Skip to main content

Advertisement

Log in

Effect of Combined Metakaolin and Basalt Powder Additions to Laterite-Based Geopolymers Activated by Rice Husk Ash (RHA)/NaOH Solution

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The present study deals with the use of locally prepared rice husk ash (RHA)-based sodium silicate for alkaline activation of laterites (uncalcined (LNW) and calcined (LCA)). RHA-based activator (SSR) was prepared by adding as-collected RHA to 6 M NaOH at a solid/liquid mass ratio of 0.56. The various proportions of metakaolin (MK) and basalt powder (BA) influenced the final properties of the geopolymer products. After 28 days of curing at room temperature, XRD, SEM and FT-IR analyses were used to study the evolution phases. Uncalcined laterite-based formulations showed their highest compressive strength at 29.86 MPa with 20 wt.% of MK, whereas calcined ones showed the most elevated strength at 47.02 MPa, with the addition of 25 wt.% MK. Further additions above these thresholds tend to reduce strength and increase setting time. Substitution of calcined laterite with basalt powder permitted to control the porosity of samples at low values with the consequent reduction of strength. In general, the water absorption and apparent porosity decrease with addition of metakaolin in raw laterite-based formulations and relatively decrease with addition of basalt powder in calcined laterite-based formulations, while bulk density remains relatively constant. The locally produced RHA-based alkaline activator is efficient for laterite geopolymerization, resulting in products with robust mechanical and physical properties capable of fostering application in quality housing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

Code Availability

Not applicable

References

  1. Sjahrul M (2013) Use of Sodium Silicate from Rice Husk Ash Basic Materials for Coating Electrolytes in the Synthesis of Magnetite Nanoparticles, 46–56

  2. Abu R, Yahya R, Neon S (2016) Production of high purity amorphous Silica from Rice husk. Procedia Chem 19:189–195. https://doi.org/10.1016/j.proche.2016.03.092

    Article  CAS  Google Scholar 

  3. Hossain SKS, Mathur L, Roy PK (2018) ce pt us cr t, J Asian Ceram Soc 0. https://doi.org/10.1080/21870764.2018.1539210

  4. Tong KT, Vinai R, Soutsos MN (2018) Use of Vietnamese rice husk ash for the production of sodium silicate as the activator for alkali-activated binders. J Clean Prod 201:272–286. https://doi.org/10.1016/j.jclepro.2018.08.025

    Article  CAS  Google Scholar 

  5. Kamseu E, à Moungam LMB, Cannio M, Billong N, Chaysuwan D, Melo UC, Leonelli C (2017) Substitution of sodium silicate with rice husk ash-NaOH solution in metakaolin based geopolymer cement concerning reduction in global warming. J Clean Prod 142. https://doi.org/10.1016/j.jclepro.2016.10.164

  6. à Moungam LMB, Mohamed H, Kamseu E, Billong N, Melo UC (2017) Properties of Geopolymers Made from Fired Clay Bricks Wastes and Rice Husk Ash (RHA)-Sodium Hydroxide (NaOH) Activator Mater Sci Appl 08:537–552. https://doi.org/10.4236/msa.2017.87037

    Article  CAS  Google Scholar 

  7. Özkan İ (2016) Production of Sodium Silicate Cullets by Using Trona, 129 2–5. https://doi.org/10.12693/APhysPolA.129.451

  8. The origin, distribution and composition of laterite, 159 (1915) 154–159

  9. L. Associates (1971) Laterite and lateritic soils and other problem soils of Africa, 64–140

  10. Davidovits J, France S (2020) Ferro-sialate Geopolymers ( -Fe-O-Si-O-Al-O- ). https://doi.org/10.13140/RG.2.2.25792.89608/2

  11. Obonyo EA, Kamseu E, Lemougna PN, Tchamba AB, Melo UC, Leonelli C (2014) A Sustainable Approach for the Geopolymerization of Natural Iron-Rich Aluminosilicate Materials, 5535–5553. https://doi.org/10.3390/su6095535

  12. Kaze RC, à Moungam LMB, Djouka MLF, Nana A, Kamseu E, Melo UFC, Leonelli C (2017) The corrosion of kaolinite by iron minerals and the effects on geopolymerization. Appl Clay Sci 138:48–62. https://doi.org/10.1016/j.clay.2016.12.040

