Skip to main content
Log in

Application of soft computing techniques in tunnelling and underground excavations: state of the art and future prospects

  • State-of-the-art papers
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

This article aims to provide a concise review on the state-of-the-art application of soft computing techniques to predict various parameters in tunnelling and underground excavations. Various soft computing techniques involving data mining and machine learning have found their application in the tunnelling-related problems. This article explores the application of artificial neural networks (ANNs), radial basis functions (RBFs), decision trees (DTs), random forest (RF) method, support vector machines (SVMs), nonlinear regression methods such as multi-adaptive regression splines (MARS), and hybrid intelligent models in the prediction of engineering response of tunnels and underground excavations. They help in predicting crucial parameters that decide the serviceability of tunnels and associated structures lying above the tunnel cavity. The researchers working in this domain have utilized the real-time data available from the construction projects in creating various machine learning models. It is observed that there are no proper guidelines to obtain optimal network architecture in ANN for assessing the parameters of the stated problem. RBFs and wavelet neural networks, which evolved from ANN, showed improvement in prediction accuracy. SVM and MARS methods are ornamented with improved computational efficiency and robustness of the algorithm. DT and RF methods are interpretable and computationally less expensive compared to neural networks. Hybrid intelligent models provided globally optimal solutions for nonlinear complex problems than simple neural network models. The limitations of the adopted soft computing methods are also emphasized. Overall, this article provides an intricate insight on the various soft computing techniques used by researchers to improve the performance of the machine learning models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Saxena SC (1900) Tunnel engineering. Dhanpat Rai and Sons, New Delhi

    Google Scholar 

  2. Goodman RE (1989) Introduction to rock mechanics, 2nd edn. Wiley, New York

    Google Scholar 

  3. Peck RB (1969) Advantages and limitations of the observational method in applied soil mechanics. Geotechnique 19(2):171–187. https://doi.org/10.1680/geot.1969.19.2.171

    Article  Google Scholar 

  4. Atkinson JH, Potts DM (1977) Subsidence above shallow tunnels in soft ground. J Geotech Geoenviron Eng ASCE 103(4):307–325

    Google Scholar 

  5. Clough W, Schmidt B (1981) Design and performance of excavations and tunnels in soft clay. In: Brand EW, Brenner RP (eds) Soft clay engineering. Elsevier, Amsterdam, pp 100–104

    Google Scholar 

  6. Moh ZC, Daniel HJ, Hwang RN (1996) Ground movements around tunnels in soft ground. In: Proceedings of international symposium on geotechnical aspects of underground construction in soft ground, London, pp 725–730

  7. Fenner R (1938) Untersuchungen zur Erkenntnis des Gebirgsdruks. Glückauf 74:681–685

    Google Scholar 

  8. Hoek E, Brown ET (1980) Underground excavations in rock. E&FN Spon Press for the Institution of Mining and Metallurgy, London

    Google Scholar 

  9. Einstein HH, Schwartz CW (1979) Simplified analysis for tunnel supports. J Geotech Eng Div ASCE 105(4):499–518

    Google Scholar 

  10. Park K (2004) Elastic solution for tunneling-induced ground movements in clays. Int J Geomech ASCE 4(4):310–318. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:4(310)

    Article  Google Scholar 

  11. Franzius JN, Potts DM, Burland JB (2005) The influence of soil anisotropy and K 0 on ground surface movements resulting from tunnel excavation. Geotechnique 55(3):189–199. https://doi.org/10.1680/geot.2005.55.3.189

    Article  Google Scholar 

  12. Swoboda G, Abu-Krisha A (1999) Three dimensional numerical modeling for TBM tunneling in consolidated clay. Tunn Undergr Space Technol 14(3):327–333. https://doi.org/10.1016/S0886-7798(99)00047-4

    Article  Google Scholar 

  13. Addenbrooke TI, Potts DM (2001) Finite element analysis of St. James Park greenfield reference site. In: Burland JB, Standing JR, Jardine FM (eds) Building response to tunnelling, vol 1. Telford, London, pp 177–194

    Google Scholar 

  14. Mroueh H, Shahrour I (2002) Three-dimensional finite element analysis of the interaction between tunneling and pile foundations. Int J Numer Anal Methods Geomech 26:217–230. https://doi.org/10.1002/nag.194

