Skip to main content

Advertisement

Log in

A review on some properties of alkali-activated materials

  • State-of-the-art paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

The production of sustainable cements, which include alkali-activated materials (AAMs), is important in the light reducing CO2 emissions. AAMs are produced using precursors with high aluminum, silica, and calcium contents in an alkaline solution and can be divided, based on the precursor type, into two major groups: (1) high-calcium binder and (2) low-calcium binder. The two types of binders have different characteristics, properties, and dosage methods. Therefore, this article reviews AAMs that support the choice of precursor based on its prospective characteristics. Initially, the dosage parameters, precursors, activators, and curing conditions, are discussed. Subsequently, a comparison is made between the fresh, mechanical, and durability properties of high- and low-calcium AAMs. It is concluded that low-calcium AAMs show better performance in terms of durability and fresh properties. By contrast, high-calcium AAMs exhibit better performance in terms of mechanical properties. Therefore, it is concluded that the choice of the type of precursor must be made by considering the conditions to which the material will besubjected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Friedlingstein P, Jones MW, O’Sullivan M et al (2021) Global Carbon Budget 2021. Earth Syst Sci Data Discuss 2021:1–191. https://doi.org/10.5194/essd-2021-386

    Article  Google Scholar 

  2. Davidovits J (1994) Global warming impact on the cement and aggregates industries. World Resour Rev 6:263–278

    Google Scholar 

  3. Yadav AL, Sairam V, Srinivasan K, Muruganandam L (2020) Synthesis and characterization of geopolymer from metakaolin and sugarcane bagasse ash. Constr Build Mater 258:119231. https://doi.org/10.1016/j.conbuildmat.2020.119231

    Article  Google Scholar 

  4. Gunasekara C, Law DW, Setunge S, Sanjayan JG (2015) Zeta potential, gel formation and compressive strength of low calcium fly ash geopolymers. Constr Build Mater 95:592–599. https://doi.org/10.1016/j.conbuildmat.2015.07.175

    Article  Google Scholar 

  5. Amran M, Debbarma S, Ozbakkaloglu T (2021) Fly ash-based eco-friendly geopolymer concrete: a critical review of the long-term durability properties. Constr Build Mater 270:121857. https://doi.org/10.1016/j.conbuildmat.2020.121857

    Article  Google Scholar 

  6. Provis JL, Van Deventer JSJ (2014) Alkali activated materials. Springer, Dordrecht

    Book  Google Scholar 

  7. Kühl H (1908) Slag cement and process of making the same. US Patent 900,939. Atlas Portland Cement Co

  8. Provis JL, Van Deventer JSJ (2009) Geopolymers: structures, processing, properties and industrial applications, 1st edn. Woodhead publishing

    Book  Google Scholar 

  9. Purdon AO (1940) The action of alkalis on blast-furnace slag. J Soc Chem Ind Trans Commun 59:191–202

    Article  Google Scholar 

  10. Pacheco-Torgal F, Castro-Gomes J, Jalali S (2008) Alkali-activated binders: A review. Constr Build Mater 22:1305–1314. https://doi.org/10.1016/j.conbuildmat.2007.10.015

    Article  Google Scholar 

  11. Provis JL (2018) Alkali-activated materials. Cem Concr Res 114:40–48. https://doi.org/10.1016/j.cemconres.2017.02.009

    Article  Google Scholar 

  12. Akbar A, Farooq F, Shafique M et al (2021) Sugarcane bagasse ash-based engineered geopolymer mortar incorporating propylene fibers. J Build Eng 33:101492. https://doi.org/10.1016/j.jobe.2020.101492

    Article  Google Scholar 

  13. Zhang Y, Xiao R, Jiang X et al (2020) Effect of particle size and curing temperature on mechanical and microstructural properties of waste glass-slag-based and waste glass-fly ash-based geopolymers. J Clean Prod 273:122970. https://doi.org/10.1016/j.jclepro.2020.122970

    Article  Google Scholar 

  14. Zhou S, Ma C, Long G, Xie Y (2020) A novel non-Portland cementitious material: mechanical properties, durability and characterization. Constr Build Mater 238:117671. https://doi.org/10.1016/j.conbuildmat.2019.117671

    Article  Google Scholar 

  15. Nodehi M (2021) A comparative review on foam-based versus lightweight aggregate-based alkali-activated materials and geopolymer. Innov Infrastruct Solut 6:231. https://doi.org/10.1007/s41062-021-00595-w

    Article  Google Scholar 

  16. Nodehi M, Taghvaee VM (2021) Alkali-activated materials and geopolymer: a review of common precursors and activators addressing circular economy. Circ Econ Sustain. https://doi.org/10.1007/s43615-021-00029-w

    Article  Google Scholar 

  17. Baščarevć Z (2015) The resistance of alkali-activated cement-based binders to chemical attack. Handbook of alkali-activated cements mortars and concretes. Elsevier, pp 373–396

    Chapter  Google Scholar 

  18. Mastali M, Kinnunen P, Dalvand A et al (2018) Drying shrinkage in alkali-activated binders—a critical review. Constr Build Mater 190:533–550. https://doi.org/10.1016/j.conbuildmat.2018.09.125

    Article  Google Scholar 

  19. Pal SC, Mukherjee A, Pathak SR (2003) Investigation of hydraulic activity of ground granulated blast furnace slag in concrete. Cem Concr Res 33:1481–1486. https://doi.org/10.1016/S0008-8846(03)00062-0

    Article  Google Scholar 

  20. Li C, Sun H, Li L (2010) A review: the comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cem Concr Res 40:1341–1349. https://doi.org/10.1016/j.cemconres.2010.03.020

    Article  Google Scholar 

  21. Fernández-Jiménez A, Palomo A (2003) Characterisation of fly ashes. Potential reactivity as alkaline cements☆. Fuel 82:2259–2265. https://doi.org/10.1016/S0016-2361(03)00194-7

    Article  Google Scholar 

  22. Fernández-Jimenez A, De La Torre AG, Palomo A et al (2006) Quantitative determination of phases in the alkali activation of fly ash. Part I. Potential ash reactivity. Fuel 85:625–634. https://doi.org/10.1016/j.fuel.2005.08.014

    Article  Google Scholar 

  23. Jiménez AMF (2000) Cementos de escorias activadas alcalinamente: influencia de las variables y modelización del proceso. Universidad Autónoma de Madrid

    Google Scholar 

  24. Wang SD, Scrivener KL (1995) Hydration products of alkali activated slag cement. Cem Concr Res 25:561–571. https://doi.org/10.1016/0008-8846(95)00045-E

    Article  Google Scholar 

  25. Wang SD, Pu XC, Scrivener KL, Pratt PL (1995) Alkali-activated slag cement and concrete: a review of properties and problems. Adv Cem Res 7:93–102. https://doi.org/10.1680/adcr.1995.7.27.93

    Article  Google Scholar 

  26. Puertas F, Palacios M, Manzano H et al (2011) A model for the C–A–S–H gel formed in alkali-activated slag cements. J Eur Ceram Soc 31:2043–2056. https://doi.org/10.1016/j.jeurceramsoc.2011.04.036

    Article  Google Scholar 

  27. Myers RJ, Bernal SA, San Nicolas R, Provis JL (2013) Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model. Langmuir 29:5294–5306. https://doi.org/10.1021/la4000473

    Article  Google Scholar 

  28. Fernández-Jiménez A, Puertas F, Sobrados I, Sanz J (2003) Structure of calcium silicate hydrates formed in alkaline-activated slag: influence of the type of alkaline activator. J Am Ceram Soc 86:1389–1394. https://doi.org/10.1111/j.1151-2916.2003.tb03481.x

    Article  Google Scholar 

  29. Criado M, Fernández-Jiménez A, de la Torre AG et al (2007) An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Cem Concr Res 37:671–679. https://doi.org/10.1016/j.cemconres.2007.01.013

    Article  Google Scholar 

  30. Chindaprasirt P, De Silva P, Sagoe-Crentsil K, Hanjitsuwan S (2012) Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems. J Mater Sci 47:4876–4883. https://doi.org/10.1007/s10853-012-6353-y

    Article  Google Scholar 

  31. Garcia-Lodeiro I, Fernández-Jimenez A, Pena P, Palomo A (2014) Alkaline activation of synthetic aluminosilicate glass. Ceram Int 40:5547–5558. https://doi.org/10.1016/j.ceramint.2013.10.146

