Skip to main content
Log in

A review on suitability of using geopolymer concrete for rigid pavement

  • Review
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

Geopolymer concrete is made up of cheap industrial wastes like fly ash, ground granular blast furnace slag, rice husk ash, etc., in raw form, which needs activation by an alkali to form long polymerized strength inducing amorphous compound structure. It has been studied mainly for building and precast structures but not for application in rigid pavements. This paper has been formulated by reviewing individual studies of geopolymer concrete (GPC) on properties like strength, durability, abrasion resistance, and shrinkage resistance which will help us in understanding its behavior in lumpsum as a pavement quality concrete. Discussions on the effect of the mix constituents, i.e., raw materials and fibers, and also on curing conditions have been laid. The fatigue life of GPC has been highlighted which is essentially required for any pavement. Studies prove that geopolymer concrete mixtures with desired properties of a rigid pavement can be designed, even under ambient temperature curing conditions, which is a foremost factor for pavement construction. Finally, this review concludes that geopolymer concrete can serve as an easy, safe, and environment-friendly construction material for pavements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. IRC: 15-2002, Standard specifications and code of practice for construction of concrete roads, n.d.

  2. Chandra D (2021) Report_Ash_Yearly_2020_21

  3. Kumar S (2019) Recent trends in slag management and utilization in the steel industry. Miner Met Rev 71:94–102

    Google Scholar 

  4. Luo Z, Li W, Wang K, Castel A, Shah SP (2021) Comparison on the properties of ITZs in fly ash-based geopolymer and Portland cement concretes with equivalent flowability. Cem Concr Res 143:106392. https://doi.org/10.1016/j.cemconres.2021.106392

    Article  Google Scholar 

  5. Jallu M, Arulrajah A, Saride S, Evans R (2020) Flexural fatigue behavior of fly ash geopolymer stabilized-geogrid reinforced RAP bases. Constr Build Mater 254:119263. https://doi.org/10.1016/j.conbuildmat.2020.119263

    Article  Google Scholar 

  6. Zhang Z, Wang H, Zhu Y, Reid A, Provis JL, Bullen F (2014) Using fly ash to partially substitute metakaolin in geopolymer synthesis. Appl Clay Sci 88–89:194–201. https://doi.org/10.1016/j.clay.2013.12.025

    Article  Google Scholar 

  7. Hutagi A, Khadiranaikar RB, Zende AA (2020) Behavior of geopolymer concrete under cyclic loading. Constr Build Mater 246:118430. https://doi.org/10.1016/j.conbuildmat.2020.118430

    Article  Google Scholar 

  8. Luan C, Shi X, Zhang K, Utashev N, Yang F, Dai J, Wang Q (2021) A mix design method of fly ash geopolymer concrete based on factors analysis. Constr Build Mater 272:121612. https://doi.org/10.1016/j.conbuildmat.2020.121612

    Article  Google Scholar 

  9. Pasupathy K, Singh Cheema D, Sanjayan J (2021) Durability performance of fly ash-based geopolymer concrete buried in saline environment for 10 years. Constr Build Mater 281:122596. https://doi.org/10.1016/j.conbuildmat.2021.122596

    Article  Google Scholar 

  10. Wang YS, Di Peng K, Alrefaei Y, Dai JG (2021) The bond between geopolymer repair mortars and OPC concrete substrate: Strength and microscopic interactions. Cem Concr Compos 119:103991. https://doi.org/10.1016/j.cemconcomp.2021.103991

    Article  Google Scholar 

  11. Jayarajan G, Arivalagan S (2020) An experimental studies of geopolymer concrete incorporated with fly-ash and GGBS. Mater Today Proc 45:6915–6920. https://doi.org/10.1016/j.matpr.2021.01.285

    Article  Google Scholar 

  12. Tahir MFM, Abdullah MMAB, Hasan MRM, Zailani WWA (2019) Optimization of fly ash based geopolymer mix design for rigid pavement application. AIP Conf Proc. https://doi.org/10.1063/1.5118152

    Article  Google Scholar 

  13. Nuaklong P, Wongsa A, Boonserm K, Ngohpok C, Jongvivatsakul P, Sata V, Sukontasukkul P, Chindaprasirt P (2021) Enhancement of mechanical properties of fly ash geopolymer containing fine recycled concrete aggregate with micro carbon fiber. J Build Eng 41:102403. https://doi.org/10.1016/j.jobe.2021.102403

    Article  Google Scholar 

  14. Posi P, Teerachanwit C, Tanutong C, Limkamoltip S (2013) Lightweight geopolymer concrete containing aggregate from recycle lightweight block. Mater Des 52:580–586. https://doi.org/10.1016/j.matdes.2013.06.001

    Article  Google Scholar 

  15. Asayesh S, Shirzadi Javid AA, Ziari H, Mehri B (2021) Evaluating fresh state, hardened state, thermal expansion and bond properties of geopolymers for the repairing of concrete pavements under restrained conditions. Constr Build Mater 292:123398. https://doi.org/10.1016/j.conbuildmat.2021.123398

    Article  Google Scholar 

  16. Kabir SMA, Alengaram UJ, Jumaat MZ, Yusoff S, Sharmin A, Bashar II (2017) Performance evaluation and some durability characteristics of environmental friendly palm oil clinker based geopolymer concrete. J Clean Prod 161:477–492. https://doi.org/10.1016/j.jclepro.2017.05.002

