Skip to main content
Log in

Enantioselective Allylic C–H Bond Oxidation of Olefins Using Copper Complexes of Chiral Oxazoline Based Ligands

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

This review article discusses historical and contemporary research studies of asymmetric allylic oxidation of olefins using homogeneous and heterogeneous copper complexes of various kinds of oxazoline-based ligands, until the end of 2021. It is revealed that this strategy is a powerful method to form a new stereogenic center bearing an oxygen substituent adjacent to an unchanged C=C bond. Enantioselectivities as well as chemical yields, and also the reactivity, are strongly dependent on the type of substrate, oxidant, the copper salt and its oxidation state, ligand structure, temperature, nature of the solvent, and additives such as phenylhydrazine and porous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Figure 1
Scheme 8
Figure 2
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23

Similar content being viewed by others

References

  1. Kharasch M, Sosnovsky G (1958) The reactions of t-butyl perbenzoate and olefins a stereospecific reaction. J Am Chem Soc 80:756–756

    Article  CAS  Google Scholar 

  2. Kharasch M, Sosnovsky G (1958) Structure of peroxides derived from dyclohexanone and hydrogen peroxide. J Org Chem 23:1322–1326

    Article  CAS  Google Scholar 

  3. Kharasch M, Sosnovsky G, Yang N (1959) Reactions of t-butyl peresters. I. The reaction of peresters with olefins. J Am Chem Soc 81:5819–5824

    Article  CAS  Google Scholar 

  4. Boumizane K, Herzog-Cance M, Jones D, Pascal J, Potier J, Roziere J (1991) Synthesis, vibrational spectroscopy and EXAFS analysis of some divalent and trivalent trifluoromethanesulphonato complexes. Polyhedron 10:2757–2769

    Article  CAS  Google Scholar 

  5. Andrus MB, Lashley JC (2002) Copper catalyzed allylic oxidation with peresters. Tetrahedron 58:845–866

    Article  CAS  Google Scholar 

  6. Eames J, Watkinson M (2001) Catalytic allylic oxidation of alkenes using an asymmetric Kharasch–Sosnovsky reaction. Angew Chem Int Ed 40:3567–3571

    Article  CAS  Google Scholar 

  7. García-Cabeza AL, Moreno-Dorado FJ, Ortega Aguera MJ, Guerra Martínez FM (2016) Copper-catalyzed oxidation of alkenes and heterocycles. Synthesis 48:2323–2342

    Article  CAS  Google Scholar 

  8. Black JR, Levason W, Webster M (1995) Tetrakis (acetonitrile-N) copper (I) hexafluorophosphate (V) acetonitrile solvate. Acta Cryst C51:623–625

    CAS  Google Scholar 

  9. Kubas G, Monzyk B, Crumblis A (1990) Tetrakis (acetonitrile) copper (1+) hexafluorophosphate (1−). Inorg Synth 28:68–70

    CAS  Google Scholar 

  10. Denney DB, Napier R, Cammarata A (1965) A convenient method for the preparation of some optically active allylic alcohols. J Org Chem 30:3151–3153

    Article  CAS  Google Scholar 

  11. Levina A, Muzart J (1995) A convenient one-step catalytic method for obtaining optically active 2-cyclopentenyl benzoate from cyclopentene. Synth Commun 25:1789–1794

    Article  CAS  Google Scholar 

  12. Muzart J (1991) Enantioselective copper-catalyzed allylic acetoxylation of cyclohexene. J Mol Catal 64:381–384

    Article  CAS  Google Scholar 

  13. Levina A, Hénin F, Muzart J (1995) On the stability of the copper-(S)-proline catalyst in the enantioselective allylic acyloxylation of alkenes. J Organomet Chem 494:165–168

    Article  CAS  Google Scholar 

  14. Södergren MJ, Andersson PG (1996) Chiral, bicyclic proline derivatives and their application as ligands for copper in the catalytic asymmetric allylic oxidation of olefins. Tetrahedron Lett 37:7577–7580

    Article  Google Scholar 

  15. Rispens MT, Zondervan C, Feringa BL (1995) Catalytic enantioselective allylic oxidation. Tetrahedron Asymmetry 6:661–664

    Article  CAS  Google Scholar 

  16. Hoang VD, Reddy PA, Kim T-J (2008) Asymmetric allylic oxidation catalyzed by copper (I) complexes of chiral (iminophosphoranyl) ferrocenes. Organometallics 27:1026–1027