    Article  Google Scholar 

  32. Kovalchuk G, Fernández-Jiménez A, Palomo A (2008) Alkali-activated fly ash. Relationship between mechanical strength gains and initial ash chemistry. Mater Construcción 58:35–52. https://doi.org/10.3989/mc.2008.v58.i291.101

    Article  Google Scholar 

  33. Criado M, Fernández-Jiménez A, Palomo A (2010) Alkali activation of fly ash. Part III: effect of curing conditions on reaction and its graphical description. Fuel 89:3185–3192. https://doi.org/10.1016/j.fuel.2010.03.051

    Article  Google Scholar 

  34. Pimraksa K, Chindaprasirt P, Rungchet A et al (2011) Lightweight geopolymer made of highly porous siliceous materials with various Na2O/Al2O3 and SiO2/Al2O3 ratios. Mater Sci Eng A 528:6616–6623. https://doi.org/10.1016/j.msea.2011.04.044

    Article  Google Scholar 

  35. Barreto IAR, da Costa ML (2021) Use of the clayey cover of bauxite deposits of the Amazon region for geopolymer synthesis and its application in red ceramics. Constr Build Mater 300:124318. https://doi.org/10.1016/j.conbuildmat.2021.124318

    Article  Google Scholar 

  36. Buruberri LH, Tobaldi DM, Caetano A et al (2019) Evaluation of reactive Si and Al amounts in various geopolymer precursors by a simple method. J Build Eng 22:48–55. https://doi.org/10.1016/j.jobe.2018.11.017

    Article  Google Scholar 

  37. Palomo A, Fernández-Jiménez A, Criado M (2004) “Geopolimeros”: una única base química y diferentes microestructuras. Mater Construcción 54:77–91. https://doi.org/10.3989/mc.2004.v54.i275.249

    Article  Google Scholar 

  38. Duxson P, Provis JL, Lukey GC et al (2005) Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf A Physicochem Eng Asp 269:47–58. https://doi.org/10.1016/j.colsurfa.2005.06.060

    Article  Google Scholar 

  39. Castaldelli VN, Akasaki J, Melges J et al (2013) Use of slag/sugar cane bagasse ash (SCBA) Blends in the production of alkali-activated materials. Materials (Basel) 6:3108–3127. https://doi.org/10.3390/ma6083108

    Article  Google Scholar 

  40. Castaldelli VN, Moraes JCB, Akasaki JL et al (2016) Study of the binary system fly ash/sugarcane bagasse ash (FA/SCBA) in SiO2/K2O alkali-activated binders. Fuel 174:307–316. https://doi.org/10.1016/j.fuel.2016.02.020

    Article  Google Scholar 

  41. Pereira A, Akasaki JL, Melges JLP et al (2015) Mechanical and durability properties of alkali-activated mortar based on sugarcane bagasse ash and blast furnace slag. Ceram Int 41:13012–13024. https://doi.org/10.1016/j.ceramint.2015.07.001

    Article  Google Scholar 

  42. Pommer V, Vejmelková E, Černý R, Keppert M (2021) Alkali-activated waste ceramics: Importance of precursor particle size distribution. Ceram Int 47:31574–31582. https://doi.org/10.1016/j.ceramint.2021.08.037

    Article  Google Scholar 

  43. Barbosa W, Ramalho RDP, Portella KF (2018) Influence of gypsum fineness in the first hours of cement paste: hydration kinetics and rheological behaviour. Constr Build Mater 184:304–310. https://doi.org/10.1016/j.conbuildmat.2018.06.235

    Article  Google Scholar 

  44. Scrivener K, Ouzia A, Juilland P, Mohamed AK (2019) Advances in understanding cement hydration mechanisms. Cem Concr Res 124:105823. https://doi.org/10.1016/j.cemconres.2019.105823

    Article  Google Scholar 

  45. Chancey RT, Stutzman P, Juenger MCG, Fowler DW (2010) Comprehensive phase characterization of crystalline and amorphous phases of a Class F fly ash. Cem Concr Res 40:146–156. https://doi.org/10.1016/j.cemconres.2009.08.029

    Article  Google Scholar 

  46. Ruiz-Santaquiteria C, Skibsted J, Fernández-Jiménez A, Palomo A (2012) Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates. Cem Concr Res 42:1242–1251. https://doi.org/10.1016/j.cemconres.2012.05.019

    Article  Google Scholar 

  47. Kuenzel C, Neville TP, Donatello S et al (2013) Influence of metakaolin characteristics on the mechanical properties of geopolymers. Appl Clay Sci 83–84:308–314. https://doi.org/10.1016/j.clay.2013.08.023

    Article  Google Scholar 

  48. Lancellotti I, Ponzoni C, Barbieri L, Leonelli C (2013) Alkali activation processes for incinerator residues management. Waste Manag 33:1740–1749. https://doi.org/10.1016/j.wasman.2013.04.013

    Article  Google Scholar 

  49. Bondar D, Lynsdale CJ, Milestone NB et al (2011) Effect of type, form, and dosage of activators on strength of alkali-activated natural pozzolans. Cem Concr Compos 33:251–260. https://doi.org/10.1016/j.cemconcomp.2010.10.021

    Article  Google Scholar 

  50. Xu H, Van Deventer JSJ (2000) The geopolymerisation of alumino-silicate minerals. Int J Miner Process 59:247–266. https://doi.org/10.1016/S0301-7516(99)00074-5

    Article  Google Scholar 

  51. Zuhua Z, Xiao Y, Huajun Z, Yue C (2009) Role of water in the synthesis of calcined kaolin-based geopolymer. Appl Clay Sci 43:218–223. https://doi.org/10.1016/j.clay.2008.09.003

    Article  Google Scholar 

  52. Fernández-Jiménez A, Palomo JG, Puertas F (1999) Alkali-activated slag mortars: mechanical strength behaviour. Cem Concr Res 29:1313–1321. https://doi.org/10.1016/S0008-8846(99)00154-4

    Article  Google Scholar 

  53. Bakharev T, Sanjayan JG, Cheng YB (1999) Alkali activation of Australian slag cements. Cem Concr Res 29:113–120. https://doi.org/10.1016/S0008-8846(98)00170-7

    Article  Google Scholar 

  54. Fernández-Jiménez A, Palomo A (2005) Composition and microstructure of alkali activated fly ash binder: effect of the activator. Cem Concr Res 35:1984–1992. https://doi.org/10.1016/j.cemconres.2005.03.003

    Article  Google Scholar 

  55. da Bezerra ACS, França S, de Magalhães LF, de Carvalho MCR (2019) Alkaline activation of high-calcium ash and iron ore tailings and their recycling potential in building materials. Ambient Construído 19:99–112. https://doi.org/10.1590/s1678-86212019000300327

    Article  Google Scholar 

  56. Duxson P, Mallicoat SW, Lukey GC et al (2007) The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surf A Physicochem Eng Asp 292:8–20. https://doi.org/10.1016/j.colsurfa.2006.05.044

    Article  Google Scholar 

  57. Davidovits J (1999) Chemistry of geopolymeric systems, terminology. In: Proceedings of the 2nd international conference on geopolymer. Saint-Quentin, pp 9–39

  58. Nodehi M, Aguayo F (2021) Ultra high performance and high strength geopolymer concrete. J Build Pathol Rehabil 6:34. https://doi.org/10.1007/s41024-021-00130-5

    Article  Google Scholar 

  59. Bilim C, Karahan O, Atiş CD, İlkentapar S (2015) Effects of chemical admixtures and curing conditions on some properties of alkali-activated cementless slag mixtures. KSCE J Civ Eng 19:733–741. https://doi.org/10.1007/s12205-015-0629-0

    Article  Google Scholar 

  60. Abdollahnejad Z, Mastali M, Falah M et al (2021) Durability of the reinforced one-part alkali-activated slag mortars with different fibers. Waste Biomass Valoriz 12:487–501. https://doi.org/10.1007/s12649-020-00958-x

    Article  Google Scholar 

  61. Abdel-Gawwad HA, Rashad AM, Heikal M (2019) Sustainable utilization of pretreated concrete waste in the production of one-part alkali-activated cement. J Clean Prod 232:318–328. https://doi.org/10.1016/j.jclepro.2019.05.356