    Article  Google Scholar 

  15. Kasper T, Meschke G (2006) A numerical study of the effect of soil and grout materiel properties and cover depth in shield tunneling. Comput Geotech 33(4–5):234–247. https://doi.org/10.1016/j.compgeo.2006.04.004

    Article  Google Scholar 

  16. Lambrughi A, Rodriguez L, Castellanza R (2012) Development and validation of a 3D numerical model for TBM-EPB mechanised excavations. Comput Geotech 40:97–113. https://doi.org/10.1016/j.compgeo.2011.10.004

    Article  Google Scholar 

  17. Gong W, Luo Z, Juang CH, Huang H, Zhang J, Wang L (2014) Optimization of site exploration program for improved prediction of tunneling induced ground settlement in clays. Comput Geotech 56:69–79. https://doi.org/10.1016/j.compgeo.2013.10.008

    Article  Google Scholar 

  18. Huang H, Gong W, Khoshnevisan S, Juang CH, Zhang D, Wang L (2015) Simplified procedure for finite element analysis of the longitudinal performance of shield tunnels considering spatial soil variability in longitudinal direction. Comput Geotech 64:132–145. https://doi.org/10.1016/j.compgeo.2014.11.010

    Article  Google Scholar 

  19. Maji VB, Adugna A (2016) Numerical modelling of tunnelling induced ground deformation and its control. Int J Min Geoeng 50(2):183–188. https://doi.org/10.22059/ijmge.2016.59827

    Article  Google Scholar 

  20. Do ND, Pierpaolo D (2014) Three-dimensional numerical simulation for mechanized tunnelling in soft ground: the influence of the joint pattern. Acta Geotech 9:673–694. https://doi.org/10.1007/s11440-013-0279-7

    Article  Google Scholar 

  21. Goh ATC, Zhang W, Zhang Y, Xiao Y, Xiang Y (2018) Determination of earth pressure balance tunnel-related maximum surface settlement: a multivariate adaptive regression splines approach. Bull Eng Geol Env 77(2):489–500. https://doi.org/10.1007/s10064-016-0937-8

    Article  Google Scholar 

  22. Karakus M, Fowell RJ (2003) Effects of different tunnel face advance excavation on the settlement by FEM. Tunn Undergr Space Technol 18:513–523. https://doi.org/10.1016/S0886-7798(03)00068-3

    Article  Google Scholar 

  23. Karakus M, Fowell RJ (2005) Back analysis for tunnelling induced ground movements and stress redistribution. Tunn Undergr Space Technol 20:514–524. https://doi.org/10.1016/j.tust.2005.02.007

    Article  Google Scholar 

  24. Ahangari K, Moeinossadat SR, Behnia D (2015) Estimation of tunnelling-induced settlement by modern intelligent methods. Soils Found 55(4):737–748. https://doi.org/10.1016/j.sandf.2015.06.006

    Article  Google Scholar 

  25. Bouayad D, Emeriault F (2017) Modeling the relationship between ground surface settlements induced by shield tunneling and the operational and geological parameters based on the hybrid PCA/ANFIS method. Tunn Undergr Space Technol 68:142–152. https://doi.org/10.1016/j.tust.2017.03.011

    Article  Google Scholar 

  26. Hou J, Zhang MX, Tu M (2009) Prediction of surface settlements induced by shield tunneling: an ANFIS model. Taylor & Francis Group, London, pp 551–554

    Google Scholar 

  27. Armaghani DJ, Mohamad ET, Narayanasamy MS, Narita N, Yagiz S (2017) Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition. Tunn Undergr Space Technol 63:29–43. https://doi.org/10.1016/j.tust.2016.12.009

    Article  Google Scholar 

  28. Yagiz S, Karahan H (2015) Application of various optimization techniques and comparison of their performances for predicting TBM penetration rate in rock mass. Int J Rock Mech Min Sci 80:308–315. https://doi.org/10.1016/j.ijrmms.2015.09.019

    Article  Google Scholar 

  29. Babak S, Anemangely M, Sabah M (2019) Application of hybrid artificial neural networks for predicting rate of penetration (ROP): a case study from Marun oil field. J Petrol Sci Eng 175:604–623. https://doi.org/10.1016/j.petrol.2018.12.013