    Article  CAS  Google Scholar 

  13. Lassinantti Gualtieri M, Romagnoli M, Pollastri S, Gualtieri AF (2015) Inorganic polymers from laterite using activation with phosphoric acid and alkaline sodium silicate solution: mechanical and microstructural properties. Cem Concr Res 67:259–270. https://doi.org/10.1016/j.cemconres.2014.08.010

    Article  CAS  Google Scholar 

  14. Sontia Metekong JV, Kaze CR, Deutou JG, Venyite P, Nana A, Kamseu E, Melo UC, Tatietse TT (2020) Evaluation of performances of volcanic-ash-laterite based blended geopolymer concretes: mechanical properties and durability, J Build Eng https://doi.org/10.1016/j.jobe.2020.101935

  15. Kamseu E, Rodrigue C, Fekoua N, Melo UC, Rossignol S, Leonelli C (2020) Ferrisilicates formation during the geopolymerization of natural Fe-rich aluminosilicate precursors, 240. https://doi.org/10.1016/j.matchemphys.2019.122062

  16. Aluko O, Awolusi T, Adesina A (2019) Influence of Curing Media and Mixing Solution on the Compressive Strength of Laterized Concrete

  17. Lemougna PN, Melo UFC, Kamseu E, Tchamba AB (2011) Laterite based stabilized products for sustainable building applications in tropical countries: review and prospects for the case of Cameroon. Sustainability 3:293–305. https://doi.org/10.3390/su3010293

    Article  Google Scholar 

  18. Lemougna PN, Wang KT, Tang Q, Kamseu E, Billong N, Melo UC, Cui XM (2017) Effect of slag and calcium carbonate addition on the development of geopolymer from indurated laterite. Appl Clay Sci 148:109–117. https://doi.org/10.1016/j.clay.2017.08.015

    Article  CAS  Google Scholar 

  19. Lemougna PN, Madi AB, Kamseu E, Melo UC, Delplancke MP, Rahier H (2014) Influence of the processing temperature on the compressive strength of Na activated lateritic soil for building applications. Constr Build Mater 65:60–66. https://doi.org/10.1016/j.conbuildmat.2014.04.100

    Article  Google Scholar 

  20. Kaze RC, Myllyam L, Moungam B, Cannio M, Rosa R, Kamseu E, Melo UC, Leonelli C (2018) Microstructure and engineering properties of Fe2O3(FeO)-Al2O3-SiO2 based geopolymer composites, J Clean Prod 3. https://doi.org/10.1016/j.jclepro.2018.07.171

  21. Kaze CR, Venyite P, Nana A, Juvenal DN, Tchakoute K, Rahier H, Kamseu E, Melo UC, Leonelli C (2019) Meta-halloysite to improve compactness in iron-rich laterite-based alkali activated materials, Mater Chem Phys 122268. https://doi.org/10.1016/j.matchemphys.2019.122268, 122268

  22. Nkwaju RY, Djobo JNY, Nouping JNF, Huisken PWM, Deutou JGN, Courard L (2019) Applied Clay Science Iron-rich laterite-bagasse fi bers based geopolymer composite : Mechanical , durability and insulating properties. Appl Clay Sci 183:105333. https://doi.org/10.1016/j.clay.2019.105333

    Article  CAS  Google Scholar 

  23. Bewa CN, Tchakouté HK, Rüscher CH, Kamseu E, Leonelli C (2019) Influence of the curing temperature on the properties of poly ( phospho - ferro - siloxo ) networks from laterite, SN Appl Sci https://doi.org/10.1007/s42452-019-0975-5

  24. Kaze CR, Yankwa JN, Nana A, Tchakoute HK, Kamseu E, Melo UC, Rahier H (2018) Effect of silicate modulus on the setting, mechanical strength and microstructure of iron-rich aluminosilicate (laterite) based-geopolymer cured at room temperature. Ceram Int 44:21442–21450. https://doi.org/10.1016/j.ceramint.2018.08.205

    Article  CAS  Google Scholar 

  25. Kaze CR, Lecomte-Nana GL, Kamseu E, Camacho PS, Yorkshire AS, Provis JL, Duttine M, Wattiaux A, Melo UC (2021) Mechanical and physical properties of inorganic polymer cement made of iron-rich laterite and lateritic clay: a comparative study. Cem Concr Res 140:106320. https://doi.org/10.1016/j.cemconres.2020.106320