    Article  Google Scholar 

  17. Chandrakanth V, Koniki S (2020) Effect of elevated temperature on geo-polymer concrete: a review. In: E3S web of conferences (ICMED 2020), pp 2–7 https://doi.org/10.1051/e3sconf/202018401090

  18. Divvala S (2021) Early strength properties of geopolymer concrete composites: an experimental study. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.03.002

    Article  Google Scholar 

  19. Natali A, Manzi S, Bignozzi MC (2011) Novel fiber-reinforced composite materials based on sustainable geopolymer matrix. Procedia Eng 21:1124–1131. https://doi.org/10.1016/j.proeng.2011.11.2120

    Article  Google Scholar 

  20. Si R, Guo S, Dai Q, Wang J (2020) Atomic-structure, microstructure and mechanical properties of glass powder modified metakaolin-based geopolymer. Constr Build Mater 254:119303. https://doi.org/10.1016/j.conbuildmat.2020.119303

    Article  Google Scholar 

  21. Amorim Júnior NS, Andrade Neto JS, Santana HA, Cilla MS, Ribeiro DV (2021) Durability and service life analysis of metakaolin-based geopolymer concretes with respect to chloride penetration using chloride migration test and corrosion potential. Constr Build Mater 287:122970. https://doi.org/10.1016/j.conbuildmat.2021.122970

    Article  Google Scholar 

  22. Wan Q, Rao F, Song S, García RE, Estrella RM, Patiño CL, Zhang Y (2017) Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios. Cem Concr Compos 79:45–52. https://doi.org/10.1016/j.cemconcomp.2017.01.014

    Article  Google Scholar 

  23. Bernal SA, Bejarano J, Garzón C, Mejía De Gutiérrez R, Delvasto S, Rodríguez ED (2012) Performance of refractory aluminosilicate particle/fiber-reinforced geopolymer composites. Compos B Eng 43:1919–1928. https://doi.org/10.1016/j.compositesb.2012.02.027

    Article  Google Scholar 

  24. Davidovits J (1991) Geopolymers. J Therm Anal 37:1633–1656. https://doi.org/10.1007/bf01912193

    Article  Google Scholar 

  25. Zhuang XY, Chen L, Komarneni S, Zhou CH, Tong DS, Yang HM, Yu WH, Wang H (2016) Fly ash-based geopolymer: clean production, properties and applications. J Clean Prod 125:253–267. https://doi.org/10.1016/j.jclepro.2016.03.019

    Article  Google Scholar 

  26. Rowles M, O’Connor B (2003) Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite. J Mater Chem 13:1161–1165. https://doi.org/10.1039/b212629j

    Article  Google Scholar 

  27. Williams RP, Hart RD, Van Riessen A (2011) Quantification of the extent of reaction of metakaolin-based geopolymers using X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. J Am Ceram Soc 94:2663–2670. https://doi.org/10.1111/j.1551-2916.2011.04410.x

    Article  Google Scholar 

  28. Duxson P, Mallicoat SW, Lukey GC, Kriven WM, van Deventer JSJ (2007) The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surf A Physicochem Eng Asp 292:8–20. https://doi.org/10.1016/j.colsurfa.2006.05.044

    Article  Google Scholar 

  29. Long T, Zhang H, Chen Y, Li Z, Xu J, Shi X, Wang Q (2018) Effect of sulphate attack on the flexural fatigue behaviour of fly ash–based geopolymer concrete. J Strain Anal Eng Des 53:711–718. https://doi.org/10.1177/0309324718783607

    Article  Google Scholar 

  30. Eisa MS, Basiouny ME, Fahmy EA (2021) Effect of metakaolin-based geopolymer concrete on the length of rigid pavement slabs. Innov Infrastruct Solut. https://doi.org/10.1007/s41062-021-00465-5

    Article  Google Scholar 

  31. Palankar N, Ravi Shankar AU, Mithun BM (2015) Studies on eco-friendly concrete incorporating industrial waste as aggregates. Int J Sustain Built Environ 4:378–390. https://doi.org/10.1016/j.ijsbe.2015.05.002

    Article  Google Scholar 

  32. Khan MSH, Castel A, Akbarnezhad A, Foster SJ, Smith M (2016) Utilisation of steel furnace slag coarse aggregate in a low calcium fly ash geopolymer concrete. Cem Concr Res 89:220–229. https://doi.org/10.1016/j.cemconres.2016.09.001

    Article  Google Scholar 

  33. Girish MG, Shetty KK, Rao Raja A (2018) Self-consolidating paving grade geopolymer concrete. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/431/9/092006

    Article  Google Scholar 

  34. Prior N (2020) Explore accelerated PCC pavement repairs using metakaolin-based geopolymer concrete.https://doi.org/10.4324/9781315721606-101

  35. Liu Y, Su Y, Xu G, Chen Y, You G (2022) Research progress on controlled low-strength materials: metallurgical waste slag as cementitious materials. Materials 15:1–35. https://doi.org/10.3390/ma15030727

    Article  Google Scholar 

  36. Hannanee F, Zaidi A, Ahmad R, Mustafa M, Bakri A, Zamree S, Rahim A, Yahya Z, Yuan L, Ediati R (2021) Geopolymer as underwater concreting material : a review. Constr Build Mater 291:123276. https://doi.org/10.1016/j.conbuildmat.2021.123276

