholar 

  20. Christelis V, Mantoglou A (2016) Pumping optimization of coastal aquifers assisted by adaptive metamodelling methods and radial basis functions. Water Resour Manag 30(15):5845–5859

    Article  Google Scholar 

  21. Coe JJ (1990) Conjunctive use—advantages, constraints, and examples. J Irrig Drain Eng 116(3):427–443

    Article  Google Scholar 

  22. Condon LE, Maxwell RM (2013) Implementation of a linear optimization water allocation algorithm into a fully integrated physical hydrology model. Adv Water Resour 60:135–147

    Article  Google Scholar 

  23. Cuthbert MO, Mackay R, Durand V, Aller MF, Greswell RB, Rivett MO (2010) Impacts of river bed gas on the hydraulic and thermal dynamics of the hyporheic zone. Adv Water Resour 33(11):1347–1358

    Article  Google Scholar 

  24. Van Dam JC, Singh R, Bessembinder JJE, Leffelaar PA, Bastiaanssen WGM, Jhorar RK, Kroes JG, Droogers P (2006) Assessing options to increase water productivity in irrigated river basins using remote sensing and modelling tools. Int J Water Resour Dev 22(1):115–133

    Article  Google Scholar 

  25. Daneshmand F, Karimi A, Nikoo MR, Bazargan-Lari MR, Adamowski J (2014) Mitigating socio-economic-environmental impacts during drought periods by optimizing the conjunctive management of water resources. Water Resour Manag 28(6):1517–1529

    Article  Google Scholar 

  26. Dillon P, Stuyfzand P, Grischek T, Lluria M, Pyne RDG, Jain RC, Bear J, Schwarz J, Wang W, Fernandez E, Stefan C, Pettenati M, van der Gun J, Sprenger C, Massmann G, Scanlon BR, Xanke J, Jokela P, Zheng Y, Rossetto R, Shamrukh M, Pavelic P, Murray E, Ross A, Bonilla Valverde JP, Palma Nava A, Ansems N, Posavec K, Ha K, Martin R, Sapiano M (2019) Sixty years of global progress in managed aquifer recharge. Hydrogeol J 27(1):1–30

    Article  Google Scholar 

  27. Doble RC, Crosbie RS (2017) Revue: Méthodes courantes et émergentes pour la modélisation de la recharge à l’échelle du bassin versant et de l’évapotranspiration d’eaux souterraines peu profondes. Hydrogeol J 25(1):3–23

    Article  Google Scholar 

  28. Dragoni W, Sukhija BS (2008) Climate change and groundwater: a short review. Geol Soc Spec Publ 288:1–12

    Article  Google Scholar 

  29. Du E, Tian Y, Cai X, Zheng Y, Han F, Li X, Zhao M, Yang Y, Zheng C (2022) Evaluating distributed policies for conjunctive surface water–groundwater management in large river basins: water uses versus hydrological impacts. Water Resour Res. https://doi.org/10.1029/2021WR031352

    Article  Google Scholar 

  30. Du E, Tian Y, Cai X, Zheng Y, Li X, Zheng C (2020) Exploring spatial heterogeneity and temporal dynamics of human–hydrological interactions in large river basins with intensive agriculture: a tightly coupled, fully integrated modeling approach. J Hydrol 591(July):125313

    Article  Google Scholar 

  31. Earman S, Dettinger M (2011) Potential impacts of climate change on groundwater resources—a global review. J Water Clim Change 2(4):213–229

    Article  Google Scholar 

  32. Elamri Y, Cheviron B, Lopez JM, Dejean C, Belaud G (2018) Water budget and crop modelling for agrivoltaic systems: application to irrigated lettuces. Agric Water Manag 208(2017):440–453

    Article  Google Scholar 

  33. Elango L, Jagadeshan G (2018) Clean and Sustainable Groundwater in India. Springer Hydrogeol. https://doi.org/10.1007/978-981-10-4552-3_2