    Article  CAS  Google Scholar 

  26. B. V Rangan, B.V. Rangan, P. Fieaust, C. Faci (2008) Fly Ash-Based Geopolymer Concrete

  27. C. Republic (2005) C. Republic, Geopolymer materials based on fly ash, 49 195–204

  28. Aleem MIA, Arumairaj PD (2012) Geopolymer concrete-a review. Int J Eng Sci Emerg Technol 1:118–122

    Google Scholar 

  29. Rangan BV (2014) Geopolymer concrete for environmental protection

  30. More P, Kishanrao P (2013). Design of Geopolymer Concrete 2:1841–1844

    Google Scholar 

  31. Saraya MESI (2014) Study physico-chemical properties of blended cements containing fixed amount of silica fume, blast furnace slag, basalt and limestone, a comparative study. Constr Build Mater 72:104–112. https://doi.org/10.1016/j.conbuildmat.2014.08.071

    Article  Google Scholar 

  32. Bernal SA, Rose V, Provis JL (2014) The fate of iron in blast furnace slag particles during alkali-activation. Mater Chem Phys 146:1–5. https://doi.org/10.1016/j.matchemphys.2014.03.017

    Article  CAS  Google Scholar 

  33. Cheng TW, Chiu JP (2003) Fire-resistant geopolymer produced by granulated blast furnace slag, 16 205–210. https://doi.org/10.1016/S0892-6875(03)00008-6

  34. Damilola OM (2013) Syntheses, Characterization and Binding Strength of Geopolymers: A Review. Int. J. Mater. Sci. Appl.:2, 185. https://doi.org/10.11648/j.ijmsa.20130206.14

  35. Tchakouté HK, Rüscher CH, Kong S, Kamseu E, Leonelli C (2017) Thermal Behavior of Metakaolin-Based Geopolymer Cements Using Sodium Waterglass from Rice Husk Ash and Waste Glass as Alternative Activators, Waste and Biomass Valorization. 8. https://doi.org/10.1007/s12649-016-9653-7

  36. Tchadjié LN, Djobo JNY, Ranjbar N, Tchakouté HK, Kenne BBD, Elimbi A, Njopwouo D (2016) Potential of using granite waste as raw material for geopolymer synthesis. Ceram Int 42:3046–3055. https://doi.org/10.1016/j.ceramint.2015.10.091

    Article  CAS  Google Scholar 

  37. Nana A, Alomayri TS, Venyite P, Kaze RC, Assaedi HS, Nobouassia CB, Sontia JVM, Ngouné J, Kamseu E, Leonelli C (2020) Mechanical properties and microstructure of a Metakaolin-based inorganic polymer mortar reinforced with quartz sand, silicon. https://doi.org/10.1007/s12633-020-00816-4

  38. Kakali G, Perraki T, Tsivilis S, Badogiannis E (2001) Thermal treatment of kaolin : the effect of mineralogy on the pozzolanic activity, 73–80

  39. Myllyam L, Mohamed H, Kamseu E, Billong N (2017) Properties of Geopolymers Made from Fired Clay Bricks Wastes and Rice Husk Ash ( RHA ) -Sodium Hydroxide ( NaOH ) Activator, 537–552. https://doi.org/10.4236/msa.2017.87037

  40. ASTM C20–00, Standard Test Methods for Apparent Porosity , Water Absorption , Apparent Specific Gravity , and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water, Am. Soc. Test. Mater. 00 (2015) 1–3. https://doi.org/10.1520/C0020-00R10.2

  41. Khan MI, Alhozaimy AM (2011) Properties of natural pozzolan and its potential utilization in environmental friendly concrete. Can J Civ Eng 38:71–78. https://doi.org/10.1139/L10-112

    Article  CAS  Google Scholar 

  42. Tchakoute HK, Rüscher CH, Djobo JNY, Kenne BBD, Njopwouo D (2015) Influence of gibbsite and quartz in kaolin on the properties of metakaolin-based geopolymer cements. Appl Clay Sci 107:188–194. https://doi.org/10.1016/j.clay.2015.01.023

    Article  CAS  Google Scholar 

  43. Deutou NJG, Beda T, Biesuz M, Boubakar L, Melo UC, Kamseu E, Sglavo VM (2018) Design and characterization of porous mullite based semi-vitrified ceramics. Ceram Int 44:7939–7948. https://doi.org/10.1016/j.ceramint.2018.01.232