    Article  Google Scholar 

  37. Assaedi H (2021) The role of nano-CaCO3 in the mechanical performance of polyvinyl alcohol fibre-reinforced geopolymer composites. Compos Interfaces 28:527–542. https://doi.org/10.1080/09276440.2020.1793096

    Article  Google Scholar 

  38. Lahoti M, Wong KK, Tan KH, Yang EH (2018) Effect of alkali cation type on strength endurance of fly ash geopolymers subject to high temperature exposure. Mater Des 154:8–19. https://doi.org/10.1016/j.matdes.2018.05.023

    Article  Google Scholar 

  39. He J, Jie Y, Zhang J, Yu Y, Zhang G (2013) Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cem Concr Compos 37:108–118. https://doi.org/10.1016/j.cemconcomp.2012.11.010

    Article  Google Scholar 

  40. Nazari A, Bagheri A, Riahi S (2011) Properties of geopolymer with seeded fly ash and rice husk bark ash. Mater Sci Eng A 528:7395–7401. https://doi.org/10.1016/j.msea.2011.06.027

    Article  Google Scholar 

  41. Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, Van Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci 42:2917–2933. https://doi.org/10.1007/s10853-006-0637-z

    Article  Google Scholar 

  42. Görhan G, Kürklü G (2014) The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures. Compos B Eng 58:371–377. https://doi.org/10.1016/j.compositesb.2013.10.082

    Article  Google Scholar 

  43. Part WK, Ramli M, Cheah CB (2015) An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products. Constr Build Mater 77:370–395. https://doi.org/10.1016/j.conbuildmat.2014.12.065

    Article  Google Scholar 

  44. Hardjito D, Wallah SE, Sumajouw DMJ, Rangan BV (2004) On the development of fly ash-based geopolymer concrete. ACI Mater J 101:467–472. https://doi.org/10.14359/13485

    Article  Google Scholar 

  45. AliAhmad M, Miri M, Rashki M (2017) Probabilistic and experimental investigating the effect of pozzolan and Lumachelle fine aggregates on roller compacted concrete properties. Constr Build Mater 151:755–766. https://doi.org/10.1016/j.conbuildmat.2017.06.107

    Article  Google Scholar 

  46. Abbasi SM, Ahmadi H, Khalaj G, Ghasemi B (2016) Microstructure and mechanical properties of a metakaolinite-based geopolymer nanocomposite reinforced with carbon nanotubes. Ceram Int 42:15171–15176. https://doi.org/10.1016/j.ceramint.2016.06.080

    Article  Google Scholar 

  47. Luna-Galiano Y, Fernández-Pereira C, Izquierdo M (2016) Contributions to the study of porosity in fly ash-based geopolymers. Relationship between degree of reaction, porosity and compressive strength. Mater Constr 66:98. https://doi.org/10.3989/mc.2016.10215

    Article  Google Scholar 

  48. Rattanasak U, Chindaprasirt P (2009) Influence of NaOH solution on the synthesis of fly ash geopolymer. Miner Eng 22:1073–1078. https://doi.org/10.1016/j.mineng.2009.03.022

    Article  Google Scholar 

  49. Qiu J, Zhao Y, Xing J, Sun X (2019) Fly ash/blast furnace slag-based geopolymer as a potential binder for mine backfilling: effect of binder type and activator concentration. Adv Mater Sci Eng. https://doi.org/10.1155/2019/2028109

    Article  Google Scholar 

  50. Awoyera PO, Kirgiz MS, Viloria A, Ovallos-Gazabon D (2020) Estimating strength properties of geopolymer self-compacting concrete using machine learning techniques. J Mater Res Technol 9:9016–9028. https://doi.org/10.1016/j.jmrt.2020.06.008

    Article  Google Scholar 

  51. Amran YHM, Alyousef R, Alabduljabbar H, El-Zeadani M (2020) Clean production and properties of geopolymer concrete: a review. J Clean Prod 251:119679. https://doi.org/10.1016/j.jclepro.2019.119679

    Article  Google Scholar 

  52. Chowdhury S, Mohapatra S, Gaur A, Dwivedi G, Soni A (2020) Study of various properties of geopolymer concrete: a review. Mater Today Proc 46:5687–5695. https://doi.org/10.1016/j.matpr.2020.09.835

    Article  Google Scholar 

  53. Guo X, Shi H, Dick WA (2010) Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cem Concr Compos 32:142–147. https://doi.org/10.1016/j.cemconcomp.2009.11.003

    Article  Google Scholar 

  54. Hadi MNS, Zhang H, Parkinson S (2019) Optimum mix design of geopolymer pastes and concretes cured in ambient condition based on compressive strength, setting time and workability. J Build Eng 23:301–313. https://doi.org/10.1016/j.jobe.2019.02.006

    Article  Google Scholar 

  55. Duxson P, Provis JL, Lukey GC, Mallicoat SW, Kriven WM, Van Deventer JSJ (2005) Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf A Physicochem Eng Asp 269:47–58. https://doi.org/10.1016/j.colsurfa.2005.06.060

    Article  Google Scholar 

  56. Ryu GS, Lee YB, Koh KT, Chung YS (2013) The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Constr Build Mater 47:409–418. https://doi.org/10.1016/j.conbuildmat.2013.05.069