    Article  Google Scholar 

  62. De Vargas AS, Dal Molin DCC, Masuero ÂB et al (2014) Strength development of alkali-activated fly ash produced with combined NaOH and Ca(OH)2 activators. Cem Concr Compos 53:341–349. https://doi.org/10.1016/j.cemconcomp.2014.06.012

    Article  Google Scholar 

  63. Rovnaník P (2010) Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr Build Mater 24:1176–1183. https://doi.org/10.1016/j.conbuildmat.2009.12.023

    Article  Google Scholar 

  64. Granizo N, Palomo A, Fernandez-Jiménez A (2014) Effect of temperature and alkaline concentration on metakaolin leaching kinetics. Ceram Int 40:8975–8985. https://doi.org/10.1016/j.ceramint.2014.02.071

    Article  Google Scholar 

  65. İlkentapar S, Atiş CD, Karahan O, Görür Avşaroğlu EB (2017) Influence of duration of heat curing and extra rest period after heat curing on the strength and transport characteristic of alkali activated class F fly ash geopolymer mortar. Constr Build Mater 151:363–369. https://doi.org/10.1016/j.conbuildmat.2017.06.041

    Article  Google Scholar 

  66. Longhi MA, Zhang Z, Rodríguez ED et al (2019) Efflorescence of alkali-activated cements (geopolymers) and the impacts on material structures: a critical analysis. Front Mater 6:1–13. https://doi.org/10.3389/fmats.2019.00089

    Article  Google Scholar 

  67. Cyr M, Idir R, Poinot T (2012) Properties of inorganic polymer (geopolymer) mortars made of glass cullet. J Mater Sci 47:2782–2797. https://doi.org/10.1007/s10853-011-6107-2

    Article  Google Scholar 

  68. Zhang Z, Provis JL, Reid A, Wang H (2014) Fly ash-based geopolymers: the relationship between composition, pore structure and efflorescence. Cem Concr Res 64:30–41. https://doi.org/10.1016/j.cemconres.2014.06.004

    Article  Google Scholar 

  69. Kani EN, Allahverdi A, Provis JL (2012) Efflorescence control in geopolymer binders based on natural pozzolan. Cem Concr Compos 34:25–33. https://doi.org/10.1016/j.cemconcomp.2011.07.007

    Article  Google Scholar 

  70. Kirschner AV, Harmuth H (2004) Investigation of geopolymer binders with respect to their application for building materials. Ceram Silik 48:117–120

    Google Scholar 

  71. Sajedi F, Razak HA (2010) The effect of chemical activators on early strength of ordinary Portland cement-slag mortars. Constr Build Mater 24:1944–1951. https://doi.org/10.1016/j.conbuildmat.2010.04.006

    Article  Google Scholar 

  72. Amran YHM, Alyousef R, Alabduljabbar H, El-Zeadani M (2020) Clean production and properties of geopolymer concrete. A review. J Clean Prod 251:119679. https://doi.org/10.1016/j.jclepro.2019.119679

    Article  Google Scholar 

  73. Kumaravel S (2014) Development of various curing effect of nominal strength geopolymer concrete. J Eng Sci Technol Rev 7:116–119

    Article  Google Scholar 

  74. Aldea C-M, Young F, Wang K, Shah SP (2000) Effects of curing conditions on properties of concrete using slag replacement. Cem Concr Res 30:465–472. https://doi.org/10.1016/S0008-8846(00)00200-3

    Article  Google Scholar 

  75. Lu JX, Poon CS (2018) Use of waste glass in alkali activated cement mortar. Constr Build Mater 160:399–407. https://doi.org/10.1016/j.conbuildmat.2017.11.080

    Article  Google Scholar 

  76. ASTM (2021) C230/C230M-21. Stand specif flow table use tests. Hydraul Cem. https://doi.org/10.1520/C0230_C0230M-21

    Article  Google Scholar 

  77. Nematollahi B, Sanjayan J (2014) Effect of different superplasticizers and activator combinations on workability and strength of fly ash based geopolymer. Mater Des 57:667–672. https://doi.org/10.1016/j.matdes.2014.01.064

    Article  Google Scholar 

  78. Zhang P, Gao Z, Wang J et al (2020) Properties of fresh and hardened fly ash/slag based geopolymer concrete: a review. J Clean Prod 270:122389. https://doi.org/10.1016/j.jclepro.2020.122389

    Article  Google Scholar 

  79. Hung CC, Chang JJ (2013) The influence of mixture variables for the alkali-activated slag concrete on the properties of concrete. J Mar Sci Technol 21:229–237. https://doi.org/10.6119/JMST-012-0109-4

    Article  Google Scholar 

  80. Laskar SM, Talukdar S (2017) Preparation and tests for workability, compressive and bond strength of ultra-fine slag based geopolymer as concrete repairing agent. Constr Build Mater 154:176–190. https://doi.org/10.1016/j.conbuildmat.2017.07.187

    Article  Google Scholar 

  81. Chindaprasirt P, Chareerat T, Sirivivatnanon V (2007) Workability and strength of coarse high calcium fly ash geopolymer. Cem Concr Compos 29:224–229. https://doi.org/10.1016/j.cemconcomp.2006.11.002

    Article  Google Scholar 

  82. Kong DLY, Sanjayan JG (2010) Cement and concrete research effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem Concr Res 40:334–339. https://doi.org/10.1016/j.cemconres.2009.10.017

    Article  Google Scholar 

  83. Puertas F, Palomo A, Fernández-Jiménez A et al (2003) Effect of superplasticisers on the behaviour and properties of alkaline cements. Adv Cem Res 15:23–28. https://doi.org/10.1680/adcr.2003.15.1.23

    Article  Google Scholar 

  84. Hardjito D, Wallah SE, Sumajouw DMJ, Rangan BV (2004) On the development of fly ash-based geopolymer concrete. ACI Mater J 101:467–472. https://doi.org/10.14359/13485

    Article  Google Scholar 

  85. Tong S, Yuqi Z, Qiang W (2021) Recent advances in chemical admixtures for improving the workability of alkali-activated slag-based material systems. Constr Build Mater 272:121647. https://doi.org/10.1016/j.conbuildmat.2020.121647

    Article  Google Scholar 

  86. Puertas F, González-Fonteboa B, González-Taboada I et al (2018) Alkali-activated slag concrete: fresh and hardened behaviour. Cem Concr Compos 85:22–31. https://doi.org/10.1016/j.cemconcomp.2017.10.003

    Article  Google Scholar 

  87. Chindaprasirt P, Cao T (2015) Setting, segregation and bleeding of alkali-activated cement, mortar and concrete binders. Handbook of alkali-activated cements mortars and concretes. Elsevier, pp 113–131

    Chapter  Google Scholar 

  88. ASTM (2021) C191-21. Stand test methods time setting. Hydraul Cem by Vicat Needle. West Conshohocken, PA, United States

  89. Shi C, Qu B, Provis JL (2019) Recent progress in low-carbon binders. Cem Concr Res 122:227–250. https://doi.org/10.1016/j.cemconres.2019.05.009

    Article  Google Scholar 

  90. Nath P, Sarker PK (2014) Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr Build Mater 66:163–171. https://doi.org/10.1016/j.conbuildmat.2014.05.080

    Article  Google Scholar 

  91. Hadi MNS, Farhan NA, Sheikh MN (2017) Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method. Constr Build Mater 140:424–431. https://doi.org/10.1016/j.conbuildmat.2017.02.131

    Article  Google Scholar 

  92. Musaddiq Laskar S, Talukdar S (2017) Development of ultrafine slag-based geopolymer mortar for use as repairing mortar. J Mater Civ Eng 29:04016292. https://doi.org/10.1061/(asce)mt.1943-5533.0001824

    Article  Google Scholar 

  93. Nath P, Sarker PK (2015) Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature. Cem Concr Compos 55:205–214. https://doi.org/10.1016/j.cemconcomp.2014.08.008

    Article  Google Scholar 

  94. Hanjitsuwan S, Hunpratub S, Thongbai P et al (2014) Effects of NaOH concentrations on physical and electrical properties of high calcium fly ash geopolymer paste. Cem Concr Compos 45:9–14. https://doi.org/10.1016/j.cemconcomp.2013.09.012

