Skip to main content

Advertisement

Log in

Review: Optimization methods for groundwater modeling and management

Revue: Méthodes d’optimisation pour la modélisation et la gestion des eaux souterraines

Revisión: Métodos de optimización para el modelado y manejo del agua subterránea

综述:地下水模拟和管理的最优化方法

Revisão: Métodos de otimização para modelagem e gerenciamento de águas subterrâneas

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Optimization methods have been used in groundwater modeling as well as for the planning and management of groundwater systems. This paper reviews and evaluates the various optimization methods that have been used for solving the inverse problem of parameter identification (estimation), experimental design, and groundwater planning and management. Various model selection criteria are discussed, as well as criteria used for model discrimination. The inverse problem of parameter identification concerns the optimal determination of model parameters using water-level observations. In general, the optimal experimental design seeks to find sampling strategies for the purpose of estimating the unknown model parameters. A typical objective of optimal conjunctive-use planning of surface water and groundwater is to minimize the operational costs of meeting water demand. The optimization methods include mathematical programming techniques such as linear programming, quadratic programming, dynamic programming, stochastic programming, nonlinear programming, and the global search algorithms such as genetic algorithms, simulated annealing, and tabu search. Emphasis is placed on groundwater flow problems as opposed to contaminant transport problems. A typical two-dimensional groundwater flow problem is used to explain the basic formulations and algorithms that have been used to solve the formulated optimization problems.

Résumé

Les méthodes d’optimisation ont été utilisées pour la modélisation des eaux souterraines ainsi que pour la planification et la gestion de ces systèmes. Le présent article passe en revue et évalue les méthodes d’optimisation variées qui ont été utilisées pour apporter une solution au problème inverse d’identification (estimation) des paramètres, de démarche expérimentale et de planification et gestion des eaux souterraines. Le problème inverse d’identification des paramètres concerne la détermination optimale des paramètres du modèle faisant appel aux observations sur le niveau de l’eau. En général, la démarche expérimentale optimale vise à atteindre des stratégies d’échantillonnage qui permette d’estimer les paramètres non connus du modèle. Un objectif classique de la planification d’une utilisation conjuguée optimale des eaux de surface et des eaux souterraines est de minimiser les coûts opérationnels de la réponse à la demande en eau. Les méthodes d’optimisation incluent des techniques de programmation mathématique, telles que la programmation linéaire, la programmation quadratique, la programmation dynamique, la programmation stochastique, la programmation non linéaire et des algorithmes de recherche globale comme les algorithmes génétiques, le recuit simulé et la recherche avec tabou. L’accent est mis sur les problèmes d’écoulement souterrain par opposition aux problèmes de transfert de contaminants. Le problème-type d’écoulement souterrain bi-dimensionnel est utilisé pour expliciter les formulations de base et les algorithmes employés pour résoudre les problèmes d’optimisation formulés.

Resumen

Los métodos de optimización se han utilizado en la modelación, planificación y manejo de los sistemas de agua subterránea. Este trabajo revisa y evalúa los distintos métodos de optimización que han sido usados para resolver el problema inverso de la identificación de parámetros (estimación), diseño experimental y planificación y manejo del agua subterránea. Se discuten varios criterios de selección de modelos, así como los criterios usados para la discriminación del modelo. El problema inverso de la identificación de parámetros se refiere a la determinación óptima de los parámetros del modelo usando observaciones de niveles de agua. En general, el diseño óptimo experimental busca encontrar estrategias de muestreo con el fin de estimar los parámetros desconocidos del modelo. Un objetivo típico de óptima planificación de uso conjuntivo de agua superficial y agua subterránea es minimizar los costos operativos de la demanda de agua. Los métodos de optimización incluyen técnicas de programación matemática, tales como programación lineal, programación cuadrática, programación dinámica, programación estocástica, programación no lineal, y la búsqueda global de algoritmos, tales como algoritmos genéticos, de recocidos simulados y de búsqueda tabú. Se hace hincapié sobre los problemas de flujo de las aguas subterráneas en contraposición a los problemas del transporte de contaminantes. Se utiliza un típico problema de flujo bidimensional de agua subterránea para explicar las formulaciones básicas y los algoritmos que han sido usados para resolver los problemas de optimización formulados.