    Article  CAS  Google Scholar 

  44. Deutou JNG, Kamga VELS, Kaze RC, Kamseu E, Sglavo VM (2020) Thermal behaviour and phases evolution during the sintering of porous inorganic membranes. J Eur Ceram Soc 40:2151–2162. https://doi.org/10.1016/j.jeurceramsoc.2020.01.035

    Article  CAS  Google Scholar 

  45. Rodrigue Kaze C, Ninla Lemougna P, Alomayri T, Assaedi H, Adesina A, Kumar Das S, Lecomte-Nana GL, Kamseu E, Chinje Melo U, Leonelli C (2020) Characterization and performance evaluation of laterite based geopolymer binder cured at different temperatures. Constr Build Mater 121443:121443. https://doi.org/10.1016/j.conbuildmat.2020.121443

    Article  CAS  Google Scholar 

  46. Djangang CN, Tchamba AB, Kamseu E, Melo UC, Elimbi A, Ferrari AM, Leonelli C (2014) Reaction sintering and microstructural evolution in metakaolin-metastable alumina composites. J Therm Anal Calorim 117:1035–1045. https://doi.org/10.1007/s10973-014-3937-6

    Article  CAS  Google Scholar 

  47. Wang KT, He Y, Song XL, Cui XM (2015) Effects of the metakaolin-based geopolymer on high-temperature performances of geopolymer/PVC composite materials. Appl. Clay Sci. 114:586–592. https://doi.org/10.1016/j.clay.2015.07.008

    Article  CAS  Google Scholar 

  48. Boum RBE, Kaze CR, Nemaleu JGD, Djaoyang VB, Rachel NY, Ninla PL, Owono FM, Kamseu E (2020) Thermal behaviour of metakaolin–bauxite blends geopolymer: microstructure and mechanical properties, SN Appl. Sci. 2. https://doi.org/10.1007/s42452-020-3138-9

  49. Shinohara Y, Kohyama N (2004) Quantitative Analysis of Tridymite and Cristobalite Crystallized in Rice Husk Ash by Heating, 277–285

  50. Industries SM (1987) Transformation of tridymite to cristobalite below 1470°C in silica refractories, 22 2248–2252

  51. Summary V (1961). Transformation of Quartz to Cristobalite 81:35–41

    Google Scholar 

  52. Jones JB, Segnit ER (2007) Genesis of cristobalite and tridymite at low temperatures, 7614. https://doi.org/10.1080/00167617208728780

  53. Unasir M, Riwikantoro T, Ainuri MOZ, Arminto D (2015) Synthesis of SiO 2 nanopowders containing quartz and cristobalite phases from silica sands, 33 47–55. https://doi.org/10.1515/msp-2015-0008

  54. Saraya MEI, El-fadaly E (2017) Preliminary Study of Alkali Activation of Basalt : Effect of NaOH Concentration on Geopolymerization of Basalt, 58–76. https://doi.org/10.4236/msce.2017.511006

  55. Bich C, Ambroise J, Péra J (2009) Applied clay science in fl uence of degree of dehydroxylation on the pozzolanic activity of metakaolin. Appl Clay Sci 44:194–200. https://doi.org/10.1016/j.clay.2009.01.014

    Article  CAS  Google Scholar 

  56. Mohamed H, Giogetti J, Deutou N, Rodrigue C, Lynn K, Beleuk M (2020) Mechanical and microstructural properties of geopolymer mortars from meta - halloysite : effect of titanium dioxide ­ TiO 2 ( anatase and rutile ) content, SN Appl. Sci. 2. https://doi.org/10.1007/s42452-020-03396-5

  57. Djobo YJN, Elimbi A, Manga JD, Li IBD (2016) Partial replacement of volcanic ash by bauxite and calcined oyster shell in the synthesis of volcanic ash-based geopolymers. Constr Build Mater 113:673–681. https://doi.org/10.1016/j.conbuildmat.2016.03.104

    Article  CAS  Google Scholar 

  58. Elimbi A, Tchakoute HK, Njopwouo D (2011) Effects of calcination temperature of kaolinite clays on the properties of geopolymer cements. Constr Build Mater 25:2805–2812. https://doi.org/10.1016/j.conbuildmat.2010.12.055