    Article  Google Scholar 

  95. Adewumi AA, Ariffin MAM, Yusuf MO et al (2021) Effect of sodium hydroxide concentration on strength and microstructure of alkali-activated natural pozzolan and limestone powder mortar. Constr Build Mater 271:121530. https://doi.org/10.1016/j.conbuildmat.2020.121530

    Article  Google Scholar 

  96. Aiken TA, Kwasny J, Sha W, Soutsos MN (2018) Effect of slag content and activator dosage on the resistance of fly ash geopolymer binders to sulfuric acid attack. Cem Concr Res 111:23–40. https://doi.org/10.1016/j.cemconres.2018.06.011

    Article  Google Scholar 

  97. Dehghani A, Aslani F, Panah NG (2021) Effects of initial SiO2/Al2O3 molar ratio and slag on fly ash-based ambient cured geopolymer properties. Constr Build Mater 293:123527. https://doi.org/10.1016/j.conbuildmat.2021.123527

    Article  Google Scholar 

  98. Guo W, Zhang Z, Bai Y et al (2021) Development and characterization of a new multi-strength level binder system using soda residue-carbide slag as composite activator. Constr Build Mater 291:123367. https://doi.org/10.1016/j.conbuildmat.2021.123367

    Article  Google Scholar 

  99. Kamath M, Prashant S, Kumar M (2021) Micro-characterisation of alkali activated paste with fly ash-GGBS-metakaolin binder system with ambient setting characteristics. Constr Build Mater 277:122323. https://doi.org/10.1016/j.conbuildmat.2021.122323

    Article  Google Scholar 

  100. Kantarci F, Türkmen İ, Ekinci E (2021) Improving elevated temperature performance of geopolymer concrete utilizing nano-silica, micro-silica and styrene-butadiene latex. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2021.122980

    Article  Google Scholar 

  101. Kaur K, Singh J, Kaur M (2018) Compressive strength of rice husk ash based geopolymer: the effect of alkaline activator. Constr Build Mater 169:188–192. https://doi.org/10.1016/j.conbuildmat.2018.02.200

    Article  Google Scholar 

  102. Meek AH, Elchalakani M, Beckett CTS, Dong M (2021) Alternative stabilised rammed earth materials incorporating recycled waste and industrial by-products: a study of mechanical properties, flexure and bond strength. Constr Build Mater 277:122303. https://doi.org/10.1016/j.conbuildmat.2021.122303

    Article  Google Scholar 

  103. Rajaei S, Shoaei P, Shariati M et al (2021) Rubberized alkali-activated slag mortar reinforced with polypropylene fibres for application in lightweight thermal insulating materials. Constr Build Mater 270:121430. https://doi.org/10.1016/j.conbuildmat.2020.121430

    Article  Google Scholar 

  104. Revathi T, Jeyalakshmi R (2021) Fly ash–GGBS geopolymer in boron environment: a study on rheology and microstructure by ATR FT-IR and MAS NMR. Constr Build Mater 267:120965. https://doi.org/10.1016/j.conbuildmat.2020.120965

    Article  Google Scholar 

  105. Yamchelou MT, Law D, Brkljača R et al (2021) Geopolymer synthesis using low-grade clays. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.121066

    Article  Google Scholar 

  106. Ye J, Zhang W, Shi D (2017) Properties of an aged geopolymer synthesized from calcined ore-dressing tailing of bauxite and slag. Cem Concr Res 100:23–31. https://doi.org/10.1016/j.cemconres.2017.05.017

    Article  Google Scholar 

  107. Zhang SL, Qi XQ, Guo SY et al (2021) Effect of a novel hybrid TiO2-graphene composite on enhancing mechanical and durability characteristics of alkali-activated slag mortar. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.122154

    Article  Google Scholar 

  108. Zhang J, Pan G, Yan Y (2021) Early hydration, mechanical strength and drying shrinkage of low-carbon alkali-activated Ti-extracted residues-fly ash cement and mortars. Constr Build Mater 293:123517. https://doi.org/10.1016/j.conbuildmat.2021.123517

    Article  Google Scholar 

  109. Wang SD, Scrivener KL, Pratt PL (1994) Factors affecting the strength of alkali-activated slag. Cem Concr Res 24:1033–1043. https://doi.org/10.1016/0008-8846(94)90026-4

    Article  Google Scholar 

  110. Caijun S, Yinyu L (1989) Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement. Cem Concr Res 19:527–533. https://doi.org/10.1016/0008-8846(89)90004-5

    Article  Google Scholar 

  111. Bijen J, Waltje H (1989) Alkali-activated slag—fly ash cements. In: Malhotra VM (eds) 3rd International conference on fly ash, silica fume, slag and natural pozzolans in concrete, ACI SP114, American Concrete Institute, Trondheim, Norway, pp 1565–1578 https://scholar.google.com/scholar_lookup?title=Alkali%20activated%20slag-fly%20ash%20cements&publication_year=1989&author=J.%20Bijen&author=H.%20Waltje

  112. Hounsi AD, Lecomte-Nana GL, Djétéli G, Blanchart P (2013) Kaolin-based geopolymers: effect of mechanical activation and curing process. Constr Build Mater 42:105–113. https://doi.org/10.1016/j.conbuildmat.2012.12.069

    Article  Google Scholar 

  113. Nath SK, Kumar S (2020) Role of particle fineness on engineering properties and microstructure of fly ash derived geopolymer. Constr Build Mater 233:117294. https://doi.org/10.1016/j.conbuildmat.2019.117294

    Article  Google Scholar 

  114. Komljenović M, Baščarević Z, Bradić V (2010) Mechanical and microstructural properties of alkali-activated fly ash geopolymers. J Hazard Mater 181:35–42. https://doi.org/10.1016/j.jhazmat.2010.04.064

    Article  Google Scholar 

  115. Lee K-HYK-S, Ashraf F, Ashour J-KS (2009) Flow and compressive strength of alkali-activated mortars. ACI Mater J. https://doi.org/10.14359/56316

    Article  Google Scholar 

  116. Bernal SA (2015) Effect of the activator dose on the compressive strength and accelerated carbonation resistance of alkali silicate-activated slag/metakaolin blended materials. Constr Build Mater 98:217–226. https://doi.org/10.1016/j.conbuildmat.2015.08.013

    Article  Google Scholar 

  117. Chi M, Huang R (2013) Binding mechanism and properties of alkali-activated fly ash/slag mortars. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2012.11.003

    Article  Google Scholar 

  118. Al-Majidi MH, Lampropoulos A, Cundy AB (2017) Tensile properties of a novel fibre reinforced geopolymer composite with enhanced strain hardening characteristics. Compos Struct 168:402–427. https://doi.org/10.1016/j.compstruct.2017.01.085

    Article  Google Scholar 

  119. Zollo RF (1997) Fiber-reinforced concrete: an overview after 30 years of development. Cem Concr Compos 19:107–122. https://doi.org/10.1016/S0958-9465(96)00046-7

    Article  Google Scholar 

  120. Brandt AM (2008) Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Compos Struct 86:3–9. https://doi.org/10.1016/j.compstruct.2008.03.006

    Article  Google Scholar 

  121. Silva G, Kim S, Aguilar R, Nakamatsu J (2020) Natural fibers as reinforcement additives for geopolymers—a review of potential eco-friendly applications to the construction industry. Sustain Mater Technol 23:e00132. https://doi.org/10.1016/j.susmat.2019.e00132

    Article  Google Scholar 

  122. Ranjbar N, Zhang M (2020) Fiber-reinforced geopolymer composites: a review. Cem Concr Compos 107:103498. https://doi.org/10.1016/j.cemconcomp.2019.103498

    Article  Google Scholar 

  123. Breitenbücher R, Meschke G, Song F, Zhan Y (2014) Experimental, analytical and numerical analysis of the pullout behaviour of steel fibres considering different fibre types, inclinations and concrete strengths. Struct Concr 15:126–135. https://doi.org/10.1002/suco.201300058

    Article  Google Scholar 

  124. Li Z, Zhang Y, Zhou X (2005) Short fiber reinforced geopolymer composites manufactured by extrusion. J Mater Civ Eng 17:624–631. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:6(624)

    Article  Google Scholar 

  125. Ganesan N, Abraham R, Raj SD (2015) Durability characteristics of steel fibre reinforced geopolymer concrete. Constr Build Mater 93:471–476. https://doi.org/10.1016/j.conbuildmat.2015.06.014

