Skip to main content
Log in

Laboratory investigation on the effect of a combination of xanthan gum and clay on the behavior of sandy soil

  • Practice-oriented paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

The chemical treatment process ensures an improvement in mechanical properties of the soil such as shear strength, permeability and bearing capacity. However, sometimes this technique has several negative effects on the environment depending on the chemical agent used. Remediation technology by biopolymers is one of the new promising ecological and environmentally friendly solutions. Therefore, this experimental work is carried out to investigate the effect of kaolin clay contents on the shear strength of sand treated with xanthan gum (XG). Direct shear tests were performed on Sand-Kaolin mixtures with Kaolin proportions of 0; 10; 20 and 30%, treated with xanthan gum content of 0.25% and 0.5%. The treated samples were cured for 7, 14 and 28 days before testing. Results have shown that the xanthan gum improved significantly the shear strength of sand-Kaolin mixtures compared to the clean sand. Furthermore, a considerable enhancement of cohesion and friction angle of soil was observed particularly for sand-Kaolin mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of materials

Not applicable.

Abbreviations

PH:

Potential of hydrogen

Fc:

Fines content

G S :

Specific density

D 50 :

Medium size

C U :

Uniformity coefficient

C C :

Coefficient of curvature

emin :

Void ratio

emax :

Maximum void ratio

Ip:

Plasticity index

W:

Water content

Kc:

Kaolin content

Sc:

Sand content

W i :

Initial water content

X G :

Xanthan gum content

γ d :

Dry density

W7 days :

Water content of specimen at 7 days

W14 days :

Water content of specimen at 14 days

W28 days :

Water content of specimen at 28 days

References

  1. Briançon L, Liausu P, Plumelle C et al (2018) Improvement and reinforcement of soils. Le Moniteur. Tome 1 et 2

  2. Kumar T, Abraham B, Sridharan A et al (2011) Bearing capacity improvement of loose sandy foundation soils through grouting. Int J Eng Res Appl (IJERA) 1(3):1026–1033

    Google Scholar 

  3. Khajeh A, Jamshidi Chenari R, Payan M (2020) A simple review of cemented non-conventional materials: soil composites. Geotech Geol Eng 38(2):1019–1040. https://doi.org/10.1007/s10706-019-01090-x

    Article  Google Scholar 

  4. Ghosh S, Lahiri D, Nag M et al (2021) Bacterial Biopolymer: its role in pathogenesis to effective biomaterials. Polymers (Basel) 13(8):1–28. https://doi.org/10.3390/polym13081242

    Article  Google Scholar 

  5. Chang I, Im J, Cho G-C (2016) Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering. Sustainability 8(3):251. https://doi.org/10.3390/su8030251

    Article  Google Scholar 

  6. Saxena S, Lastrico R (1978) static properties of lightly cemented sand. J Geotech Eng Div 104:1449–1464. https://doi.org/10.1061/AJGEB6.0000728

    Article  Google Scholar 

  7. Clough GW, Sitar N, Bachus RC et al (1981) Cemented sands under static loading. J Geotech Eng Div 107(6):799–817. https://doi.org/10.1061/AJGEB6.0001152

    Article  Google Scholar 

  8. Chang TS, Woods RD (1992) Effect of particle contact bond on shear modulus. J Geotech Eng 118(8):1216–1233. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:8(1216)

    Article  Google Scholar 

  9. Consoli N (2000) Influence of curing under stress on the triaxial response of cemented soils. Géotechnique 50:99–105. https://doi.org/10.1680/geot.2000.50.1.99

    Article  Google Scholar 

  10. Schnaid F, Prietto PDM, Consoli NC (2001) Characterization of cemented sand in triaxial compression. J Geotech Geoenviron Eng 127(10):857–868. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(857)

    Article  Google Scholar 

  11. Haeri SM, Hamidi A (2009) Constitutive modelling of cemented gravelly sands. Geomech Geoeng 4(2):123–139. https://doi.org/10.1080/17486020902855696