    Article  Google Scholar 

  30. Gao X, Shi M, Song X, Zhang C, Zhang H (2019) Recurrent neural networks for real-time prediction of TBM operating parameters. Autom Constr 98:225–235. https://doi.org/10.1016/j.autcon.2018.11.013

    Article  Google Scholar 

  31. Kohestani VR, Bazargan-Lari MR, Asgari-Marnani J (2017) Prediction of maximum surface settlement caused by earth pressure balance shield tunnelling using random forest. J AI Data Min 5(1):127–135. https://doi.org/10.22044/jadm.2016.748

    Article  Google Scholar 

  32. Qi C, Asce SM, Fourie A, Zhao X (2018) Back-analysis method for stope displacements using gradient-boosted regression tree and firefly algorithm. J Comput Civil Eng 32:1–10. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000779

    Article  Google Scholar 

  33. Shi J, Ortigao JAR, Bai J (1998) Modular neural networks for predicting settlements during tunnelling. J Geotech Geoenviron Eng ASCE 124(5):389–395. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:5(389)

    Article  Google Scholar 

  34. Kim CY, Bae GJ, Hong SW, Park CH, Moon HK, Shin HS (2001) Neural network based prediction of ground surface settlements due to tunnelling. Comput Geotech 28(6–7):517–547. https://doi.org/10.1016/S0266-352X(01)00011-8

    Article  Google Scholar 

  35. Suwansawat S, Einstein HH (2006) Artificial neural networks for predicting the maximum surface settlement caused by EPB shield tunneling. Tunn Undergr Space Technol 21(2):133–150. https://doi.org/10.1016/j.tust.2005.06.007

    Article  Google Scholar 

  36. Santos OJ, Celestino TB (2008) Artificial neural networks analysis of São Paulo subway tunnel settlement data. Tunn Undergr Space Technol 23(5):481–491. https://doi.org/10.1016/j.tust.2007.07.002

    Article  Google Scholar 

  37. Tsekouras GJ, Koukoulis J, Mastorakis NE (2010) An optimized neural network for predicting settlements during tunneling excavation. WSEAS Trans Syst 9(12):1153–1167

    Google Scholar 

  38. Pourtaghi A, Lotfollahi-Yaghin MA (2012) Wavenet ability assessment in comparison to ANN for predicting the maximum surface settlement caused by tunneling. Tunn Undergr Space Technol 28:257–271. https://doi.org/10.1016/j.tust.2011.11.008

    Article  Google Scholar 

  39. Moghaddasi MR, Noorian-Bidgoli M (2018) ICA-ANN, ANN and multiple regression models for prediction of surface settlement caused by tunneling. Tunn Undergr Space Technol 79:197–209. https://doi.org/10.1016/j.tust.2018.04.016

    Article  Google Scholar 

  40. Zhou J, Shi X, Du K, Qiu X, Li X, Mitri HS (2017) Feasibility of random-forest approach for prediction of ground settlements induced by the construction of a shield-driven tunnel. Int J Geomech ASCE 17(6):04016129-1-12. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000817

    Article  Google Scholar 

  41. Mahdevari S, Torabi SR (2012) Prediction of tunnel convergence using artificial neural networks. Tunn Undergr Space Technol 28:218–228. https://doi.org/10.1016/j.tust.2011.11.002

    Article  Google Scholar 

  42. Rafiai H, Moosavi M (2012) An approximate ANN-based solution for convergence of lined circular tunnels in elasto-plastic rock masses with anisotropic stresses. Tunn Undergr Space Technol 27(1):52–59. https://doi.org/10.1016/j.tust.2011.06.008

    Article  Google Scholar 

  43. Adoko AC, Jiao YY, Wu L, Wang H, Wang ZH (2013) Predicting tunnel convergence using multivariate adaptive regression spline and artificial neural network. Tunn Undergr Space Technol 38:368–376. https://doi.org/10.1016/j.tust.2013.07.023

    Article  Google Scholar 

  44. Benardos AG, Kaliampakos DC (2004) Modelling TBM performance with artificial neural networks. Tunn Undergr Space Technol 19(6):597–605. https://doi.org/10.1016/j.tust.2004.02.128

    Article  Google Scholar 

  45. Javad G, Narges T (2010) Application of artificial neural networks to the prediction of tunnel boring machine penetration rate. Min Sci Technol (China) 20(5):727–733. https://doi.org/10.1016/S1674-5264(09)60271-4