    Article  Google Scholar 

  126. Vaidya S, Allouche EN (2011) Strain sensing of carbon fiber reinforced geopolymer concrete. Mater Struct 44:1467–1475. https://doi.org/10.1617/s11527-011-9711-3

    Article  Google Scholar 

  127. Zhang Z, Yao X, Zhu H et al (2009) Preparation and mechanical properties of polypropylene fiber reinforced calcined kaolin-fly ash based geopolymer. J Cent South Univ Technol 16:49–52. https://doi.org/10.1007/s11771-009-0008-4

    Article  Google Scholar 

  128. Ranjbar N, Talebian S, Mehrali M et al (2016) Mechanisms of interfacial bond in steel and polypropylene fiber reinforced geopolymer composites. Compos Sci Technol 122:73–81. https://doi.org/10.1016/j.compscitech.2015.11.009

    Article  Google Scholar 

  129. Ranjbar N, Mehrali M, Mehrali M et al (2015) Graphene nanoplatelet-fly ash based geopolymer composites. Cem Concr Res 76:222–231. https://doi.org/10.1016/j.cemconres.2015.06.003

    Article  Google Scholar 

  130. Ranjbar N, Mehrali M, Behnia A et al (2016) A comprehensive study of the polypropylene fiber reinforced fly ash based geopolymer. PLoS ONE 11:e0147546. https://doi.org/10.1371/journal.pone.0147546

    Article  Google Scholar 

  131. Lyon RE, Balaguru PN, Foden A et al (1997) Fire-resistant aluminosilicate composites. Fire Mater 21:67–73. https://doi.org/10.1002/(SICI)1099-1018(199703)21:2%3c67::AID-FAM596%3e3.0.CO;2-N

    Article  Google Scholar 

  132. Lin T, Jia D, He P, Wang M (2009) Thermal-mechanical properties of short carbon fiber reinforced geopolymer matrix composites subjected to thermal load. J Cent South Univ Technol 16:881–886. https://doi.org/10.1007/s11771-009-0146-8

    Article  Google Scholar 

  133. Zhang H, Kodur V, Cao L, Qi S (2014) Fiber reinforced geopolymers for fire resistance applications. Proc Eng 71:153–158. https://doi.org/10.1016/j.proeng.2014.04.022

    Article  Google Scholar 

  134. Samal S, Thanh NP, Petríková I et al (2015) Correlation of microstructure and mechanical properties of various fabric reinforced geo-polymer composites after exposure to elevated temperature. Ceram Int 41:12115–12129. https://doi.org/10.1016/j.ceramint.2015.06.029

    Article  Google Scholar 

  135. Martinie L, Rossi P, Roussel N (2010) Rheology of fiber reinforced cementitious materials: classification and prediction. Cem Concr Res 40:226–234. https://doi.org/10.1016/j.cemconres.2009.08.032

    Article  Google Scholar 

  136. Masi G, Rickard WDA, Bignozzi MC, van Riessen A (2015) The effect of organic and inorganic fibres on the mechanical and thermal properties of aluminate activated geopolymers. Compos Part B Eng 76:218–228. https://doi.org/10.1016/j.compositesb.2015.02.023

    Article  Google Scholar 

  137. Swamy RN, Mangat PS (1974) Influence of fibre-aggregate interaction on some properties of steel fibre reinforced concrete. Matériaux Constr 7:307–314. https://doi.org/10.1007/BF02473840

    Article  Google Scholar 

  138. Larena A, Pinto G (1993) The effect of surface roughness and crystallinity on the light scattering of polyethylene tubular blown films. Polym Eng Sci 33:742–747. https://doi.org/10.1002/pen.760331204

    Article  Google Scholar 

  139. Puertas F, Gil-Maroto A, Palacios M, Amat T (2006) Morteros de escoria activada alcalinamente reforzados con fibra de vidrio AR. Comportamiento y propiedades Mater Constr 56:79–90. https://doi.org/10.3989/mc.2006.v56.i283.10

    Article  Google Scholar 

  140. Funke H, Gelbrich S, Kroll L (2016) The durability and performance of short fibers for a newly developed alkali-activated binder. Fibers 4:1–8. https://doi.org/10.3390/fib4010011

    Article  Google Scholar 

  141. Wei B, Cao H, Song S (2010) Tensile behavior contrast of basalt and glass fibers after chemical treatment. Mater Des 31:4244–4250. https://doi.org/10.1016/j.matdes.2010.04.009

    Article  Google Scholar 

  142. Granju JL, Balouch SU (2005) Corrosion of steel fibre reinforced concrete from the cracks. Cem Concr Res 35:572–577. https://doi.org/10.1016/j.cemconres.2004.06.032

    Article  Google Scholar 

  143. Frazão C, Camões A, Barros J, Gonçalves D (2015) Durability of steel fiber reinforced self-compacting concrete. Constr Build Mater 80:155–166. https://doi.org/10.1016/j.conbuildmat.2015.01.061

    Article  Google Scholar 

  144. Chen R, Ahmari S, Zhang L (2014) Utilization of sweet sorghum fiber to reinforce fly ash-based geopolymer. J Mater Sci 49:2548–2558. https://doi.org/10.1007/s10853-013-7950-0

    Article  Google Scholar 

  145. Il CJ, Lee BY, Ranade R et al (2016) Ultra-high-ductile behavior of a polyethylene fiber-reinforced alkali-activated slag-based composite. Cem Concr Compos 70:153–158. https://doi.org/10.1016/j.cemconcomp.2016.04.002

    Article  Google Scholar 

  146. Ma CK, Awang AZ, Omar W (2018) Structural and material performance of geopolymer concrete: a review. Constr Build Mater 186:90–102. https://doi.org/10.1016/j.conbuildmat.2018.07.111

    Article  Google Scholar 

  147. John SK, Nadir Y, Girija K (2021) Effect of source materials, additives on the mechanical properties and durability of fly ash and fly ash-slag geopolymer mortar: a review. Constr Build Mater 280:122443. https://doi.org/10.1016/j.conbuildmat.2021.122443

    Article  Google Scholar 

  148. Chen K, Wu D, Xia L et al (2021) Geopolymer concrete durability subjected to aggressive environments—a review of influence factors and comparison with ordinary Portland cement. Constr Build Mater 279:122496. https://doi.org/10.1016/j.conbuildmat.2021.122496

    Article  Google Scholar 

  149. Cheng TW, Chiu JP (2003) Fire-resistant geopolymer produce by granulated blast furnace slag. Miner Eng 16:205–210. https://doi.org/10.1016/S0892-6875(03)00008-6

    Article  Google Scholar 

  150. Awoyera P, Adesina A (2020) Durability properties of alkali activated slag composites: short overview. SILICON 12:987–996. https://doi.org/10.1007/s12633-019-00199-1

    Article  Google Scholar 

  151. Li YL, Zhao XL, Singh Raman RK, Al-Saadi S (2018) Thermal and mechanical properties of alkali-activated slag paste, mortar and concrete utilising seawater and sea sand. Constr Build Mater 159:704–724. https://doi.org/10.1016/j.conbuildmat.2017.10.104

    Article  Google Scholar 

  152. Türker HT, Balçikanli M, Durmuş IH et al (2016) Microstructural alteration of alkali activated slag mortars depend on exposed high temperature level. Constr Build Mater 104:169–180. https://doi.org/10.1016/j.conbuildmat.2015.12.070

    Article  Google Scholar 

  153. Lahoti M (2018) Influence of mix design and tailoring on thermal performance of geopolymers. Nanyang Technological University

    Google Scholar 

  154. Lahoti M, Tan KH, Yang EH (2019) A critical review of geopolymer properties for structural fire-resistance applications. Constr Build Mater 221:514–526. https://doi.org/10.1016/j.conbuildmat.2019.06.076

    Article  Google Scholar 

  155. Kong DLY, Sanjayan JG, Sagoe-Crentsil K (2007) Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem Concr Res 37:1583–1589. https://doi.org/10.1016/j.cemconres.2007.08.021

    Article  Google Scholar 

  156. Pan Z, Sanjayan JG, Collins F (2014) Cement and concrete research effect of transient creep on compressive strength of geopolymer concrete for elevated temperature exposure. Cem Concr Res 56:182–189. https://doi.org/10.1016/j.cemconres.2013.11.014