摘要

最优化方法用于地下水模拟以及用于地下水系统的规划和管理。本文综述和评估了用于解决参数识别(估算)、试验设计和地下水挂会和管理逆问题的各种最优化方法。探讨了各种模型选择标准,以及探讨了用于模型识别标准。参数识别的逆问题采用水文观测数据关注模型参数的最优化确定。总的来说,最优化试验设计寻求找到采样策略,以估算未知的模型参数。地表水和地下水最优化联合利用规划中一个典型的目标就是在满足供水需求的情况下尽量减少运行费用。最优化方法包括数学编程技术,诸如线性编程、二次方编程、动态编程、随机编程、非线性编程及全局搜寻算法,诸如遗传算法、模拟的处理及禁忌算法。重点强调了与污染物运移问题对立的地下水流问题。利用典型的二维地下水流问题解释用于解决所阐述的最优化问题的基本构想和算法。

Resumo

Os métodos de otimização têm sido utilizados tanto para a modelagem de águas subterrâneas quanto para o planejamento e gerenciamento desses sistemas. Esse artigo revisa e avalia diversos métodos de otimização que têm sido utilizados para resolver o problema inverso da identificação (estimação) de parâmetros, delineamento experimental e planejamento e gerenciamento de águas subterrâneas. São discutidos vários critérios de seleção de modelos, assim como critérios usados para o descarte de modelos. O problema inverso de identificação de parâmetros consiste na determinação de parâmetros ótimos do modelo por intermédio de observações de níveis de água. O planejamento ótimo de experimentos, por sua vez, busca estratégias de amostragem necessárias para tal estimação de parâmetros desconhecidos do modelo. No planejamento integrado ótimo entre águas superficiais e subterrâneas, o objetivo típico é minimizar os custos operacionais de atendimento à demanda. Os métodos de otimização incluem técnicas de programação matemática, como programação linear, programação quadrática, programação dinâmica, programação estocástica, programação não-linear e os algoritmos de busca global, como algoritmos genéticos, recozimento simulado (simulated anneling) e busca tabu. É dada ênfase em problemas de escoamento de águas superficiais, diferentemente dos problemas de transporte de contaminantes. As formulações básicas dos métodos e seus algoritmos, que tem sido utilizados para resolver os problemas de otimização formulados, são discutidos a partir de um mesmo problema típico de escoamento bi-dimensional de águas subterrâneas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahlfeld DP, Mulligan AE (2000) Optimal management of flow in groundwater systems. Academic, San Diego

    Google Scholar 

  • Akaike H (1974) New look at statistical-model identification. IEEE Trans Autom Control 19(6):716–723. doi:10.1109/TAC.1974.1100705

    Article  Google Scholar 

  • Banta ER, Hill MC, Poeter E, Doherty JE, Babendreler J (2008) Building model analysis applications with the Joint Universal Parameter IdenTification and Evaluation of Reliability (JUPITER) API. Comput Geosci 34(4):310–319. doi:10.1016/j.cageo.2007.03.016

    Article  Google Scholar 

  • Bau D, Mayer AS (2006) Stochastic management of pump-and-treat strategies using surrogate functions. Adv Water Resources 29(12):1901–1917

  • Becker L, Yeh WW-G (1972) Identification of parameters in unsteady open channel flows. Water Resour Res 8(4):956–965

    Article  Google Scholar 

  • Bhattacharjya R, Datta B (2005) Optimal management of coastal aquifers using linked simulation optimization approach. Water Resour Manag 19(3):295–320. doi:10.1007/s11269-005-3180-9

    Article  Google Scholar 

  • Boyce SE, Yeh WW-G (2014) Parameter-independent model reduction of transient groundwater flow models: application to inverse problems. Adv Water Resour 69:168–180. doi:10.1016/j.advwatres.2014.04.009

    Article  Google Scholar 

  • Byrd RH, Lu P, Nocedal J (1995) A limited memory algorithm for bound constrained optimization. SIAM J Sci Stat Comput 16(5):1190–1208

    Article  Google Scholar 

  • Carrera J, Neuman SP (1986) Estimation of aquifer parameters under transient and steady state conditions: 1. maximum likelihood method incorporating prior information. Water Resour Res 22(2):199–210

    Article  Google Scholar 

  • Carrera J, Alcolea AA, Medina A, Hidalgo J, Slooten LJ (2005) Inverse problem in hydrogeology. Hydrogeol J 13(1):206–222. doi:10.1007/s10040-004-0404-7

    Article  Google Scholar 

  • Cazemier W, Verstappen RWCP, Veldman AEP (1998) Proper orthogonal decomposition and low-dimensional models for driven cavity flows. Phys Fluids 10(7):1685–1699. doi:10.1063/1.869686