    Article  Google Scholar 

  46. Leu SS, Chen CN, Chang SL (2001) Data mining for tunnel support stability: neural network approach. Autom Constr 10:429–441. https://doi.org/10.1016/S0926-5805(00)00078-9

    Article  Google Scholar 

  47. Lee C, Sterling R (1992) Identifying probable failure modes for underground openings using a neural network. Int J Rock Mech Min Sci Abst 29(1):49–67. https://doi.org/10.1016/0148-9062(92)91044-6

    Article  Google Scholar 

  48. Lau S, Lu M, Ariaratnam ST (2010) Applying radial basis function neural networks to estimate next-cycle production rates in tunnelling construction. Tunn Undergr Space Technol 25:357–365. https://doi.org/10.1016/j.tust.2010.01.010

    Article  Google Scholar 

  49. Almasri MN, Kaluarachchi JJ (2005) Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data. Environ Model Softw. https://doi.org/10.1016/j.envsoft.2004.05.001

    Article  Google Scholar 

  50. NeuralWare (2000) Neural computing, using neuralworks, and reference guide. NeuralWare, Pittsburgh

    Google Scholar 

  51. Azam F (2000) Biologically inspired modular neural networks. Ph.D. Handbook, Virginia Polytechnic Institute and State University

  52. Stack B (1982) Handbook of mining and tunnelling machinery. Wiley, New York

    Book  Google Scholar 

  53. Maidl B, Herrenknecht M, Anheuser L (1996) Mechanised shield tunnelling. Ernst & Sohn, Berlin

    Google Scholar 

  54. Qiao J, Liu J, Guo W, Zhang Y (2010) Artificial neural network to predict the surface maximum settlement by shield tunnelling. In: Liu H, Ding H, Xiong Z, Zhu X (eds) Intelligent robotics and applications, vol 6424. ICIRA 2010. Lecture notes in computer science. Springer, Berlin, pp 257–265. https://doi.org/10.1007/978-3-642-16584-9_24

    Chapter  Google Scholar 

  55. Hippert HS, Pedreira CE, Souza RC (2001) Neural networks for short-term load forecasting: a review and evaluation. IEEE Trans Power Syst 16(1):44–55. https://doi.org/10.1016/j.tust.2011.12.00910.1109/59.910780

    Article  Google Scholar 

  56. Khatami SA, Mirhabibi A, Khosravi A, Nahavandi S (2013) Artificial neural network analysis of twin tunnelling-induced ground settlements. In: Proceedings of IEEE international conference on systems, man and cybernetics, pp 2492–2497. https://doi.org/10.1109/SMC.2013.425

  57. Addenbrooke TI, Potts DM (1996) Twin tunnel construction—ground movements and lining behaviour. In: Proceedings of the geotechnical aspects of underground construction in soft ground, Rotterdam, Balkema, pp 441–446

  58. Mirhabibi A, Soroush A (2012) Effects of surface buildings on twin tunnelling-induced ground settlements. Tunn Undergr Space Technol 29:40–51. https://doi.org/10.1016/j.tust.2011.12.009

    Article  Google Scholar 

  59. Mirhabibi A (2012) Numerical analysis of tunnelling-induced settlements of surface structures due to twin tunnel construction in soils, Ph.D. Handbook, Amir Kabir University

  60. Zhang A, Zhang L (2004) RBF neural networks for the prediction of building interference effects. Comput Struct 82(27):2333–2339. https://doi.org/10.1016/j.compstruc.2004.05.014

    Article  Google Scholar 

  61. Rumelhart DE, MacClelland JL (1986) Parallel distributed processing. MIT, Bradford

    Google Scholar 

  62. Eftekhari M, Baghbanan A, Bayati M (2010) Predicting penetration rate of a tunnel boring machine using artificial neural network. In: Proceedings of the ISRM international symposium and 6th Asian rock mechanics symposium—advances in rock engineering, New Delhi, India

  63. Ripley BD (1993) Statistical aspects of neural networks. In: Barndoff- Neilsen OE, Jensen JL, Kendall WS (eds) Networks and chaos-statistical and probabilistic aspects. Chapman & Hall, London, pp 40–123

    Chapter  Google Scholar 

  64. Wang C (1994) A theory of generalization in learning machines with neural application. PhD Thesis, The University of Pennsylvania, USA