    Article  Google Scholar 

  157. Shaikh FUA, Vimonsatit V (2014) Compressive strength of fly-ash-based geopolymer concrete at elevated temperatures. Fire Mater. https://doi.org/10.1002/fam.2240

    Article  Google Scholar 

  158. Bakharev T (2006) Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing. Cem Concr Res 36:1134–1147. https://doi.org/10.1016/j.cemconres.2006.03.022

    Article  Google Scholar 

  159. Beddoe RE, Dorner HW (2005) Modelling acid attack on concrete: Part I. The essential mechanisms. Cem Concr Res 35:2333–2339. https://doi.org/10.1016/j.cemconres.2005.04.002

    Article  Google Scholar 

  160. Shi C, Stegemann JA (2000) Acid corrosion resistance of different cementing materials. Cem Concr Res 30:803–808. https://doi.org/10.1016/S0008-8846(00)00234-9

    Article  Google Scholar 

  161. Shi C (2003) Corrosion resistance of alkali-activated slag cement. Adv Cem Res 15:77–81. https://doi.org/10.1680/adcr.2003.15.2.77

    Article  Google Scholar 

  162. Bernal SA, Rodríguez ED, de Gutiérrez RM, Provis JL (2012) Performance of alkali-activated slag mortars exposed to acids. J Sustain Cem Mater 1:138–151. https://doi.org/10.1080/21650373.2012.747235

    Article  Google Scholar 

  163. Rostami H, Brendley W (2003) Alkali ash material: a novel fly ash-based cement. Environ Sci Technol 37:3454–3457. https://doi.org/10.1021/es026317b

    Article  Google Scholar 

  164. Bakharev T (2005) Resistance of geopolymer materials to acid attack. Cem Concr Res 35:658–670. https://doi.org/10.1016/j.cemconres.2004.06.005

    Article  Google Scholar 

  165. Fernandez-Jimenez A, García-Lodeiro I, Palomo A (2007) Durability of alkali-activated fly ash cementitious materials. J Mater Sci 42:3055–3065. https://doi.org/10.1007/s10853-006-0584-8

    Article  Google Scholar 

  166. Lloyd RR, Provis JL, Van Deventer JSJ (2012) Acid resistance of inorganic polymer binders. 1. Corrosion rate. Mater Struct Constr 45:1–14. https://doi.org/10.1617/s11527-011-9744-7

    Article  Google Scholar 

  167. ASTM (2012) C1012/C1012M-12. Stand. Test Method Length Chang. Hydraul. Mortars Expo. to a Sulfate Solut. West Conshohocken, PA, United States

  168. Bakharev T, Sanjayan JG, Cheng YB (2002) Sulfate attack on alkali-activated slag concrete. Cem Concr Res 32:211–216. https://doi.org/10.1016/S0008-8846(01)00659-7

    Article  Google Scholar 

  169. Puertas F, De Gutierrez R, Fernández-Jiménez A et al (2002) Alkaline cement mortars. Chemical resistance to sulfate and seawater attack. Mater Constr 2002:55–71. https://doi.org/10.3989/mc.2002.v52.i267.326

    Article  Google Scholar 

  170. Chi M (2012) Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2012.04.005

    Article  Google Scholar 

  171. Komljenović M, Baščarević Z, Marjanović N, Nikolić V (2013) External sulfate attack on alkali-activated slag. Constr Build Mater 49:31–39. https://doi.org/10.1016/j.conbuildmat.2013.08.013

    Article  Google Scholar 

  172. Palomo A, Blanco-Varela MT, Granizo ML et al (1999) Chemical stability of cementitious materials based on metakaolin—isothermal conduction calorimetry study. Cem Concr Res 29:997–1004. https://doi.org/10.1016/S0008-8846(99)00074-5

    Article  Google Scholar 

  173. Bakharev T (2005) Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cem Concr Res 35:1233–1246. https://doi.org/10.1016/j.cemconres.2004.09.002

    Article  Google Scholar 

  174. Nodehi M, Taghvaee VM (2021) Sustainable concrete for circular economy: a review on use of waste glass. Glas Struct Eng. https://doi.org/10.1007/s40940-021-00155-9

    Article  Google Scholar 

  175. Stanton TE (1942) Expansion of concrete through reaction between cement and aggregate. Trans Am Soc Civ Eng 107:54–84. https://doi.org/10.1061/TACEAT.0005540

    Article  Google Scholar 

  176. Wang W, Noguchi T (2020) Alkali-silica reaction (ASR) in the alkali-activated cement (AAC) system: a state-of-the-art review. Constr Build Mater 252:119105. https://doi.org/10.1016/j.conbuildmat.2020.119105

    Article  Google Scholar 

  177. Bulteel D, Rafaï N, Degrugilliers P, Garcia-Diaz E (2004) Petrography study on altered flint aggregate by alkali-silica reaction. Mater Charact 53:141–154. https://doi.org/10.1016/j.matchar.2004.08.004

    Article  Google Scholar 

  178. Cyr M, Pouhet R (2015) Resistance to alkali-aggregate reaction (AAR) of alkali-activated cement-based binders. Handbook of alkali-activated cements, mortars and concretes. . Elsevier, pp 397–422

    Chapter  Google Scholar 

  179. Bakharev T, Sanjayan JG, Cheng Y-B (2001) Resistance of alkali-activated slag concrete to alkali–aggregate reaction. Cem Concr Res 31:331–334. https://doi.org/10.1016/S0008-8846(00)00483-X

    Article  Google Scholar 

  180. Shi C, Shi Z, Hu X et al (2015) A review on alkali-aggregate reactions in alkali-activated mortars/concretes made with alkali-reactive aggregates. Mater Struct Constr 48:621–628. https://doi.org/10.1617/s11527-014-0505-2

    Article  Google Scholar 

  181. ASTM C1260 (2014) Standard test method for potential alkali reactivity of cement-aggregate combinations (Mortar-Bar Method). Annu B ASTM Stand. https://doi.org/10.1520/C1260-14.2

    Article  Google Scholar 

  182. ASTM C227 (2003) Standard test method for potential alkali reactivity of cement-aggregate combinations (Mortar-Bar method). Annu B ASTM Stand 1:1–5. https://doi.org/10.1520/C0227-10.mendations

    Article  Google Scholar 

  183. Tänzer R, Jin Y, Stephan D (2017) Effect of the inherent alkalis of alkali activated slag on the risk of alkali silica reaction. Cem Concr Res 98:82–90. https://doi.org/10.1016/j.cemconres.2017.04.009

    Article  Google Scholar 

  184. Shi Z, Shi C, Wan S, Zhang Z (2018) Effects of alkali dosage and silicate modulus on alkali-silica reaction in alkali-activated slag mortars. Cem Concr Res 111:104–115. https://doi.org/10.1016/j.cemconres.2018.06.005

    Article  Google Scholar 

  185. Chen YZ, Pu XC, Yang CH, Ding QJ (2002) Alkali aggregate reaction in alkali slag cement mortars. J Wuhan Univ Technol Mater Sci Ed 17:3–6. https://doi.org/10.1007/bf02838542

    Article  Google Scholar 

  186. Davidovits J (2005) Geopolymer chemistry and sustainable development. The Poly (sialate) terminology: a very useful and simple model for the promotion and understanding of green-chemistry, pp 9–16

  187. Gilbert RI (2002) Creep and shrinkage models for high strength concrete—proposals for inclusion in AS3600. Aust J Struct Eng 4:95–106. https://doi.org/10.1080/13287982.2002.11464911

    Article  Google Scholar 

  188. Collins F, Sanjayan JG (2000) Effect of pore size distribution on drying shrinkage of alkali-activated slag concrete. Cem Concr Res 30:1401–1406. https://doi.org/10.1016/S0008-8846(00)00327-6

    Article  Google Scholar 

  189. Bakharev T, Sanjayan JG, Cheng YB (1999) Effect of elevated temperature curing on properties of alkali-activated slag concrete. Cem Concr Res 29:1619–1625. https://doi.org/10.1016/S0008-8846(99)00143-X

    Article  Google Scholar 

  190. Ye H, Radlińska A (2016) Shrinkage mechanisms of alkali-activated slag. Cem Concr Res 88:126–135. https://doi.org/10.1016/j.cemconres.2016.07.001