    Article  Google Scholar 

  12. Boutouba K, Benessalah I, Arab A et al (2019) Shear strength enhancement of cemented reinforced sand: role of cement content on the macro-mechanical behavior. Stud Geotech Mech 41(4):200–211. https://doi.org/10.2478/sgem-2019-0020

    Article  Google Scholar 

  13. Ivanov V, Chu J (2008) Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev Environ Sci Bio/Technol 7(2):139–153. https://doi.org/10.1007/s11157-007-9126-3

    Article  Google Scholar 

  14. Noh D-H, Cha W, Santamarina JC et al (2021) Effect of soft viscoelastic biopolymer on the undrained shear behavior of loose sands. J Geotech Geoenviron Eng 147(8):04021072. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002582

    Article  Google Scholar 

  15. Khatami HR, O’Kelly BC (2013) Improving mechanical properties of sand using biopolymers. J Geotech Geoenviron Eng 139(8):1402–1406. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000861

    Article  Google Scholar 

  16. Wiszniewski M, Cabalar AF (2014) Hydraulic conductivity of a biopolymer treated sand. New Front Geotech Eng 243:19–27. https://doi.org/10.1061/9780784413456.003

    Article  Google Scholar 

  17. Ham S-M, Chang I, Noh D-H et al (2018) Improvement of surface erosion resistance of sand by microbial biopolymer formation. J Geotech Geoenviron Eng 144(7):06018004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001900

    Article  Google Scholar 

  18. Kwon T-H, Noh D-H, Ham S-M et al (2017) Impact of bacterial biopolymer formation on hydraulic conductivity, erosion resistancem and seismic response of sands. In: 19th international conference on soil mechanics and geotechnical engineering of conference. International society for soil mechanics and geotechnical engineering

  19. Tran ATP, Chang I, Cho G-C (2019) Soil water retention and vegetation survivability improvement using microbial biopolymers in drylands. Geomech Eng 17(5):475–483. https://doi.org/10.12989/gae.2019.17.5.475

    Article  Google Scholar 

  20. Cho G-C and Chang I (2018) Cementless soil stabilizer–biopolymer. In: Proceedings of the 2018 world congress on advances in civil, environmental and materials research (ACEM18) Songdo Convensia, Incheon, Korea of conference

  21. Chen C, Peng Z, Gu J et al (2020) Exploring environmentally friendly biopolymer material effect on soil tensile and compressive behavior. Int J Environ Res Public Health 17(23):9032. https://doi.org/10.3390/ijerph17239032

    Article  Google Scholar 

  22. Fatehi H, Ong DEL, Yu J et al (2021) Biopolymers as green binders for soil improvement in geotechnical applications: a review. Geosciences 11(7):291. https://doi.org/10.3390/geosciences11070291

    Article  Google Scholar 

  23. Chang I, Lee M, Tran ATP et al (2020) Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. Transp Geotech 24:100385. https://doi.org/10.1016/j.trgeo.2020.100385

    Article  Google Scholar 

  24. Mendonça A, Morais PV, Pires AC et al (2021) A review on the importance of microbial biopolymers such as xanthan gum to improve soil properties. Appl Sci 11(1):170. https://doi.org/10.3390/app11010170

    Article  Google Scholar 

  25. Cabalar AF, Wiszniewski M, Skutnik Z (2017) Effects of xanthan gum biopolymer on the permeability, odometer, unconfined compressive and triaxial shear behavior of a sand. Soil Mech Found Eng 54(5):356–361. https://doi.org/10.1007/s11204-017-9481-1

    Article  Google Scholar 

  26. Lee S, Im J, Cho G-C et al (2019) Tri-axial shear behavior of xanthan gum biopolymer-treated sand. pp 179–186. https://doi.org/10.1061/9780784482117.017

  27. Soldo A, Miletic M (2019) Study on shear strength of xanthan gum-amended soil. Sustainability 11:6142. https://doi.org/10.3390/su11216142

    Article  Google Scholar 

  28. Cabalar AF, Canakci H (2011) Direct shear tests on sand treated with xanthan gum. Proc Inst Civ Eng Gr Improv 164(2):57–64. https://doi.org/10.1680/grim.800041