  65. Kaastra I, Boyd M (1996) Designing a neural network for forecasting financial and economic time series. Neurocomputing 10:215–236

    Article  Google Scholar 

  66. Haykin S (2004) Neural networks—a comprehensive foundation. Prentice-Hall, Upper Saddle River

    Google Scholar 

  67. Duddeck H (1996) Challenges to tunnelling engineers. Tunn Undergr Space Technol 11(1):5–10. https://doi.org/10.1016/0886-7798(96)84164-2

    Article  Google Scholar 

  68. Vapnik V, Golowich S, Smola A (1997) Support vector method for function approximation, regression estimation, and signal processing. In: Mozer MC, Jordan MI, Petsche T (eds) Advances in neural information processing systems, vol 9. MIT Press, Cambridge, pp 281–287

    Google Scholar 

  69. Mahdevari S, Torabi SR, Monjezi M (2012) Application of artificial intelligence algorithms in predicting tunnel convergence to avoid TBM jamming phenomenon. Int J Rock Mech Min Sci 55:33–44. https://doi.org/10.1016/j.ijrmms.2012.06.005

    Article  Google Scholar 

  70. Basak D, Pal S, Patranabis DC (2007) Support vector regression. Neural Inf Process Lett Rev 11(10):203–224

    Google Scholar 

  71. Wang F, Gou B, Qin Y (2013) Modelling tunneling-induced ground surface settlement development using a wavelet smooth relevance vector machine. Comput Geotech 54:125–132. https://doi.org/10.1016/j.compgeo.2013.07.004

    Article  Google Scholar 

  72. Mahdevari S, Shahriar K, Yagiz S, Akbarpour Shirazi M (2014) A support vector regression model for predicting tunnel boring machine penetration rates. Int J Rock Mech Min Sci 72:214–229. https://doi.org/10.1016/j.ijrmms.2014.09.012

    Article  Google Scholar 

  73. Friedman J (1991) Multivariate adaptive regression splines. Ann Stat 19:1–67. https://doi.org/10.1214/aos/1176347963

    Article  Google Scholar 

  74. Lashkari A (2013) Prediction of the shaft resistance of non-displacement piles in sand. Int J Numer Anal Methods Geomech 37:904–931. https://doi.org/10.1002/nag.1129

    Article  Google Scholar 

  75. Attoh-Okine NO, Cooger K, Mensah S (2009) Multivariate adaptive regression spline (MARS) and hinged hyper planes (HHP) for doweled pavement performance modelling. Constr Build Mater 23:3020–3023. https://doi.org/10.1016/j.conbuildmat.2009.04.010

    Article  Google Scholar 

  76. Samui P, Das SK, Kim D (2011) Uplift capacity of suction caisson in clay using multivariate adaptive regression spline. Ocean Eng 38(17–18):2123–2127. https://doi.org/10.1016/j.oceaneng.2011.09.036

    Article  Google Scholar 

  77. Samui P, Karup P (2011) Multivariate adaptive regression spline and least square support vector machine for prediction of undrained shear strength of clay. Int J Appl Metaheur Comput 3(2):33–42. https://doi.org/10.4018/jamc.2012040103

    Article  Google Scholar 

  78. Zhang WG, Goh ATC (2013) Multivariate adaptive regression splines for analysis of geotechnical engineering systems. Comput Geotech 48:82–95. https://doi.org/10.1016/j.compgeo.2012.09.016

    Article  Google Scholar 

  79. Zhang WG, Zhang R, Goh ATC (2018) Multivariate adaptive regression splines approach to estimate lateral wall deflection profiles caused by braced excavations in clays. Geotech Geol Eng 36:1349–1363. https://doi.org/10.1007/s10706-017-0397-3

    Article  Google Scholar 

  80. Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning. Springer, New York

    Google Scholar 

  81. Dindarloo SR, Siami-Irdemoosa E (2015) Maximum surface settlement based classification of shallow tunnels in soft ground. Tunn Undergr Space Technol 49:320–327. https://doi.org/10.1016/j.tust.2015.04.021

    Article  Google Scholar 

  82. Salimi A, Rostami J, Moormann C (2017) Evaluating the suitability of existing rock mass classification systems for TBM performance prediction by using a regression tree. Proc Eng 191:299–309. https://doi.org/10.1016/j.proeng.2017.05.185