    Article  Google Scholar 

  191. Neto AAM, Cincotto MA, Repette W (2008) Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cem Concr Res 38:565–574. https://doi.org/10.1016/j.cemconres.2007.11.002

    Article  Google Scholar 

  192. Thomas RJ, Lezama D, Peethamparan S (2017) On drying shrinkage in alkali-activated concrete: improving dimensional stability by aging or heat-curing. Cem Concr Res 91:13–23. https://doi.org/10.1016/j.cemconres.2016.10.003

    Article  Google Scholar 

  193. Taghvayi H, Behfarnia K, Khalili M (2018) The effect of alkali concentration and sodium silicate modulus on the properties of alkali-activated slag concrete. J Adv Concr Technol 16:293–305. https://doi.org/10.3151/jact.16.293

    Article  Google Scholar 

  194. Yang LY, Jia ZJ, Zhang YM, Dai JG (2015) Effects of nano-TiO2 on strength, shrinkage and microstructure of alkali activated slag pastes. Cem Concr Compos 57:1–7. https://doi.org/10.1016/j.cemconcomp.2014.11.009

    Article  Google Scholar 

  195. Fang Y, Gu Y, Kang Q (2011) Effect of fly ash, MgO and curing solution on the chemical shrinkage of alkali-activated slag cement. Adv Mater Res 168–170:2008–2012. https://doi.org/10.4028/www.scientific.net/AMR.168-170.2008

    Article  Google Scholar 

  196. Jin F, Gu K, Al-Tabbaa A (2015) Strength and hydration properties of reactive MgO-activated ground granulated blastfurnace slag paste. Cem Concr Compos 57:8–16. https://doi.org/10.1016/j.cemconcomp.2014.10.007

    Article  Google Scholar 

  197. Jia Z, Yang Y, Yang L et al (2018) Hydration products, internal relative humidity and drying shrinkage of alkali activated slag mortar with expansion agents. Constr Build Mater 158:198–207. https://doi.org/10.1016/j.conbuildmat.2017.09.162

    Article  Google Scholar 

  198. Yuan XH, Chen W, Lu ZA, Chen H (2014) Shrinkage compensation of alkali-activated slag concrete and microstructural analysis. Constr Build Mater 66:422–428. https://doi.org/10.1016/j.conbuildmat.2014.05.085

    Article  Google Scholar 

  199. Chi M (2015) Effects of modulus ratio and dosage of alkali-activated solution on the properties and micro-structural characteristics of alkali-activated fly ash mortars. Constr Build Mater 99:128–136. https://doi.org/10.1016/j.conbuildmat.2015.09.029

    Article  Google Scholar 

  200. Kheradmand M, Abdollahnejad Z, Pacheco-Torgal F (2018) Shrinkage performance of fly ash alkali-activated cement based binder mortars. KSCE J Civ Eng 22:1854–1864. https://doi.org/10.1007/s12205-017-1714-3

    Article  Google Scholar 

  201. Ma Y, Ye G (2015) The shrinkage of alkali activated fly ash. Cem Concr Res 68:75–82. https://doi.org/10.1016/j.cemconres.2014.10.024

    Article  Google Scholar 

  202. Chindaprasirt P, Chareerat T, Hatanaka S, Cao T (2011) High-strength geopolymer using fine high-calcium fly ash. J Mater Civ Eng 23:264–270. https://doi.org/10.1061/(asce)mt.1943-5533.0000161

    Article  Google Scholar 

  203. Duan P, Yan C, Luo W, Zhou W (2016) Effects of adding nano-TiO2 on compressive strength, drying shrinkage, carbonation and microstructure of fluidized bed fly ash based geopolymer paste. Constr Build Mater 106:115–125. https://doi.org/10.1016/j.conbuildmat.2015.12.095

    Article  Google Scholar 

  204. Mastali M, Dalvand A, Sattarifard AR et al (2018) Characterization and optimization of hardened properties of self-consolidating concrete incorporating recycled steel, industrial steel, polypropylene and hybrid fibers. Compos Part B Eng 151:186–200. https://doi.org/10.1016/j.compositesb.2018.06.021

    Article  Google Scholar 

  205. Mastali M, Kinnunen P, Isomoisio H et al (2018) Mechanical and acoustic properties of fiber-reinforced alkali-activated slag foam concretes containing lightweight structural aggregates. Constr Build Mater 187:371–381. https://doi.org/10.1016/j.conbuildmat.2018.07.228

    Article  Google Scholar 

  206. Kuenzel C, Vandeperre LJ, Donatello S et al (2012) Ambient temperature drying shrinkage and cracking in metakaolin-based geopolymers. J Am Ceram Soc 95:3270–3277. https://doi.org/10.1111/j.1551-2916.2012.05380.x

    Article  Google Scholar 

  207. Yip CK, Provis JL, Lukey GC, van Deventer JSJ (2008) Carbonate mineral addition to metakaolin-based geopolymers. Cem Concr Compos 30:979–985. https://doi.org/10.1016/j.cemconcomp.2008.07.004

    Article  Google Scholar 

  208. Vidal L, Joussein E, Colas M et al (2015) Effect of the addition of ammonium molybdate on metakaolin-based geopolymer formation: shrinkage and crystallization. Powder Technol 275:211–219. https://doi.org/10.1016/j.powtec.2015.02.012

    Article  Google Scholar 

  209. Bernal SA, Provis JL, Walkley B et al (2013) Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cem Concr Res 53:127–144. https://doi.org/10.1016/j.cemconres.2013.06.007

    Article  Google Scholar 

  210. Bernal SA, San Nicolas R, Myers RJ et al (2014) MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders. Cem Concr Res 57:33–43. https://doi.org/10.1016/j.cemconres.2013.12.003

    Article  Google Scholar 

  211. Puertas F, Palacios M, Vázquez T (2006) Carbonation process of alkali-activated slag mortars. J Mater Sci 41:3071–3082. https://doi.org/10.1007/s10853-005-1821-2

    Article  Google Scholar 

  212. Bernal SA, Nicolas RS, Provis JL et al (2014) Natural carbonation of aged alkali-activated slag concretes. Mater Struct Constr 47:693–707. https://doi.org/10.1617/s11527-013-0089-2

    Article  Google Scholar 

  213. Bernal SA, Provis JL, Brice DG et al (2012) Accelerated carbonation testing of alkali-activated binders significantly underestimates service life: the role of pore solution chemistry. Cem Concr Res 42:1317–1326. https://doi.org/10.1016/j.cemconres.2012.07.002

    Article  Google Scholar 

  214. Pasupathy K, Berndt M, Castel A et al (2016) Carbonation of a blended slag-fly ash geopolymer concrete in field conditions after 8 years. Constr Build Mater 125:661–669. https://doi.org/10.1016/j.conbuildmat.2016.08.078

    Article  Google Scholar 

  215. Badar MS, Kupwade-Patil K, Bernal SA et al (2014) Corrosion of steel bars induced by accelerated carbonation in low and high calcium fly ash geopolymer concretes. Constr Build Mater 61:79–89. https://doi.org/10.1016/j.conbuildmat.2014.03.015

    Article  Google Scholar 

  216. Bernal SA, Provis JL, de Gutiérrez RM, van Deventer JSJ (2014) Accelerated carbonation testing of alkali-activated slag/metakaolin blended concretes: effect of exposure conditions. Mater Struct Constr 48:653–669. https://doi.org/10.1617/s11527-014-0289-4

    Article  Google Scholar 

  217. Law DW, Adam AA, Molyneaux TK et al (2014) Long term durability properties of class F fly ash geopolymer concrete. Mater Struct Constr 48:721–731. https://doi.org/10.1617/s11527-014-0268-9

    Article  Google Scholar 

  218. Pasupathy K, Sanjayan J, Rajeev P (2021) Evaluation of alkalinity changes and carbonation of geopolymer concrete exposed to wetting and drying. J Build Eng. https://doi.org/10.1016/j.jobe.2020.102029

    Article  Google Scholar 

  219. Fernández-Jiménez A, Palomo A (2009) Chemical durability of geopolymers. Geopolymers. Elsevier, pp 167–193

    Chapter  Google Scholar 

  220. Wu Y, Lu B, Bai T et al (2019) Geopolymer, green alkali activated cementitious material: synthesis, applications and challenges. Constr Build Mater 224:930–949. https://doi.org/10.1016/j.conbuildmat.2019.07.112