    Article  Google Scholar 

  • Certes C, de Marsily G (1991) Application of the pilot point method to the identification of aquifer transmissivities. Adv Water Resour 14(5):284–300

    Article  Google Scholar 

  • Chiu Y-C, Nishikawa T, Yeh WW-G (2010) An optimal pump and recharge management model for nitrate removal in the Warren Groundwater Basin, California. J Water Resour Plan Manag ASCE 136(3):299–308

    Article  Google Scholar 

  • Cleveland TG, Yeh WW-G (1990) Sampling network design for transport parameter identification. J Water Resour Plan Manag ASCE 116(6):764–783

    Article  Google Scholar 

  • Culver TB, Shoemaker CA (1992) Dynamic optimal-control for groundwater remediation with flexible management periods. Water Resour Res 28(3):629–641. doi:10.1029/91WR02826

    Article  Google Scholar 

  • Culver TB, Shoemaker CA (1993) Optimal-control for groundwater remediation by differential dynamic-programming with quasi-Newton approximations. Water Resour Res 19(4):823–831. doi:10.1029/92WR02480

    Article  Google Scholar 

  • de Marsily G, Lavedan G, Boucher M, Fasanino G (1984) Interpretation of interference tests in a well field using geostatistical techniques to fit the permeability distribution in a reservoir model. In: Verly G et al (eds) Geostatistics for natural resources characterization. Proceedings of the NATO Advanced Study Institute, Stanford Sierra Lodge, South Lake Tahoe, CA, September 16–17, 1983. Reidel, Norwell, MA, pp 831–849

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  • Doherty J (2003) Ground water model calibration using pilot points and regularization. Ground Water 41(2):170–177. doi:10.1111/j.1745-6584.2003.tb02580.x

    Article  Google Scholar 

  • Doherty J, Brebber L, Whyte P (1994) PEST: model-independent parameter estimation. Watermark, Brisbane, Australia

    Google Scholar 

  • Emch PG, Yeh WW-G (1998) Management model for conjunctive use of coastal surface water and groundwater”. J Water Resour Plan Manag ASCE 124(3):129–139

    Article  Google Scholar 

  • GAMS (2015) The general algebraic modeling system. http://www.gams.com/. Last accessed April 2015

  • Gerbrands J A N J (1981) On the relationships between SVD, KLT and PCA. 1980 Conference on Pattern Recognition, vol 14, Miami Beach, FL, December 2014, pp 375–381

  • Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley-Longman, Reading, MA

    Google Scholar 

  • Gorelick SM (1983) A review of distributed parameter groundwater-management modeling methods. Water Resour Res 19(2):305–319. doi:10.1029/WR019i002p00305

    Article  Google Scholar 

  • Hannan EJ (1980) The estimation of the order of an ARMA process. Ann Stat 8(5):1071–1081. doi:10.1214/aos/1176345144

    Article  Google Scholar 

  • Harbaugh AW (2005) MODFLOW-2005, the U.S. Geological Survey modular ground-water model: the ground-water flow process. US Geol Surv Techniques Methods 6-A16

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the U.S. Geological Survey modular ground-water model. US Geol Surv Open-File Rep 00-92

  • Hill MC (1992) A computer program (MODFLOWP) for estimating parameters of a transient, three-dimensional, ground-water flow model using nonlinear regression. US Geol Surv Open-File Rep 91-484, 358 pp

  • Hoeksema RJ, Kitanidis PK (1985) Analysis of the spatial structure of properties of selected aquifers. Water Resour Res 21(4):563–572. doi:10.1029/WR021i004p00563

    Article  Google Scholar 

  • Hsu NS, Yeh WW-G (1989) Optimum experimental design for parameter identification in groundwater hydrology. Water Resour Res 25(5):1025–1040

    Article  Google Scholar 

  • Hurvich CM, Tsai CL (1989) Regression and time-series model selection in small samples. Biometrika 76(2):297–307. doi:10.2307/2336663

    Article  Google Scholar 

  • Hyun Y, Lee KK (1998) Model identification criteria for inverse estimation of hydraulic parameters. Ground Water 36(2):230–236. doi:10.1111/j.1745-6584.1998.tb01088.x

    Article  Google Scholar 

  • Jha M, Datta B (2013) Three-dimensional groundwater contamination source identification using adaptive simulated annealing. J Hydrol Eng 18(3):307–317. doi:10.1061/(ASCE)HE.1943-5584.0000624