    Article  Google Scholar 

  34. Falkenmark M, Rockström J (2006) The new blue and green water paradigm: breaking new ground for water resources planning and management. J Water Resour Plan Manag 132(3):129–132

    Article  Google Scholar 

  35. Favreau G, Cappelaere B, Massuel S, Leblanc M, Boucher M, Boulain N, Leduc C (2009) Land clearing, climate variability, and water resources increase in semiarid southwest Niger: a review. Water Resour Res 45(7):1–18

    Article  Google Scholar 

  36. Flores L, Bailey RT, Kraeger-Rovey C (2020) Analyzing the effects of groundwater pumping on an urban stream-aquifer system. J Am Water Resour Assoc 56(2):310–322

    Article  Google Scholar 

  37. Food W (2020) World food and agriculture—statistical pocketbook 2020

  38. Foster S, Van Steenbergen F (2010) Conjunctive groundwater use: A ‘lost opportunity’ for water management in the developing world? Hydrogeol J 19:959–962

    Article  Google Scholar 

  39. de Fraiture C, Wichelns D (2010) Satisfying future water demands for agriculture. Agric Water Manag 97(4):502–511

    Article  Google Scholar 

  40. Fuchs EH, Carroll KC, King JP (2018) Quantifying groundwater resilience through conjunctive use for irrigated agriculture in a constrained aquifer system. J Hydrol 565(May):747–759

    Article  Google Scholar 

  41. GK A (2010) The impact of low cost sanitation on groundwater contamination in the city of Addis Ababa. PhD Thesis, University of South Africa, Cape Town, South Africa

  42. Goes BJM, Clark AK, Bashar K (2021) Water allocation strategies for meeting dry-season water requirements for Ganges Kobadak Irrigation Project in Bangladesh. Int Jo Water Resour Dev 37(2):300–320

    Article  Google Scholar 

  43. Gorelick SM (1983) A review of distributed parameter groundwater management modeling methods. Water Resour Res 19(2):305–319

    Article  Google Scholar 

  44. van der Gun J (2020) Conjunctive water management. Report, 26

  45. Gupta PK (2020) Pollution load on indian soil–water systems and associated health hazards: a review. J Environ Eng. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001693

    Article  Google Scholar 

  46. Gupta RS, Goodmam AS (1985) Groundwater reservoir operation for drought management. J Water Resour Plan Manag ASCE 111(3):303–320

    Article  Google Scholar 

  47. Haghbin M, Sharafati A, Dixon B, Kumar V (2021) Application of soft computing models for simulating nitrate contamination in groundwater: comprehensive review, assessment and future opportunities. Arch Comput Methods Eng 28(5):3569–3591

    Article  Google Scholar 

  48. Harmancioglu NB, Barbaros F, Cetinkaya CP (2013) Sustainability issues in water management. Water Resour Manag 27:1867–1891

    Article  Google Scholar 

  49. Harrington GA, Walker GR, Love AJ, Narayan KA (1999) A compartmental mixing-cell approach for the quantitative assessment of groundwater dynamics in the Otway Basin, South Australia. J Hydrol 214(1–4):49–63

    Article  Google Scholar 

  50. Heuperman AF, Kapoor AS, Denecke HW (2002) Biodrainage—principles, experiences and applications. Rome 79

  51. Hinge G, Bharali B, Baruah A, Sharma A (2022) Integrated groundwater quality analysis using water quality index, GIS and multivariate technique: a case study of Guwahati City. Environ Earth Sci 81:1–15

    Article  Google Scholar 

  52. Iman C, Safavi HR, Dandy GC, Mohammad GH (2021) Integrated simulation-optimization framework for water allocation based on sustainability of surface water and groundwater resources. J Water Resour Plan Manag. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001339

    Article  Google Scholar 

  53. Jayakumar R, Lee E (2017) Climate change and groundwater conditions in the Mekong Region-a review. J Groundw Sci Eng 5(1):14–30