    Article  Google Scholar 

  57. Joseph B, Mathew G (2012) Influence of aggregate content on the behavior of fly ash based geopolymer concrete. Sci Iran 19:1188–1194. https://doi.org/10.1016/j.scient.2012.07.006

    Article  Google Scholar 

  58. Olivia M, Nikraz H (2012) Properties of fly ash geopolymer concrete designed by Taguchi method. Mater Des 36:191–198. https://doi.org/10.1016/j.matdes.2011.10.036

    Article  Google Scholar 

  59. Shubbar AA, Sadique M, Shanbara HK, Hashim K (2020) The development of a new low carbon binder for construction as an alternative to cement. In: Lecture notes in civil engineering, vol 35, pp 205–213. https://doi.org/10.1007/978-981-13-7480-7_18

  60. Askarian M, Tao Z, Adam G, Samali B (2018) Mechanical properties of ambient cured one-part hybrid OPC-geopolymer concrete. Constr Build Mater 186:330–337. https://doi.org/10.1016/j.conbuildmat.2018.07.160

    Article  Google Scholar 

  61. De Silva P, Sagoe-Crenstil K, Sirivivatnanon V (2007) Kinetics of geopolymerization: role of Al2O3 and SiO2. Cem Concr Res 37:512–518. https://doi.org/10.1016/j.cemconres.2007.01.003

    Article  Google Scholar 

  62. De Vargas AS, Dal Molin DCC, Vilela ACF, Da Silva FJ, Pavão B, Veit H (2011) The effects of Na2O/SiO2 molar ratio, curing temperature and age on compressive strength, morphology and microstructure of alkali-activated fly ash-based geopolymers. Cem Concr Compos 33:653–660. https://doi.org/10.1016/j.cemconcomp.2011.03.006

    Article  Google Scholar 

  63. Xu H, Van Deventer JSJ (2000) The geopolymerisation of alumino-silicate minerals. Int J Miner Proc 59:247–266. https://doi.org/10.1016/S0301-7516(99)00074-5

    Article  Google Scholar 

  64. Palomo A, Grutzeck MW, Blanco MT (1999) Alkali-activated fly ashes: a cement for the future. Cem Concr Res 29:1323–1329. https://doi.org/10.1016/S0008-8846(98)00243-9

    Article  Google Scholar 

  65. Wongkvanklom A, Posi P, Kampala A, Kaewngao T, Chindaprasirt P (2021) Beneficial utilization of recycled asphaltic concrete aggregate in high calcium fly ash geopolymer concrete. Case Stud Constr Mater 15:e00615. https://doi.org/10.1016/j.cscm.2021.e00615

    Article  Google Scholar 

  66. Poloju KK, Srinivasu K (2020) Impact of GGBS and strength ratio on mechanical properties of geopolymer concrete under ambient curing and oven curing. Mater Today Proc 42:962–968. https://doi.org/10.1016/j.matpr.2020.11.934

    Article  Google Scholar 

  67. Abhilash P, Sashidhar C, Ramana Reddy IV (2016) Strength properties of fly ash and GGBS based geo-polymer concrete. Int J ChemTech Res 9:350–356

    Google Scholar 

  68. Sung G, Bok Y, Taek K, Soo Y (2015) The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Constr Build Mater 47:409–418. https://doi.org/10.1016/j.conbuildmat.2013.05.069

    Article  Google Scholar 

  69. Alzeer M, MacKenzie KJD (2012) Synthesis and mechanical properties of new fibre-reinforced composites of inorganic polymers with natural wool fibres. J Mater Sci 47:6958–6965. https://doi.org/10.1007/s10853-012-6644-3

    Article  Google Scholar 

  70. Pakravan HR, Latifi M, Jamshidi M (2017) Hybrid short fiber reinforcement system in concrete: a review. Constr Build Mater 142:280–294. https://doi.org/10.1016/j.conbuildmat.2017.03.059

    Article  Google Scholar 

  71. Bernal S, De Gutierrez R, Delvasto S, Rodriguez E (2010) Performance of an alkali-activated slag concrete reinforced with steel fibers. Constr Build Mater 24:208–214. https://doi.org/10.1016/j.conbuildmat.2007.10.027

    Article  Google Scholar 

  72. Zhang ZH, Yao X, Zhu HJ, Hua SD, Chen Y (2010) Preparation and mechanical properties of polypropylene fiber reinforced calcined kaolin-fly ash based geopolymer. J Cent South Univ Technol 4(2010):1139–1143. https://doi.org/10.1007/s11771

    Article  Google Scholar 

  73. Puertas F, Amat T, Fernández-Jiménez A, Vázquez T (2003) Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres. Cem Concr Res 33:2031–2036. https://doi.org/10.1016/S0008-8846(03)00222-9

    Article  Google Scholar 

  74. Zhang P, Han X, Zheng Y, Wan J, Hui D (2021) Effect of PVA fiber on mechanical properties of fly ash-based geopolymer concrete. Rev Adv Mater Sci 60:418–437. https://doi.org/10.1515/rams-2021-0039

    Article  Google Scholar 

  75. Guo X, Pan X (2018) Mechanical properties and mechanisms of fiber reinforced fly ash–steel slag based geopolymer mortar. Constr Build Mater 179:633–641. https://doi.org/10.1016/j.conbuildmat.2018.05.198