    Article  Google Scholar 

  • Jones L, Willis R, Yeh WW-G (1987) Optimal control of groundwater hydraulics using differential dynamic programming. Water Resour Res 23(11):2097–2106

    Article  Google Scholar 

  • Kashyap RL (1982) Optimal choice of AR and MA parts in autoregressive moving average models. IEEE Trans Pattern Anal Mach Intell 4(2):99–104

    Article  Google Scholar 

  • Knopman DS, Voss CI (1988) Discrimination among one-dimensional models of solute transport in porous-media: implications for sampling design. Water Resour Res 24(11):1859–1876. doi:10.1029/WR024i011p01859

    Article  Google Scholar 

  • Knopman DS, Voss CI (1989) Multiobjective sampling design for parameter-estimation and model discrimination in groundwater solute transport. Water Resour Res 25(10):2245–2258. doi:10.1029/WR025i010p02245

    Article  Google Scholar 

  • Knopman DS, Voss CI, Garabedian SP (1991) Sampling design for groundwater solute: tests of methods and analysis of Cape-Cod tracer test data. Water Resour Res 27(5):925–949. doi:10.1029/90WR02657

    Article  Google Scholar 

  • Kourakos G, Mantoglou A (2013) Development of a multi-objective optimization algorithm using surrogate models for coastal aquifer management. J Hydrol 479:13–23. doi:10.1016/j.jhydrol.2012.10.050

    Article  Google Scholar 

  • LaVenue AM, Pickens JF (1992) Application of a coupled adjoint sensitivity and kriging approach to calibrate a groundwater flow model. Water Resour Res 28(6):1543–1569

    Article  Google Scholar 

  • Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Quart Appl Math 2:164–168

    Google Scholar 

  • Lindo Systems Inc. (2015) LINGO 15.0: optimization modeling software for linear, nonlinear, and integer programming. www.lindo.com/products/lingo/. Last accessed April 2015

  • Louie P, Yeh WW-G, Hsu NS (1984) Multiobjective water resources management planning. J Water Resour Plan Manag Div ASCE 110–1:39–56

    Article  Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441

    Article  Google Scholar 

  • Marques GF, Lund JR, Howitt RE (2010) Modeling conjunctive use operations and farm decisions with two-stage stochastic quadratic programming. J Water Resour Plan Manag ASCE 136(3):386–394. doi:10.1061/(ASCE)WR.1943-5452.0000045

    Article  Google Scholar 

  • McLaughlin D, Townley LR (1996) A reassessment of the groundwater inverse problem. Water Resour Res 32(5):1131–1161

    Article  Google Scholar 

  • McPhee J, Yeh WW-G (2005) Optimal experimental design for parameter estimation and contaminant plume characterization in groundwater modeling, chapter 9. In: Berger MPF, Wong WK (ed) Applied optimal designs. Wiley, Chichester, UK, pp 219–245

  • McPhee J, Yeh WW-G (2008) Groundwater management using model reduction via empirical orthogonal functions. J Water Resour Plan Manag ASCE 134(2):161–170

    Article  Google Scholar 

  • Mugunthan P, Shoemaker CA, Regis RG (2005) Comparison of function approximation, heuristic, and derivative-based methods for automatic calibration of computationally expensive groundwater bioremediation models. Water Resour Res 41(11):1–17. doi:10.1029/2005WR004134

    Google Scholar 

  • Murtagh BA, Saunders MA (2003) MINOS 5.51 user’g Guide. Systems Optimization Laboratory, Stanford University and Huang Engineering Center, Stanford, CA

  • Nishikawa T, Yeh WW-G (1989) Optimal pumping test design for the parameter identification of groundwater systems. Water Resour Res 25(7):1737–1747

    Article  Google Scholar 

  • Pasetto D, Putti M, Yeh WW-G (2013) A reduced-order model for groundwater flow equation with random hydraulic conductivity: application to Monte Carlo methods. Water Resour Res 49:3215–3228. doi:10.1002/wrcr.20136

    Article  Google Scholar 

  • Peralta RC, Kalwij I (2012) Groundwater optimization handbook. CRC, Boca Raton, FL

  • Poeter EP, Hill MC (1997) Inverse models: a necessary next step in ground-water modeling. Ground Water 35(2):250–260. doi:10.1111/j.1745-6584.1997.tb00082.x