    Google Scholar 

  54. Joodavi A, Izady A, Karbasi Maroof MT, Majidi M, Rossetto R (2020) Deriving optimal operational policies for off-stream man-made reservoir considering conjunctive use of surface- and groundwater at the Bar dam reservoir (Iran). J Hydrol Reg Stud 31(August):100725

    Article  Google Scholar 

  55. Jurado A, Vàzquez-Suñé E, Carrera J, López de Alda M, Pujades E, Barceló D (2012) Emerging organic contaminants in groundwater in Spain: a review of sources, recent occurrence and fate in a European context. Sci Total Environ 440:82–94

    Article  Google Scholar 

  56. Kadam A, Wagh V, Patil S, Umrikar B, Sankhua R, Jacobs J (2021) Seasonal variation in groundwater quality and beneficial use for drinking, irrigation, and industrial purposes from Deccan Basaltic Region, Western India. Environ Sci Pollut Res 28(20):26082–26104

    Article  Google Scholar 

  57. Kahil MT, Dinar A, Albiac J (2015) Modeling water scarcity and droughts for policy adaptation to climate change in arid and semiarid regions. J Hydrol 522:95–109

    Article  Google Scholar 

  58. Karamouz M, Kerachian R, Zahraie B (2004) Monthly water resources and irrigation planning: case study of conjunctive use of surface and groundwater resources. J Irrig Drain Eng 130(5):391–402

    Article  Google Scholar 

  59. Kerebih MS, Keshari AK (2021) Distributed simulation-optimization model for conjunctive use of groundwater and surface water under environmental and sustainability restrictions. Water Resour Manag 35(8):2305–2323

    Article  Google Scholar 

  60. Kiptala JK, Mul ML, Mohamed YA, van der Zaag P (2018) Multiobjective analysis of green-blue water uses in a highly utilized basin: case study of Pangani Basin, Africa. J Water Resour Plan Manag 144(8):05018010

    Article  Google Scholar 

  61. Kumar S, Pavelic P, George B, Venugopal K, Nawarathna B (2013) Integrated modeling framework to evaluate conjunctive use options in a canal irrigated area. J Irrig Drain Eng 139(9):766–774

    Article  Google Scholar 

  62. Lapworth DJ, Baran N, Stuart ME, Ward RS (2012) Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut 163:287–303

    Article  Google Scholar 

  63. Latif M, James LD (1992) Conjunctive water use to control waterlogging and salinization. J Water Resour Plan Manag 117(6):611–628

    Article  Google Scholar 

  64. Li P, Qian H, Wu J (2018) Conjunctive use of groundwater and surface water to reduce soil salinization in the Yinchuan Plain, North-West China. Int J Water Resour Dev 34(3):337–353

    Article  Google Scholar 

  65. Liu L, Cui Y, Luo Y (2013) Integrated modeling of conjunctive water use in a canal-well irrigation district in the lower Yellow River Basin, China. J Irrig Drain Eng 139(9):775–784

    Article  Google Scholar 

  66. Mahjoub H, Mohammadi MM, Parsinejad M (2011) Conjunctive use modeling of groundwater and surface water. J Water Resour Prot 03:726–734

    Article  Google Scholar 

  67. Mainuddin M, Das Gupta A, Onta PR (1997) Optimal crop planning model for an existing groundwater irrigation project in Thailand. Agric Water Manag 33(1):43–62

    Article  Google Scholar 

  68. Marques GF, Lund JR, Howitt RE (2010) Modeling conjunctive use operations and farm decisions with two-stage stochastic quadratic programming. J Water Resour Plan Manag 136(3):386–394

    Article  Google Scholar 

  69. Matsukawa BJ, Member S, Finney BA, Willis R (1992) Conjunctive-use planning in mad river basin, California. J Wat Resour Plan Manag 118(2):115–132

    Article  Google Scholar 

  70. Mays LW (2013) Groundwater resources sustainability: past, present, and future. Water Resour Manag 27(13):4409–4424

    Article  Google Scholar 

  71. MB C (2010) Lessons from and assessment of Boussinesq aquifer modeling of a large fl uvial island in a dam-regulated river. Adv Water Resour 33:1359–1366