    Article  Google Scholar 

  83. Liaw A, Wiener M (2002) Classification and regression by random forest. R News: The Newsletter of the R Project, 2/3, 18–22

  84. Kuhn M, Johnson K (2013) Applied predictive modeling. Springer, New York

    Book  Google Scholar 

  85. Qu YL (2005) Neural network prediction of ground deformation caused by urban underground engineering. Master’s thesis, Nanjing University of Technology, Nanjing, Jiangsu Province, China (in Chinese)

  86. Neaupane KM, Adhikari NR (2006) Prediction of tunneling induced ground movement with the multi-layer perceptron. Tunn Undergr Space Technol 21(2):151–159. https://doi.org/10.1016/j.tust.2005.07.001

    Article  Google Scholar 

  87. Taghavifar H, Mardani A, Taghavifar L (2013) A hybridized artificial neural network and imperialist competitive algorithm optimization approach for prediction of soil compaction in soil bin facility. Measurement 46(8):2288–2299. https://doi.org/10.1016/j.measurement.2013.04.077

    Article  Google Scholar 

  88. Hajihassani M, Armaghani DJ, Marto A, Mohamad ET (2015) Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm. Bull Eng Geol Environ 74(3):873–886. https://doi.org/10.1007/s10064-014-0657-x

    Article  Google Scholar 

  89. Jaksa MB, Maier HR, Shahin MA (2008) Future challenges for artificial neural network modelling in geotechnical engineering. In: Proceedings of the 12th international conference of international association for computer methods and advances in geomechanics (IACMAG), India, pp 1710–1719

  90. Shcherbakov MV, Brebels A (2013) A survey of forecast error measures. World Appl Sci J 24:171–176. https://doi.org/10.5829/idosi.wasj.2013.24.itmies.80032

    Article  Google Scholar 

  91. Ghaderi A, Shahri AA, Larsson S (2018) An artificial neural network based model to predict spatial soil type distribution using piezocone penetration test data (CPTu). Bull Eng Geol Environ. https://doi.org/10.1007/s10064-018-1400-9

    Article  Google Scholar 

  92. Chai T, Draxler RR, Prediction C (2014) Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature. Geosci Model Dev. https://doi.org/10.5194/gmd-7-1247-2014

    Article  Google Scholar 

  93. Shahri AA, Asheghi R (2018) Optimized developed artificial neural network-based models to predict the blast-induced ground vibration. Innov Infrastruct Solut 3(34):1–10. https://doi.org/10.1007/s41062-018-0137-4

    Article  Google Scholar 

  94. Liou SW, Wang CM, Huang YF (2009) Integrative discovery of multifaceted sequence patterns by frame-relayed search and hybrid PSO-ANN. J Univers Comput Sci 15(4):742–764

    Google Scholar 

  95. Ahmadi MA, Ebadi M, Shokrollahi A, Majidi SMJ (2013) Evolving artificial neural network and imperialist competitive algorithm for prediction oil flow rate of the reservoir. Appl Soft Comput 13(2):1085–1098. https://doi.org/10.1016/j.asoc.2012.10.009

    Article  Google Scholar 

  96. Jiang A, Wang S, Tang S (2011) Feedback analysis of tunnel construction using a hybrid arithmetic based on support vector machine and particle swarm optimisation. Autom Constr 20(4):482–489. https://doi.org/10.1016/j.autcon.2010.11.016

    Article  Google Scholar 

  97. Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

    Google Scholar 

  98. Mao R, Zhu H, Zhang L, Chen A (2006) A new method to assist small data set neural network learning. In: Sixth international conference on intelligent systems design and applications. ISDA’06. IEEE, pp 17–22. https://doi.org/10.1109/ISDA.2006.67

  99. Adoko AC, Zuo QJ, Wu L (2011) A fuzzy model for high-speed railway tunnel convergence prediction in weak rock. Electron J Geotech Eng 16(Q):1275–1295

    Google Scholar 

Download references

Acknowledgements

The authors wholeheartedly thank the reviewers, whose comments have aided in substantial improvement in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arindam Dey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shreyas, S.K., Dey, A. Application of soft computing techniques in tunnelling and underground excavations: state of the art and future prospects. Innov. Infrastruct. Solut. 4, 46 (2019). https://doi.org/10.1007/s41062-019-0234-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-019-0234-z

Keywords

Navigation