    Article  Google Scholar 

  • Poeter EP, Hill MC (1999) UCODE, a computer code for universal inverse modeling. Comput Geosci 25(4):457–462. doi:10.1016/S0098-3004(98)00149-6

    Article  Google Scholar 

  • Poeter EP, Hill MC, Banta ER, Mehl S, Chirstensen S (2005) UCODE 2005 and six other computer codes for universal sensitivity analysis, calibration, and uncertainty evaluation. US Geol Surv Tech Methods 6-A11, 283 pp

    Google Scholar 

  • RamaRao BS, LaVenue AM, de Marsily G, Marietta MG (1995) Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields: 1. theory and computational experiments. Water Resour Res 31(3):475–493

    Article  Google Scholar 

  • Regis RG, Shoemaker CA (2004) Local function approximation in evolutionary algorithms for the optimization of costly functions. IEEE Trans Evol Comput 8(5):490–505. doi:10.1109/TEVC.2004.835247

    Article  Google Scholar 

  • Regis RG, Shoemaker CA (2005) Constrained global optimization of expensive black box functions using radial basis functions. J Glob Optim 31(1):153–171. doi:10.1007/s10898-004-0570-0

    Article  Google Scholar 

  • Regis RG, Shoemaker CA (2013) A quasi-multistart framework for global optimization of expensive functions using response surface models. J Glob Optim 56(4):1719–1753. doi:10.1007/s10898-012-9940-1

    Article  Google Scholar 

  • Rogers LL, Dowla FU (1994) Optimal field-scale groundwater remediation using neural networks and the genetic algorithm. Water Resour Res 30(2):458–481

  • Schwarz G (1978) Estimating dimension of a model. Ann Stat 6(2):461–464. doi:10.1214/aos/1176344136

    Article  Google Scholar 

  • Siade AJ, Putti M, Yeh WWG (2010) Snapshot selection for groundwater model reduction using proper orthogonal decomposition. Water Resour Res 46:W08539. doi:10.1029/2009WR008792

    Google Scholar 

  • Siade AJ, Putti M, Yeh WWG (2012) Reduced order parameter estimation using quasilinearization and quadratic programming. Water Resour Res 48:W06502. doi:10.1029/2011WR011471

    Google Scholar 

  • Sreekanth J, Datta B (2010) Multi-objective management of saltwater intrusion in coastal aquifers using genetic programming and modular neural network based surrogate models. J Hydrol 393(3–4):245–257. doi:10.1016/j.jhydrol.2010.08.023

    Article  Google Scholar 

  • Steinberg DM, Hunter WG (1984) Experimental design: review and comment. Technometrics 26(2):71–97

    Article  Google Scholar 

  • Sun N-Z (1994) Inverse problems in groundwater modeling. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Sun N-Z, Yeh WW-G (1985) Identification of parameter structure in groundwater inverse problem. Water Resour Res 21(6):869–883

    Article  Google Scholar 

  • Sun N-Z, Yeh WW-G (2007) Development of objective-oriented groundwater models: 2. robust experimental design. Water Resour Res 43(2):W02421

    Google Scholar 

  • Sun N-Z, Yang S, Yeh WW-G (1998) A proposed stepwise regression method for model structure identification. Water Resour Res 34(10):2561–2572

    Article  Google Scholar 

  • Tonkin M, Doherty J (2005) A hybrid regularized inversion methodology for highly parameterized environmental models. Water Resour Res 41(10):W10412. doi:10.1029/2005WR003995

  • Tonkin M, Doherty J (2009) Calibration-constrained Monte Carlo analysis of highly parameterized models using subspace techniques Water Resour Res 45:W00B10. doi:10.1029/2007WR006678

  • Tsai FT-C, Li X (2008) Inverse groundwater modeling for hydraulic conductivity estimation using Bayesian model averaging and variance window. Water Resour Res 44(9):W09434. doi:10.1029/2007WR006576

    Google Scholar 

  • Tsai FT-C, Li X (2010) Reply to Comment on “Inverse groundwater modeling for hydraulic conductivity estimation using Bayesian model averaging and variance window” by Ye, M., D. Liu, S.P. Neuman, and P.D. Meyer. Water Resour Res 46:W02802. doi:10.1029/2009WR008591

    Google Scholar 

  • Tsai FT-C, Yeh WW-G (2004) Characterization and identification of aquifer heterogeneity with generalized parameterization and Bayesian estimation. Water Resour Res 40(10):W10102