    Article  Google Scholar 

  72. Mengistu HA, Demlie MB, Abiye TA (2019) Review: Groundwater resource potential and status of groundwater resource development in Ethiopia. Hydrogeol J 27(3):1051–1065

    Article  Google Scholar 

  73. Milly PCD, Dunne KA, Vecchia AV (2005) Global pattern of trends in streamflow and water availability in a changing climate. Nature 438(7066):347–350

    Article  Google Scholar 

  74. Moradi-Jalal M, Bozorg Haddad O, Karney BW, Mariño MA (2007) Reservoir operation in assigning optimal multi-crop irrigation areas. Agric Water Manag 90(1–2):149–159

    Article  Google Scholar 

  75. Murad KFI, Hossain A, Fakir OA, Biswas SK, Sarker KK, Rannu RP, Timsina J (2018) Conjunctive use of saline and fresh water increases the productivity of maize in saline coastal region of Bangladesh. Agric Water Manag 204(April):262–270

    Article  Google Scholar 

  76. Nazari B, Liaghat A, Akbari MR, Keshavarz M (2018) Irrigation water management in Iran: implications for water use efficiency improvement. Agric Water Manag 208(June):7–18

    Article  Google Scholar 

  77. Nguyen DCH, Ascough JC, Maier HR, Dandy GC, Andales AA (2017) Optimization of irrigation scheduling using ant colony algorithms and an advanced cropping system model. Environ Model Softw 97:32–45

    Article  Google Scholar 

  78. Nikam NG, Regulwar DG (2015) Optimal operation of multipurpose reservoir for irrigation planning with conjunctive use of surface and groundwater. J Water Resour Prot 07(08):636–646

    Article  Google Scholar 

  79. Pandith M, Lavanya B (2021) Developement of groundwater irrigation in Telangana state: challenges, management and Way forward. J Geol Soc India 97:271–281

    Article  Google Scholar 

  80. Parsapour-Moghaddam P, Abed-Elmdoust A, Kerachian R (2015) A heuristic evolutionary game theoretic methodology for conjunctive use of surface and groundwater resources. Water Resour Manag 29(11):3905–3918

    Article  Google Scholar 

  81. Peralta RC, Cantiller RRA, Terry JE (1995) Optimal large-scale conjunctive water-use planning: case study. J Water Resour Plan Manag 121(December):471–478

    Article  Google Scholar 

  82. Peralta RC, Forghani A, Fayad H (2014) Multiobjective genetic algorithm conjunctive use optimization for production, cost, and energy with dynamic return flow. J Hydrol 511:776–785

    Article  Google Scholar 

  83. Perea RG, Moreno MÁ, da Silva Baptista VB, Córcoles JI (2020) Decision support system based on genetic algorithms to optimize the daily management of water abstraction from multiple groundwater supply sources. Water Resour Manag 34(15):4739–4755

    Article  Google Scholar 

  84. Piggott AR, Bobba AG, Novakowski KS (1996) Regression and inverse analyses in regional ground-water modeling. J Water Resour Plan Manag 122(1):1–10

    Article  Google Scholar 

  85. Prusty P, Farooq SH (2020) Seawater intrusion in the coastal aquifers of India—a review. HydroResearch 3:61–74

    Article  Google Scholar 

  86. Pulido-velazquez M (2004) Economic values for conjunctive use and water banking in southern California Economic values for conjunctive use and water banking in southern California

  87. Ramesh H, Mahesh A (2012) Conjunctive use of surface water and groundwater for sustainable water management. In: Sustainable development—energy, engineering and technologies—manufacturing and environment

  88. Rani R, Kumar SBS (2016) Conjunctive planning of surface and groundwater resources in canal conjunctive planning of surface and groundwater resources in canal command area of Odisha-a success story

  89. Rao SVN, Bhallamudi SM, Thandaveswara BS, Mishra GC (2004) Conjunctive use of surface and groundwater for coastal and deltaic systems. J Water Resour Plan Manag 130(3):255–267