    Article  Google Scholar 

  221. Phoo-Ngernkham T, Sata V, Hanjitsuwan S et al (2015) High calcium fly ash geopolymer mortar containing Portland cement for use as repair material. Constr Build Mater 98:482–488. https://doi.org/10.1016/j.conbuildmat.2015.08.139

    Article  Google Scholar 

  222. Zhang J, Provis JL, Feng D, van Deventer JSJ (2008) Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+. J Hazard Mater 157:587–598. https://doi.org/10.1016/j.jhazmat.2008.01.053

    Article  Google Scholar 

  223. Liu Z, Dai M, Zhang Y et al (2016) Preparation and performances of novel waterborne intumescent fire retardant coatings. Prog Org Coat 95:100–106. https://doi.org/10.1016/j.porgcoat.2016.02.024

    Article  Google Scholar 

  224. Zhang Z, Wang K, Mo B et al (2015) Preparation and characterization of a reflective and heat insulative coating based on geopolymers. Energy Build 87:220–225. https://doi.org/10.1016/j.enbuild.2014.11.028

    Article  Google Scholar 

  225. Huang Y, Gong L, Pan Y et al (2018) Facile construction of the aerogel/geopolymer composite with ultra-low thermal conductivity and high mechanical performance. RSC Adv 8:2350–2356. https://doi.org/10.1039/c7ra12041a

    Article  Google Scholar 

  226. Aguirre-Guerrero AM, Robayo-Salazar RA, de Gutiérrez RM (2017) A novel geopolymer application: coatings to protect reinforced concrete against corrosion. Appl Clay Sci 135:437–446. https://doi.org/10.1016/j.clay.2016.10.029

    Article  Google Scholar 

  227. Rahman SK, Al-Ameri R (2021) A newly developed self-compacting geopolymer concrete under ambient condition. Constr Build Mater 267:121822. https://doi.org/10.1016/j.conbuildmat.2020.121822

    Article  Google Scholar 

  228. Efnarc F (2002) Guidelines for self-compacting concrete, vol 32. Association House, London, UK, p 34

  229. Banerjee S, Dionysiou DD, Pillai SC (2015) Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl Catal B Environ 176–177:396–428. https://doi.org/10.1016/j.apcatb.2015.03.058

    Article  Google Scholar 

  230. Teixeira AHC, Junior PRRS, Silva TH et al (2020) Low-carbon concrete based on binary biomass ash-silica fume binder to produce eco-friendly paving blocks. Materials (Basel) 13:1534. https://doi.org/10.3390/ma13071534

    Article  Google Scholar 

  231. Saafi M, Tang L, Fung J et al (2014) Graphene/fly ash geopolymeric composites as self-sensing structural materials. Smart Mater Struct. https://doi.org/10.1088/0964-1726/23/6/065006

    Article  Google Scholar 

  232. Saafi M, Gullane A, Huang B et al (2018) Inherently multifunctional geopolymeric cementitious composite as electrical energy storage and self-sensing structural material. Compos Struct 201:766–778. https://doi.org/10.1016/j.compstruct.2018.06.101

    Article  Google Scholar 

  233. Jämstorp E, Strømme M, Bredenberg S (2012) Influence of drug distribution and solubility on release from geopolymer pellets—a finite element method study. J Pharm Sci 101:1803–1810. https://doi.org/10.1002/jps.23071

    Article  Google Scholar 

  234. Xia M, Sanjayan J (2016) Method of formulating geopolymer for 3D printing for construction applications. Mater Des 110:382–390. https://doi.org/10.1016/j.matdes.2016.07.136

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Minas Gerais Energy Company (CEMIG) and the Brazilian agencies FAPEMIG and CNPq for financing the study.

Funding

This work was supported by the Minas Gerais State Research Foundation (FAPEMIG) [grant number APQ-03739-16], National Council for Scientific and Technological Development (CNPq) [grant number PQ 315653/2020-5], and the PD ANEEL/CEMIG GT616 [grant number GT616].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sâmara França.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests or personal relationships that could appear to influence the work reported in this paper.

Appendix

Appendix

Precursor relation

Compressive strength 28 days (MPa)

Mix conditions

Specimens size

References

SiO2

Al2O3

CaO

65.39

31.48

3.13

20

FA, slag, NaOH, sodium silicate, sand. Cured at 20 °C and relative humidity 50–90%

50 × 50 × 50 mm

[96]

58.43

27.34

14.22

60

51.95

23.48

24.57

80

42.98

18.16

38,86

95

95.21

3.27

1.53

28.56

Rice husk ash, NaOH, sand. Cured at 80 °C

70.6 × 70.6 × 70.6 mm

[101]

42.86

39.31

17.84

50

Tailing, slag, sodium silicate, sand. Cured at 95% RH and 20 °C

Residual samples of 40 × 40 × 160 mm

[106]

31.90

15.50

52.60

54

Slag, NaOH, sodium silicate, sand. Cured at 23 °C

Residual samples of 40 × 40 × 160 mm

[107]

80.95

18.29

0.77

19.6

Clay, sand, NaOH, sodium silicate. Cured at ambient conditions

50 × 50 × 50 mm

[105]

58.44

29.21

12.36

28.4

FA, GGBS, sodium silicate, NaOH, sand. Cured at 30 °C, 96% humidity

75 mm _ × 150 mm rectangular mould

[104]

80.12

19.60

0.28

23.2

Volcanic tuff, NaOH, sand. Cured at ambient conditions

50 × 50 × 50 mm

[100]

55.04

32.98

11.98

15

FA, GGBFS, NaOH, sodium silicate, sand. Cured at 23 °C and 92% RH

50 × 50 × 50 mm

[97]

55.36

33.29

11.35

25

54.09

32.06

13.85

38

57.28

31.84

10.88

35

55.60

33.54

10.85

31

57.37

35.24

7.39

14

58.26

36.10

5.64

11

42.77

11.02

46.21

40.6

GGBFS, sodium silicate, NaOH, sand. Cured at 23 °C

50 × 50 × 50 mm

[103]

33.07

6.04

60.89

22.7

Natural pozzolan, limestone powder waste, sodium silicate, NaOH, sand. Cured at 20 ± 5 °C

50 × 50 × 50 mm

[95]

38.63

19.61

41.76

59

TiO2 extracted

Residues, fly ash, NaOH, sand. Cured at 20 °C, relative humidity 90%

30 × 30 × 30 mm

[108]

40.52

20.25

39.22

58

42.35

20.89

36.75

62,9

45.85

22.09

32.06

63,6

49.15

23.21

27.63

60

34.25

17.20

48.55

30,3

GGBFS, FA, soda residue, calcium carbide slag, sand. Cured at 20 °C in water

40 mm × 40 mm × 160 mm

[98]

33.25

16.85

49.90

43,2

32.30

16.51

51.19

37,6

31.38

16.19

52,44

34,4

34.57

19.80

45.63

39.3

36.50

24.09

39.42

30.6

38.35

28.23

33.42

20.5

40.14

32.22

27.64

17.5

41.87

36.08

22.05

5.1

63.68

23.04

13.28

15.32

Construction and demolition wastes, FA, GGBFS, sílica fume, NaOH, lime, sand. Cured at 19.5 °C and 64.4% RH

Cylinders of dimensions

104 mm dia., 200 mm high

[102]

62.74

23.51

13.75

17.8

53.78

19.63

26.58

12.49

60.40

20.52

19.08

6.68

60.49

20.51

19.00

8.44

56.13

26.88

16.99

85

FA, GGBFS, MK, sodium silicate, NaOH, sand. Cure at ambient conditions

50 × 50 × 50 mm

[99]

54.48

24.32

21.20

80

52.83

21.76

25.41

94

55.52

22.43

22.04

64

53.85

19.84

26.31

57

52.18

17.24

30.57

57

54.37

18.85

26.77

51

55.21

20.16

24.63

69

53.53

17.55

28.92

67

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

França, S., de Moura Solar Silva, M.V., Ribeiro Borges, P.H. et al. A review on some properties of alkali-activated materials. Innov. Infrastruct. Solut. 7, 179 (2022). https://doi.org/10.1007/s41062-022-00789-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-022-00789-w

Keywords

Navigation