    Google Scholar 

  • Tsai FT-C, Sun N-Z, Yeh WW-G (2003a) Global–local optimization for parameter structure identification in three-dimensional groundwater modeling. Water Resour Res 39(2):1043. doi:10.1029/2001 WR001135

    Google Scholar 

  • Tsai FT-C, Sun N-Z, Yeh WW-G (2003b) A combinatorial optimization scheme for parameter structure identification in ground-water modeling. Ground Water 41(2):156–169

    Article  Google Scholar 

  • Ushijima TT, Yeh WW-G (2013) Experimental design for estimating unknown groundwater pumping using genetic algorithm and reduced order model. Water Resour Res 49:1–12. doi:10.1002/wrcr.20513

    Article  Google Scholar 

  • Usunoff E, Carrera J, Mousavi SF (1992) An approach to the design of experiments for discriminating among alternative conceptual models. Adv Water Resour 15(3):199–214. doi:10.1016/0309-1708(92)90024-V

    Article  Google Scholar 

  • Vermeulen P, Heemink A, Stroet CT (2004) Reduced models for linear groundwater flow models using empirical orthogonal functions. Adv Water Resour 27:57–69

    Article  Google Scholar 

  • Vrugt JA, Stauffer PH, Woehling T, Robinson BA, Velimir VV (2008) Inverse modeling of subsurface flow and transport properties: a review with new developments. Vadose Zone J 7(2):843–864. doi:10.2136/vzj2007.0078

    Article  Google Scholar 

  • Wagner BJ (1995) Recent advances in simulation optimization groundwater-management modeling. Rev Geophys 33(Suppl S, part 2):1021–1028. doi:10.1029/95RG00394

    Article  Google Scholar 

  • Wagner JM, Shamir U, Nemati HR (1992) Groundwater quality management under uncertainty: stochastic-programming approaches and the value of information. Water Resour Res 28(5):1233–1246. doi:10.1029/92WR00038

    Article  Google Scholar 

  • Wagner JM, Shamir U, Marks DH (1994) Containing groundwater contamination: planning-models using stochastic-programming with recourse. Euro J Oper Res 77(1):1–26. doi:10.1016/0377-2217(94)90025-6

    Article  Google Scholar 

  • Willcox K, Peraire J (2002) Balanced model reduction via the proper decomposition. AIAA J 40(11):2323–2330

    Article  Google Scholar 

  • Willis R, Yeh WW-G (1987) Groundwater systems planning and management. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Yeh WW-G (1986) Review of parameter identification procedures in groundwater hydrology: the inverse problem. Water Resour Res 22–1:95–108

    Article  Google Scholar 

  • Yeh WW-G (1992) Systems analysis in ground-water planning and management. J Water Resour Plan Manag ASCE 118(3):224–237

    Article  Google Scholar 

  • Yeh WW-G, Yoon YS (1976) A systematic optimization procedure for the identification of inhomogeneous aquifer parameters. Advances in Groundwater Hydrology, American Water Resources Assoc., Middleburg, VA, pp 72–82

  • Yeh WW-G, Yoon YS (1981) Aquifer parameter identification with optimum dimension in parameterization. Water Resour Res 17–3:664–672

    Article  Google Scholar 

  • Yoon YS, Yeh WW-G (1976) Parameter identification in an inhomogeneous medium with the finite-element method. Soc Pet Eng J 16–4:217–226

    Article  Google Scholar 

  • Zhang W, Michaelis B (2003) Shape control with Karhunen-Loéve-decomposition: theory and experimental results. J Intell Mater Syst Struct 14(7):415–422. doi:10.1177/1045389X03034059

    Article  Google Scholar 

  • Zheng C, Wang P (1996) Parameter structure identification using tabu search and simulated annealing. Adv Water Resour 19(4):215–224. doi:10.1016/0309-1708(96)00047-4

    Article  Google Scholar 

  • Zhu C, Byrd RH, Nocedal J (1997) L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization. ACM Trans Math Software 23(4):550–560

    Article  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by National Science Foundation under award EAR-1314422. Partial support is also provided from an AECOM endowment. The author would like to thank the two reviewers for their constructive reviews and the guest editor for the summary comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William W-G Yeh.

Additional information

Published in the theme issue “Optimization for Groundwater Characterization and Management”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeh, W.WG. Review: Optimization methods for groundwater modeling and management. Hydrogeol J 23, 1051–1065 (2015). https://doi.org/10.1007/s10040-015-1260-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-015-1260-3

Keywords

Navigation