    Article  Google Scholar 

  90. Rezaei F, Safavi HR, Zekri M (2017) A hybrid fuzzy-based multi-objective PSO algorithm for conjunctive water use and optimal multi-crop pattern planning. Water Resour Manag 31(4):1139–1155

    Article  Google Scholar 

  91. Rossman NR, Zlotnik VA (2013) Revue: Modélisation régionale des écoulements souterrains dans des bassins avec une forte irrigation dans des états sélectionnés de l’Ouest des Etats-Unis d’Amérique. Hydrogeol J 21(6):1173–1192

    Article  Google Scholar 

  92. Sabale R, Jose M (2021) Hydrological modeling to study impact of conjunctive use on groundwater levels in command area. J Indian Water Works Assoc 53(3):190–197

    Google Scholar 

  93. Sabale R, Jose M (2022) Optimization of conjunctive use of surface and groundwater by using LINGO and PSO in water resources management. Innov Infrastruct Solut. https://doi.org/10.1007/s41062-022-00750-x

    Article  Google Scholar 

  94. Safavi HR, Falsafioun M (2017) Conjunctive use of surface water and groundwater resources under deficit irrigation. J Irrig Drain Eng 143(2):05016012

    Article  Google Scholar 

  95. Sahuquillo A (1985) Groundwater in water resources planning: conjunctive use. Water Int 10(2):57–63

    Article  Google Scholar 

  96. Salem GSA, Kazama S, Shahid S, Dey NC (2018) Impacts of climate change on groundwater level and irrigation cost in a groundwater dependent irrigated region. Agric Water Manag 208(February):33–42

    Article  Google Scholar 

  97. Sampathkumar KM, Ramasamy S, Ramasubbu B, Karuppanan S, Lakshminarayanan B (2021) Hybrid optimization model for conjunctive use of surface and groundwater resources in water deficit irrigation system. Water Sci Technol 84(10–11):3055–3071

    Article  Google Scholar 

  98. Sanchis-Ibor C, Ortega-Reig M, Guillem-García A, Carricondo JM, Manzano-Juárez J, García-Mollá M, Royuela Á (2021) Irrigation post-modernization. Farmers envisioning irrigation policy in the region of Valencia (Spain). Agriculture (Switzerland) 11(4):1–21

    Google Scholar 

  99. Sandoval-Solis S, McKinney DC, Loucks DP (2011) Sustainability index for water resources planning and management. J Water Resour Plan Manag 137(5):381–390

    Article  Google Scholar 

  100. Schmid W, Hanson RT (2007) Simulation of intra- or transboundary surface-water-rights hierarchies using the farm process for MODFLOW-2000. J Water Resour Plan Manag 133(2):166–178

    Article  Google Scholar 

  101. Sedghamiz A, Heidarpour M, Nikoo MR, Eslamian S (2018) A game theory approach for conjunctive use optimization model based on virtual water concept. Civ Eng J 4(6):1315

    Article  Google Scholar 

  102. Seo SB, Mahinthakumar G, Sankarasubramanian A, Kumar M (2018) Conjunctive management of surface water and groundwater resources under drought conditions using a fully coupled hydrological model. J Water Resour Plan Manag 144(9):1–11

    Article  Google Scholar 

  103. Singh A (2014) Conjunctive use of water resources for sustainable irrigated agriculture. J Hydrol 519(PB):1688–1697

    Article  Google Scholar 

  104. Singh A (2015) Revue: Modèles informatiques pour la gestion des problèmes de ressources en eau de l’agriculture irriguée. Hydrogeol J 23(6):1217–1227

    Article  Google Scholar 

  105. Singh A, Panda SN (2012) Effect of saline irrigation water on mustard (Brassica juncea) crop yield and soil salinity in a semi-arid area of north India. Exp Agric 48(1):99–110

    Article  Google Scholar 

  106. Singh A, Panda SN (2013) Optimization and simulation modelling for managing the problems of water resources. Water Resour Manag 27(9):3421–3431