    Article  Google Scholar 

  29. Lee S, Chang I, Chung M-K et al (2017) Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing. Geomech Eng 12(5):831–847

    Article  Google Scholar 

  30. Lee M, Im J, Cho G-C et al (2021) Interfacial shearing behavior along xanthan gum biopolymer-treated sand and solid interfaces and its meaning in geotechnical engineering aspects. Appl Sci 11(1):139. https://doi.org/10.3390/app11010139

    Article  Google Scholar 

  31. Ni J, Hao G-L, Chen J-Q et al (2021) The optimisation analysis of sand-clay mixtures stabilised with xanthan gum biopolymers. Sustainability 13(7):3732. https://doi.org/10.3390/su13073732

    Article  Google Scholar 

  32. Latifi N, Horpibulsuk S, Meehan CL et al (2017) Improvement of problematic soils with biopolymer—an environmentally friendly soil stabilizer. J Mater Civ Eng 29(2):04016204. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001706

    Article  Google Scholar 

  33. Skemption AW, Northey RD (1952) The sensitivity of clays. Géotechnique 3(1):30–53. https://doi.org/10.1680/geot.1952.3.1.30

    Article  Google Scholar 

  34. Abbaszadeh Shahri A (2016) An optimized artificial neural network structure to predict clay sensitivity in a high landslide prone area using piezocone penetration test (CPTu) data: a case study in southwest of Sweden. Geotech Geol Eng 34(2):745–758. https://doi.org/10.1007/s10706-016-9976-y

    Article  Google Scholar 

  35. Abuhajar O, Naggar MHE, and Newson T (2010) Review of available methods for evaluation of soil sensitivity for seismic design. In: Proceedings of the international conference recent advances in geotechnology. Earthquake engineering and soil dynamics, San Diego, CA, USA. pp 24–29. https://core.ac.uk/download/pdf/229082256.pdf

  36. Belkhatir M, Schanz T, Arab A (2013) Effect of fines content and void ratio on the saturated hydraulic conductivity and undrained shear strength of sand-silt mixtures. Environ Earth Sci 70(6):2469–2479. https://doi.org/10.1007/s12665-013-2289-z

    Article  Google Scholar 

  37. Della N, Muhammed RD, Canou J et al (2016) Influence of initial conditions on liquefaction resistance of sandy soil from Chlef region in Northern Algeria. Geotech Geol Eng 34(6):1971–1983. https://doi.org/10.1007/s10706-016-0077-8

    Article  Google Scholar 

  38. Denine S, Della N, Muhammed RD et al (2016) Effect of geotextile reinforcement on shear strength of sandy soil: laboratory study. Stud Geotech Mech 38:3–13. https://doi.org/10.1515/sgem-2016-0026

    Article  Google Scholar 

  39. Missoum Benziane M, Della N, Denine S et al (2019) Effect of randomly distributed polypropylene fiber reinforcement on the shear behavior of sandy soil. Stud Geotech Mech 41:151–159. https://doi.org/10.2478/sgem-2019-0014

    Article  Google Scholar 

  40. Moreno J, López MJ, Vargas-García C et al (1998) Use of agricultural wastes for xanthan production by Xanthomonas campestris. J Ind Microbiol Biotechnol 21(4):242–246. https://doi.org/10.1038/sj.jim.2900582

    Article  Google Scholar 

  41. Palaniraj A, Jayaraman V (2011) Production, recovery and applications of xanthan gum by Xanthomonas campestris. J Food Eng 106(1):1–12. https://doi.org/10.1016/j.jfoodeng.2011.03.035

    Article  Google Scholar 

  42. Butler M (2016) Xanthan gum: applications and research studies: Nova Science Publishers, Incorporated

  43. Singhvi G, Hans N, Shiva N et al (2019) Chapter 5—xanthan gum in drug delivery applications. In: Hasnain MS, Nayak AK (eds) Natural polysaccharides in drug delivery and biomedical applications. Academic Press, pp 121–144