    Article  Google Scholar 

  76. Patil SS, Patil AA (2015) Properties of polypropylene fiber reinforced geopolymer concrete. Int J Curr Eng Technol 5:2909–2912

    Google Scholar 

  77. Vora PR, Dave UV (2013) Parametric studies on compressive strength of geopolymer concrete. Procedia Eng 51:210–219. https://doi.org/10.1016/j.proeng.2013.01.030

    Article  Google Scholar 

  78. Rovnaník P (2010) Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr Build Mater 24:1176–1183. https://doi.org/10.1016/j.conbuildmat.2009.12.023

    Article  Google Scholar 

  79. Vijai K, Kumutha R, Vishnuram BG (2010) Effect of types of curing on strength of geopolymer concrete. Int J Phys Sci 5:1419–1423

    Google Scholar 

  80. Neupane K, Sriravindrarajah R, Baweja D, Chalmers D (2015) Effect of curing on the compressive strength development in structural grades of geocement concrete. Constr Build Mater 94:241–248. https://doi.org/10.1016/j.conbuildmat.2015.07.005

    Article  Google Scholar 

  81. Noushini A, Babaee M, Castel A (2015) Suitability of heat-cured low-calcium fly ash-based geopolymer concrete for precast applications. Mag Concr Res 68:163–177. https://doi.org/10.1680/macr.15.00065

    Article  Google Scholar 

  82. Bernal SA, Provis JL, Walkley B, San Nicolas R, Gehman JD, Brice DG, Kilcullen AR, Duxson P, Van Deventer JSJ (2013) Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cem Concr Res 53:127–144. https://doi.org/10.1016/j.cemconres.2013.06.007

    Article  Google Scholar 

  83. Ismail I, Bernal SA, Provis JL, San Nicolas R, Hamdan S, Van Deventer JSJ (2014) Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cem Concr Compos 45:125–135. https://doi.org/10.1016/j.cemconcomp.2013.09.006

    Article  Google Scholar 

  84. Auqui NU, Baykara H, Rigail A, Cornejo MH, Villalba JL (2017) An investigation of the effect of migratory type corrosion inhibitor on mechanical properties of zeolite-based novel geopolymers. J Mol Struct 1146:814–820. https://doi.org/10.1016/j.molstruc.2017.06.066

    Article  Google Scholar 

  85. Luukkonen T, Abdollahnejad Z, Yliniemi J, Kinnunen P, Illikainen M (2018) One-part alkali-activated materials: a review. Cem Concr Res 103:21–34. https://doi.org/10.1016/j.cemconres.2017.10.001

    Article  Google Scholar 

  86. Provis JL, Palomo A, Shi C (2015) Advances in understanding alkali-activated materials. Cem Concr Res 78:110–125. https://doi.org/10.1016/j.cemconres.2015.04.013

    Article  Google Scholar 

  87. Li N, Shi C, Wang Q, Zhang Z, Ou Z (2017) Composition design and performance of alkali-activated cements. Mater Struct Mater Constr 50:1–11. https://doi.org/10.1617/s11527-017-1048-0

    Article  Google Scholar 

  88. Nath P, Sarker PK (2015) Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature. Cem Concr Compos 55:205–214. https://doi.org/10.1016/j.cemconcomp.2014.08.008

    Article  Google Scholar 

  89. Fang G, Ho WK, Tu W, Zhang M (2018) Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature. Constr Build Mater 172:476–487. https://doi.org/10.1016/j.conbuildmat.2018.04.008

    Article  Google Scholar 

  90. Deb PS, Nath P, Sarker PK (2014) The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Mater Des 62:32–39. https://doi.org/10.1016/j.matdes.2014.05.001

    Article  Google Scholar 

  91. Yuan Y, Zhao R, Li R, Wang Y, Cheng Z, Li F, John Z (2020) Frost resistance of fiber-reinforced blended slag and Class F fly ash-based geopolymer concrete under the coupling effect of freeze-thaw cycling and axial compressive loading. Constr Build Mater 250:118831. https://doi.org/10.1016/j.conbuildmat.2020.118831

    Article  Google Scholar 

  92. Shaikh FUA (2014) Effects of alkali solutions on corrosion durability of geopolymer concrete. Adv Concr Constr 2:109–123. https://doi.org/10.12989/acc.2014.2.2.109

    Article  Google Scholar 

  93. Nuaklong P, Sata V, Chindaprasirt P (2016) Influence of recycled aggregate on fly ash geopolymer concrete properties. J Clean Prod 112:2300–2307. https://doi.org/10.1016/j.jclepro.2015.10.109

    Article  Google Scholar 

  94. Thokchom S, Ghosh P, Ghosh S (2009) Effect of water absorption, porosity and sorptivity on durability of geopolymer mortars. J Eng Appl Sci 4:28–32

    Google Scholar 

  95. Deb PS, Sarker PK, Barbhuiya S (2016) Sorptivity and acid resistance of ambient-cured geopolymer mortars containing nano-silica. Cem Concr Compos 72:235–245. https://doi.org/10.1016/j.cemconcomp.2016.06.017

    Article  Google Scholar 

  96. Detphan S, Chindaprasirt P (2009) Preparation of fly ash and rice husk ash geopolymer. Int J Miner Metall Mater 16:720–726. https://doi.org/10.1016/S1674-4799(10)60019-2