    Article  Google Scholar 

  107. Singh A, Panda SN, Saxena CK, Verma CL, Uzokwe VNE, Krause P, Gupta SK (2016) Optimization modeling for conjunctive use planning of surface water and groundwater for irrigation. J Irrig Drain Eng 142(3):04015060

    Article  Google Scholar 

  108. Singh RM, Shukla P (2016) Groundwater system simulation and management using visual MODFLOW and Arc-SWAT. J Water Resour Hydraul Eng 5(1):29–35

    Article  Google Scholar 

  109. Swain S, Taloor AK, Dhal L, Sahoo S, Al-Ansari N (2022) Impact of climate change on groundwater hydrology: a comprehensive review and current status of the Indian hydrogeology. Appl Water Sci 12(6):1–25

    Article  Google Scholar 

  110. Tian Y, Zheng Y, Wu B, Wu X, Liu J, Zheng C (2015) Modeling surface water-groundwater interaction in arid and semi-arid regions with intensive agriculture. Environ Model Softw 63:170–184

    Article  Google Scholar 

  111. Tyagi NK, Agrawal A, Sakthivadivel R, Ambast SK (2005) Water management decisions on small farms under scarce canal water supply: a case study from NW India. Agric Water Manag 77:180–195

    Article  Google Scholar 

  112. United Nations 2019 (2019) World-population-prospects-2019

  113. Venkatesh B, Chandramohan T, Purandara BK, Jose MK, Nayak PC (2018) Modeling of a river basin using SWAT model. Water Science and Technology Library

  114. Vieira J, Cunha MC, Nunes L, Monteiro JP, Ribeiro L, Stigter T, Nascimento J, Lucas H (2011) Optimization of the operation of large-scale multisource water-supply systems. J Water Resour Plan Manag 137(2):150–161

    Article  Google Scholar 

  115. Vincent L, Dempsey P, Vincent L, Dempsey P, Vincent L (1991) Conjuctive water use for irrigation: good theory, poor practice. Int J Water Resour Dev 9:227–245

    Article  Google Scholar 

  116. Wichelns D (2017) The water-energy-food nexus: Is the increasing attention warranted, from either a research or policy perspective? Environ Sci Policy 69:113–123

    Article  Google Scholar 

  117. Willis BR, Finney BA, Zhang D (1990) Water resources management in north China plain. J Water Resour Plan Manag 115(5):598–615

    Article  Google Scholar 

  118. Wu X, Zheng Y, Wu B, Tian Y, Han F, Zheng C (2015) Optimizing conjunctive use of surface water and groundwater for irrigation to address human-nature water conflicts: a surrogate modeling approach. Agric Water Manag 163:380–392

    Article  Google Scholar 

  119. Yeh WWG (2015) Revue: méthodes d’optimisation pour la modélisation et la gestion des eaux souterraines. Hydrogeol J 23(6):1051–1065

    Article  Google Scholar 

  120. Zhang X (2015) Conjunctive surface water and groundwater management under climate change. Front Environ Sci 3(SEP):1–10

    Google Scholar 

  121. Zhou X, Helmers M, Qi Z (2013) Modeling of subsurface tile drainage using MIKE SHE. Appl Eng Agric 29(6):865–873

    Google Scholar 

  122. Zomorodian M, Lai SH, Homayounfar M, Ibrahim S, Pender G (2017) Development and application of coupled system dynamics and game theory: a dynamic water conflict resolution method. PLoS ONE 12(12):e0188489

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to National Institute of Hydrology, Belagavi, to their continuous supports. Also, the authors extend gratitude to all those researchers, scientist and authors who are having great research work in this field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjeet Sabale.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabale, R., Venkatesh, B. & Jose, M. Sustainable water resource management through conjunctive use of groundwater and surface water: a review. Innov. Infrastruct. Solut. 8, 17 (2023). https://doi.org/10.1007/s41062-022-00992-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-022-00992-9

Keywords

Navigation