    Article  Google Scholar 

  59. Tchakoute HK, Rüscher CH, Djobo JNY, Kenne BBD, Njopwouo D (2015) Applied clay science in fl uence of gibbsite and quartz in kaolin on the properties of metakaolin-based geopolymer cements. Appl Clay Sci 107:1–7. https://doi.org/10.1016/j.clay.2015.01.023

    Article  CAS  Google Scholar 

  60. Barbosa VFF, MacKenzie KJD (2003) Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate. Mater Res Bull 38:319–331. https://doi.org/10.1016/S0025-5408(02)01022-X

    Article  CAS  Google Scholar 

  61. Tchakouté HK, Melele SJK, Djamen AT, Kaze CR, Kamseu E, Nanseu CNP, Leonelli C, Rüscher CH (2020) Applied clay science microstructural and mechanical properties of poly ( sialate-siloxo ) networks obtained using metakaolins from kaolin and halloysite as aluminosilicate sources : a comparative study. Appl Clay Sci 186:105448. https://doi.org/10.1016/j.clay.2020.105448

    Article  CAS  Google Scholar 

  62. Slaty F, Khoury H, Rahier H, Wastiels J (2015) Durability of alkali activated cement produced from kaolinitic clay. Appl Clay Sci 104:229–237. https://doi.org/10.1016/j.clay.2014.11.037

    Article  CAS  Google Scholar 

  63. Nana A, Cyriaque R, Salman T, Suliman H, Giogetti J, Deutou N, Ngouné J, Kouamo H, Kamseu E (2021) Innovative porous ceramic matrices from inorganic polymer composites ( IPCs ): microstructure and mechanical properties. Constr Build Mater 273:122032. https://doi.org/10.1016/j.conbuildmat.2020.122032

    Article  CAS  Google Scholar 

  64. Nemaleu JGD, Bakaine Djaoyang V, Bilkissou A, Kaze CR, Boum RBE, Djobo JNY, Lemougna Ninla P, Kamseu E (2020) Investigation of groundnut Shell powder on development of lightweight Metakaolin based Geopolymer composite: mechanical and microstructural properties, silicon. https://doi.org/10.1007/s12633-020-00829-z

  65. Kumar S, Mohammed S, Adesina A, Mishra J (2020) Journal of Building Engineering Fresh , strength and microstructure properties of geopolymer concrete incorporating lime and silica fume as replacement of fly ash. J Build Eng 32:101780. https://doi.org/10.1016/j.jobe.2020.101780

    Article  Google Scholar 

Download references

Acknowledgments

The authors of this article wish to express their warmth gratitude to the African Academic of Science and the Royal Society of London for the FLAIR fellowship of African Academic of Science and the Royal Society N° FLR/R1/201402, which supported the characterization of samples. The authors also acknowledge the Local Materials Promotion Authorities (MIPROMALO) for giving access into their laboratory where raw materials’ preparation and formulations were carried out.

Funding

The characterization of samples was supported by Dr. Elie Kamseu, under the FLAIR fellowship of African Academic of Science and the Royal Society N° FLR/R1/201402,

Author information

Authors and Affiliations

Authors

Contributions

Venyite Paul: Conceptualization, Methodology, Investigation, Writing - original draft & Project administration. Eugene Charles Makone: Validation, Writing - review & editing, Visualization. Rodrigue Cyriaque Kaze: Validation, Visualization, Methodology, Writing - review & editing. Achile Nana: Methodology & Writing - review & editing. Juvenal Giogetti Deutou Nemaleu: writing - review & editing. Elie Kamseu: Conceptualization, Supervision & Resources. Uphie Chinje Melo: Conceptualization & Supervision. Cristina Leonelli: Resources, Writing - review & editing.

Corresponding authors

Correspondence to Paul Venyite, Rodrigue Cyriaque Kaze or Elie Kamseu.

Ethics declarations

This manuscript has been published elsewhere in any form or language and has not been submitted to more than one journal for simultaneous consideration.

Declaration on Conflict of Interest

The authors declare that they have no conflict of interest.

Consent to Participate

Note applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venyite, P., Makone, E.C., Kaze, R.C. et al. Effect of Combined Metakaolin and Basalt Powder Additions to Laterite-Based Geopolymers Activated by Rice Husk Ash (RHA)/NaOH Solution. Silicon 14, 1643–1662 (2022). https://doi.org/10.1007/s12633-021-00950-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-00950-7

Keywords

Navigation