    Article  Google Scholar 

  97. Somna K, Jaturapitakkul C, Kajitvichyanukul P, Chindaprasirt P (2011) NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel 90:2118–2124. https://doi.org/10.1016/j.fuel.2011.01.018

    Article  Google Scholar 

  98. Wongpa J, Kiattikomol K, Jaturapitakkul C, Chindaprasirt P (2010) Compressive strength, modulus of elasticity, and water permeability of inorganic polymer concrete. Mater Des 31:4748–4754. https://doi.org/10.1016/j.matdes.2010.05.012

    Article  Google Scholar 

  99. Ghosh K (2012) Effect of %Na2O and %Sio2 on apperent porosity and sorptivity of flyash based geopolymer. IOSR J Eng 2:96–101. https://doi.org/10.9790/3021-028196101

    Article  Google Scholar 

  100. Albitar M, Ali MSM, Visintin P, Drechsler M (2017) Durability evaluation of geopolymer and conventional concretes. Constr Build Mater 136:374–385. https://doi.org/10.1016/j.conbuildmat.2017.01.056

    Article  Google Scholar 

  101. Ganesan N, Abraham R, Raj SD (2015) Durability characteristics of steel fibre reinforced geopolymer concrete. Constr Build Mater 93:471–476. https://doi.org/10.1016/j.conbuildmat.2015.06.014

    Article  Google Scholar 

  102. Shaikh FUA (2016) Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates. Int J Sustain Built Environ 5:277–287. https://doi.org/10.1016/j.ijsbe.2016.05.009

    Article  Google Scholar 

  103. Givi AN, Rashid SA, Aziz FN, Salleh MA (2010) Contribution of rice husk ash to the properties of mortar and concrete: a review. J Am Sci 6:157–165

    Google Scholar 

  104. Gopala Krishna Sastry KVS, Sahitya P, Ravitheja A (2020) Influence of nano TiO2 on strength and durability properties of geopolymer concrete. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.03.139

    Article  Google Scholar 

  105. Weng TL, Lin WT, Cheng A (2013) Effect of metakaolin on strength and efflorescence quantity of cement-based composites. Sci World J. https://doi.org/10.1155/2013/606524

    Article  Google Scholar 

  106. Temuujin J, Minjigmaa A, Davaabal B, Bayarzul U, Ankhtuya A, Jadambaa T, Mackenzie KJD (2014) Utilization of radioactive high-calcium Mongolian flyash for the preparation of alkali-activated geopolymers for safe use as construction materials. Ceram Int 40:16475–16483. https://doi.org/10.1016/j.ceramint.2014.07.157

    Article  Google Scholar 

  107. Mohebi R, Behfarnia K, Shojaei M (2015) Abrasion resistance of alkali-activated slag concrete designed by Taguchi method. Constr Build Mater 98:792–798. https://doi.org/10.1016/j.conbuildmat.2015.08.128

    Article  Google Scholar 

  108. Cheyad SM, Hilo AN, Al-gasham TS (2021) Comparing the abrasion resistance of conventional concrete and geopolymer samples. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.11.029

    Article  Google Scholar 

  109. Ramujee K, Potharaju M (2014) Abrasion resistance of geopolymer composites. Procedia Mater Sci 6:1961–1966. https://doi.org/10.1016/j.mspro.2014.07.230

    Article  Google Scholar 

  110. Yan B, Duan P, Ren D (2017) Mechanical strength, surface abrasion resistance and microstructure of fly ash-metakaolin-sepiolite geopolymer composites. Ceram Int 43:1052–1060. https://doi.org/10.1016/j.ceramint.2016.10.039

    Article  Google Scholar 

  111. Nuaklong P, Sata V, Wongsa A, Srinavin K, Chindaprasirt P (2018) Recycled aggregate high calcium fly ash geopolymer concrete with inclusion of OPC and nano-SiO2. Constr Build Mater 174:244–252. https://doi.org/10.1016/j.conbuildmat.2018.04.123

    Article  Google Scholar 

  112. Zhang P, Wang K, Li Q, Wang J, Ling Y (2020) Fabrication and engineering properties of concretes based on geopolymers/alkali-activated binders: a review. J Clean Prod 258:120896. https://doi.org/10.1016/j.jclepro.2020.120896

    Article  Google Scholar 

  113. Collins F, Sanjayan JG (1999) Strength and shrinkage properties of alkali-activated slag concrete placed into a large column. Cem Concr Res 29:659–666. https://doi.org/10.1016/S0008-8846(99)00011-3

    Article  Google Scholar 

  114. Deb PS, Nath P, Sarker PK (2015) Drying shrinkage of slag blended fly ash geopolymer concrete cured at room temperature. Procedia Eng 125:594–600. https://doi.org/10.1016/j.proeng.2015.11.066

    Article  Google Scholar 

  115. Khan I, Xu T, Castel A, Ian R, Babaee M (2019) Risk of early age cracking in geopolymer concrete due to restrained shrinkage. Constr Build Mater 229:116840. https://doi.org/10.1016/j.conbuildmat.2019.116840