    Chapter  Google Scholar 

  44. Chang I, Im J, Prasidhi AK et al (2015) Effects of xanthan gum biopolymer on soil strengthening. Constr Build Mater 74:65–72. https://doi.org/10.1016/j.conbuildmat.2014.10.026

    Article  Google Scholar 

  45. Dehghan H, Tabarsa A, Latifi N et al (2019) Use of xanthan and guar gums in soil strengthening. Clean Technol Environ Policy 21(1):155–165. https://doi.org/10.1007/s10098-018-1625-0

    Article  Google Scholar 

  46. ASTM D3080/D3080M-11(2011) Standard test method for direct shear test of soils under consolidated drained conditions, American Society for Testing and Materials, West Conshohocken

  47. Chang I, Cho G-C (2019) Shear strength behavior and parameters of microbial gellan gum-treated soils: from sand to clay. Acta Geotech 14(2):361–375. https://doi.org/10.1007/s11440-018-0641-x

    Article  Google Scholar 

  48. Ayeldeen M, Negm A, El-Sawwaf M et al (2017) Enhancing mechanical behaviors of collapsible soil using two biopolymers. J Rock Mech Geotech Eng 9(2):329–339. https://doi.org/10.1016/j.jrmge.2016.11.007

    Article  Google Scholar 

  49. Ayeldeen M, Negm A, El Sawwaf M (2016) Evaluating the physical characteristics of biopolymer/soil mixtures. Arab J Geosci 9(5):1–13. https://doi.org/10.1007/s12517-016-2366-1

    Article  Google Scholar 

  50. Nugent RA, Zhang G, Gambrell RP (2009) Effect of exopolymers on the liquid limit of clays and its engineering implications. Transp Res Rec 2101(1):34–43. https://doi.org/10.3141/2101-05

    Article  Google Scholar 

  51. Chen R, Zhang L, Budhu M (2013) Biopolymer stabilization of mine tailings. J Geotech Geoenviron Eng 139(10):1802–1807. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000902

    Article  Google Scholar 

  52. Bozyigit I, Javadi A, Altun S (2021) Strength properties of xanthan gum and guar gum treated kaolin at different water contents. J Rock Mech Geotech Eng. https://doi.org/10.1016/j.jrmge.2021.06.007

    Article  Google Scholar 

  53. Chen C, Wu L, Perdjon M et al (2019) The drying effect on xanthan gum biopolymer treated sandy soil shear strength. Constr Build Mater 197:271–279. https://doi.org/10.1016/j.conbuildmat.2018.11.120

    Article  Google Scholar 

  54. Soldo A, Miletić M, Auad ML (2020) Biopolymers as a sustainable solution for the enhancement of soil mechanical properties. Sci Rep 10(1):267. https://doi.org/10.1038/s41598-019-57135-x

    Article  Google Scholar 

Download references

Acknowledgements

All tests were carried out in the laboratory of Material Sciences & Environment at Hassiba Benbouali of Chlef, Algeria. The writers acknowledge the technicians who contributed to this experimental program.

Funding

The authors are grateful for the financial support received from the Directorate General for Scientific Research and Technological Development, Algeria.

Author information

Authors and Affiliations

Authors

Contributions

H.A.B., N.D., M.M.B., S.D., A.B.E. and H.F. contributed equally to this work H.A.B., N.D., M.M.B., S.D., A.B.E. and H.F. wrote the whole manuscript. H.A.B. and M.M.B. drew all the figures and tables. N.D., M.M.B. and S.D. reviewed and edited the paper. M.M.B., S.D., A.B.E. and H.F. conceptualized the work. All authors read and approved the final paper.

Corresponding author

Correspondence to Noureddine Della.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berkane, H.A., Della, N., Benziane, M.M. et al. Laboratory investigation on the effect of a combination of xanthan gum and clay on the behavior of sandy soil. Innov. Infrastruct. Solut. 7, 269 (2022). https://doi.org/10.1007/s41062-022-00867-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-022-00867-z

Keywords

Navigation