    Article  Google Scholar 

  116. Asayesh S, Akbar A, Javid S, Ziari H, Mehri B (2021) Evaluating fresh state, hardened State, thermal expansion and bond properties of geopolymers for the repairing of concrete pavements under restrained conditions. Constr Build Mater 292:123398. https://doi.org/10.1016/j.conbuildmat.2021.123398

    Article  Google Scholar 

  117. Ranjbar N, Mehrali M, Mehrali M, Alengaram UJ, Jumaat MZ (2016) High tensile strength fly ash based geopolymer composite using copper coated micro steel fiber. Constr Build Mater 112:629–638. https://doi.org/10.1016/j.conbuildmat.2016.02.228

    Article  Google Scholar 

  118. Ranjbar N, Mehrali M, Behnia A, Pordsari AJ, Mehrali M, Alengaram UJ, Jumaat MZ (2016) A comprehensive study of the polypropylene fiber reinforced fly ash based geopolymer. PLoS ONE. https://doi.org/10.1371/journal.pone.0147546

    Article  Google Scholar 

  119. Zhang ZH, Yao X, Zhu HJ, Hua SD, Chen Y (2009) Preparation and mechanical properties of polypropylene fiber reinforced calcined kaolin-fly ash based geopolymer. J Cent South Univ Technol. https://doi.org/10.1007/s11771

    Article  Google Scholar 

  120. Zhang Z, Yao X, Zhu H (2010) Potential application of geopolymers as protection coatings for marine concrete I. Basic properties. Appl Clay Sci 49:1–6. https://doi.org/10.1016/j.clay.2010.01.014

    Article  Google Scholar 

  121. Uysal M, Abbas MT, Cosgun T, Canpolat O, Al-mashhadani MM (2022) Evaluation of slag/fly ash based geopolymer concrete with steel, polypropylene and polyamide fibers. Constr Build Mater 325:126747. https://doi.org/10.1016/j.conbuildmat.2022.126747

    Article  Google Scholar 

  122. Xie T, Ozbakkaloglu T (2015) Behavior of low-calcium fly and bottom ash-based geopolymer concrete cured at ambient temperature. Ceram Int 41:5945–5958. https://doi.org/10.1016/j.ceramint.2015.01.031

    Article  Google Scholar 

  123. Ranjbar N, Talebian S, Mehrali M, Kuenzel C, Cornelis Metselaar HS, Jumaat MZ (2016) Mechanisms of interfacial bond in steel and polypropylene fiber reinforced geopolymer composites. Compos Sci Technol 122:73–81. https://doi.org/10.1016/j.compscitech.2015.11.009

    Article  Google Scholar 

  124. Rodrigue Kaze C, Ninla Lemougna P, Alomayri T, Assaedi H, Adesina A, Kumar Das S, Lecomte-Nana GL, Kamseu E, Chinje Melo U, Leonelli C (2021) Characterization and performance evaluation of laterite based geopolymer binder cured at different temperatures. Constr Build Mater 270:121443. https://doi.org/10.1016/j.conbuildmat.2020.121443

    Article  Google Scholar 

  125. Palankar N, Ravi Shankar AU, Mithun BM (2017) Investigations on alkali-activated slag/fly ash concrete with steel slag coarse aggregate for pavement structures. Int J Pavement Eng 18:500–512. https://doi.org/10.1080/10298436.2015.1095902

    Article  Google Scholar 

  126. Bernal SA, Mejía De Gutiérrez R, Provis JL (2012) Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends. Constr Build Mater 33:99–108. https://doi.org/10.1016/j.conbuildmat.2012.01.017

    Article  Google Scholar 

  127. Silva ACR, Silva FJ, Thaumaturgo C (1997) Fatigue behavior of geopolymer cemente concrete, 1–3

  128. Singhal D, Junaid MT, Jindal BB, Mehta A (2018) Mechanical and microstructural properties of fly ash based geopolymer concrete incorporating alccofine at ambient curing. Constr Build Mater 180:298–307. https://doi.org/10.1016/j.conbuildmat.2018.05.286

    Article  Google Scholar 

  129. Kato R, Fujiyama C, Ekaputri JJ (2019) Fatigue strength and deformation behavior of fly ash-based geopolymer concrete

  130. Ram Charan LV, Kumar SMK, Tejesh Kumar B, Gowda V, Sreenivasa Murthy A (2021) Fatigue behaviour of low concentration alkaline solution, Class-F flyash based geopolymer concrete. IJARIIE 7:61–66

    Google Scholar 

  131. Glasby T, Day J, Genrich R, Aldred J (2015) Gp-Airport, 11:1–9

  132. Tan J (2019) Evaluation of issues in using advanced and sustainable engineering materials a dissertation submitted by bachelor of engineering (honours) (Civil)

  133. Mahmood AH, Shen X, Parvez A, Aldred J, Foster SJ (2021) The university of performance of geopolymer concrete pavement at Wyndham street for city of Sydney: update November 2020 BY

  134. Bilodeau A, Malhotra VM (2000) High-volume fly ash system: concrete solution for sustainable development. ACI Struct J 97:41–48. https://doi.org/10.14359/804

    Article  Google Scholar 

  135. Mathew BJ, Sudhakar M, Natarajan C (2013) Strength, economic and sustainability characteristics of coal ash—GGBS based geopolymer concrete. Int J Comput Eng Res 3:207–212

    Google Scholar 

  136. Weil M, Dombrowski-Daube K, Buchwald A (2011) Geopolymer binders—Part 3: Ecological and economic analyses of geopolymer concrete mixes for external structural elements. ZKG Int 64:76–87

    Google Scholar 

  137. Thaarrini J, Dhivya S, Dhivya S (2016) Comparative study on the production cost of geopolymer and conventional concretes. Int J Civ Eng Res 7:117–124

    Google Scholar 

  138. Krishna RS, Mishra J, Zribi M, Adeniyi F, Saha S, Baklouti S, Shaikh FUA, Gökçe HS (2021) A review on developments of environmentally friendly geopolymer technology. Materialia 20:101212. https://doi.org/10.1016/j.mtla.2021.101212

    Article  Google Scholar 

  139. Zhao J, Tong L, Li B, Chen T, Wang C, Yang G, Zheng Y (2021) Eco-friendly geopolymer materials: a review of performance improvement, potential application and sustainability assessment. J Clean Prod 307:127085. https://doi.org/10.1016/j.jclepro.2021.127085

    Article  Google Scholar 

  140. Karthik S, Mohan KS (2021) A Taguchi approach for optimizing design mixture of geopolymer concrete incorporating fly ash, ground granulated blast furnace slag and silica fume. Crystals 11:1279

    Article  Google Scholar 

  141. Rao SM, Acharya IP (2014) Synthesis and characterization of fly ash geopolymer sand. J Mater Civ Eng 26:912–917. https://doi.org/10.1061/(asce)mt.1943-5533.0000880

    Article  Google Scholar 

  142. Venkatarama Reddy BV, Jagadish KS (2003) Embodied energy of common and alternative building materials and technologies. Energy Build 35:129–137. https://doi.org/10.1016/S0378-7788(01)00141-4

    Article  Google Scholar 

  143. Anvekar SR, Manjunatha LR, Anvekar SR, Sagari S, Archana K (2014) An economic and embodied energy comparison of geo-polymer, blended cement and traditional concretes. J Civ Eng Technol Res 1:33–40

    Google Scholar 

  144. Verma M, Dev N, Rahman I, Nigam M, Ahmed M, Mallick J (2022) Geopolymer concrete: a material for sustainable development in Indian construction industries. Crystals 12:514

    Article  Google Scholar 

  145. de Azevedo ARG, Marvila MT, Tayeh BA, Cecchin D, Pereira AC, Monteiro SN (2021) Technological performance of açaí natural fibre reinforced cement-based mortars. J Build Eng 33:101675. https://doi.org/10.1016/j.jobe.2020.101675

    Article  Google Scholar 

  146. Hamada H, Tayeh B, Yahaya F, Muthusamy K, Al-Attar A (2020) Effects of nano-palm oil fuel ash and nano-eggshell powder on concrete. Constr Build Mater 261:119790. https://doi.org/10.1016/j.conbuildmat.2020.119790

    Article  Google Scholar 

  147. Arafa M, Tayeh BA, Alqedra M, Shihada S, Hanoona H (2017) Investigating the effect of sulfate attack on compressive strength of recycled aggregate concrete. J Eng Res Technol JERT 4:137–143

    Google Scholar 

  148. Amin M, Tayeh BA, Saad Agwa I (2020) Investigating the mechanical and microstructure properties of fibre-reinforced lightweight concrete under elevated temperatures. Case Stud Constr Mater 13:e00459. https://doi.org/10.1016/j.cscm.2020.e00459

    Article  Google Scholar 

  149. Hamada HM, Skariah Thomas B, Tayeh B, Yahaya FM, Muthusamy K, Yang J (2020) Use of oil palm shell as an aggregate in cement concrete: a review. Constr Build Mater 265:120357. https://doi.org/10.1016/j.conbuildmat.2020.120357

    Article  Google Scholar 

  150. Tayeh BA, Hasaniyah MW, Zeyad AM, Awad MM, Alaskar A, Mohamed AM, Alyousef R (2020) Durability and mechanical properties of seashell partially-replaced cement. J Build Eng 31:101328. https://doi.org/10.1016/j.jobe.2020.101328

    Article  Google Scholar 

  151. Yang KH, Song JK, Song K-I (2013) Assessment of CO2 reduction of alkali-activated concrete. J Clean Prod 39:265–272. https://doi.org/10.1016/j.jclepro.2012.08.001

    Article  Google Scholar 

  152. Ichimiya KK, Hatanaka S, Atarashi D, Harada M, Kunieda, Goda H (2016) Committee report: JCI- TC155A technical: technical committee on application of geopolymer technology to construction field

  153. Van Dam TJ (2010) Geopolymer Concrete

Download references

Funding

There is no funding sources.

Author information

Authors and Affiliations

Authors

Contributions

Dadi Rambabu: conceptualization, data collection, writing- original draft, Shashi Kant Sharma: conceptualization, supervision, manuscript correction, M Abdul Akbar: conceptualization, supervision, manuscript correction.

Corresponding author

Correspondence to Dadi Rambabu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This research was performed in accordance with the ethical standards of the institutional and/or research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rambabu, D., Sharma, S.K. & Abdul Akbar, M. A review on suitability of using geopolymer concrete for rigid pavement. Innov. Infrastruct. Solut. 7, 286 (2022). https://doi.org/10.1007/s41062-022-00878-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-022-00878-w

Keywords

Navigation