    Article  CAS  Google Scholar 

  17. Chelucci G, Loriga G, Murineddu G, Pinna GA (2002) Synthesis and application in asymmetric copper (I)-catalyzed allylic oxidation of a new chiral 1, 10-phenanthroline derived from pinene. Tetrahedron Lett 43:3601–3604

    Article  CAS  Google Scholar 

  18. Lee W-S, Kwong H-L, Chan H-L, Choi W-W, Ng L-Y (2001) Chiral bipyridine–copper (I) complex-catalyzed enantioselective allylic oxidation of cyclic alkenes. Tetrahedron Asymmetry 12:1007–1013

    Article  CAS  Google Scholar 

  19. Boyd DR, Sharma ND, Sbircea L, Murphy D, Belhocine T, Malone JF, James SL, Allen CC, Hamilton JT (2008) Azaarene cis-dihydrodiol-derived 2, 2′-bipyridine ligands for asymmetric allylic oxidation and cyclopropanation. Chem Commun 20:5535–5537

    Article  CAS  Google Scholar 

  20. Tan Q, Hayashi M (2008) Novel N, N-bidentate ligands for enantioselective copper (I)-catalyzed allylic oxidation of cyclic olefins. Adv Synth Catal 350:2639–2644

    Article  CAS  Google Scholar 

  21. Teng P-F, Tsang C-S, Yeung H-L, Wong W-L, Kwong H-L, Williams ID (2006) New chiral bidentate ligands containing thiazolyl and pyridyl donors for copper-catalyzed asymmetric allylic oxidation of cyclohexene. J Organomet Chem 691:2237–2244

    Article  CAS  Google Scholar 

  22. Solinas M, Sechi B, Chelucci G (2014) Screening of N, N-bidentate and N, N, N-tridentate pyridine-based ligands in the catalytic allylic oxidation of cyclic olefins. Appl Organomet Chem 28:831–834

    Article  CAS  Google Scholar 

  23. Faraji L, Samadi S, Jadidi K, Notash B (2014) Synthesis of novel chiral diamino alcohols and their application in copper-catalyzed asymmetric allylic oxidation of cycloolefins. Bull Korean Chem Soc 35:1989–1995

    Article  CAS  Google Scholar 

  24. Fache F, Piva O (2003) Synthesis and applications of the first polyfluorous proline derivative. Tetrahedron Asymmetry 14:139–143

    Article  CAS  Google Scholar 

  25. Fache F, Piva O (2002) Rapid and reusable copper catalytic system for allylic oxidation of olefins in hexafluoroisopropanol as solvent. Synlett 2002:2035–2036

    Article  Google Scholar 

  26. Le Bras J, Muzart J (2003) Amino acid/copper-catalyzed enantioselective allylic benzoyloxylation of olefins in water promoted by diethylene glycol. Tetrahedron Asymmetry 14:1911–1915

    Article  CAS  Google Scholar 

  27. Le Bras J, Muzart J (2002) Selective copper-catalyzed allylic oxidations using a 1/1 ratio of cycloalkene and tert-butylperbenzoate. J Mol Catal A Chem 185:113–117

    Article  Google Scholar 

  28. Desimoni G, Faita G, Jørgensen KA (2006) C2-symmetric chiral bis (oxazoline) ligands in asymmetric catalysis. Chem Rev 106:3561–3651

    Article  CAS  PubMed  Google Scholar 

  29. Desimoni G, Faita G, Jørgensen KA (2011) Update 1 of: C2-symmetric chiral bis (oxazoline) ligands in asymmetric catalysis. Chem Rev 111:PR284–PR437

    Article  CAS  PubMed  Google Scholar 

  30. Samadi S, Nazari S, Arvinnezhad H, Jadidi K, Notash B (2013) A significant improvement in enantioselectivity, yield, and reactivity for the copper-bi-o-tolyl bisoxazoline-catalyzed asymmetric allylic oxidation of cyclic olefins using recoverable SBA-15 mesoporous silica material. Tetrahedron 69:6679–6686

    Article  CAS  Google Scholar 

  31. Samadi S, Jadidi K, Notash B (2013) Chiral bisoxazoline ligands with a biphenyl backbone: development and application in catalytic asymmetric allylic oxidation of cycloolefins. Tetrahedron Asymmetry 24:269–277

    Article  CAS  Google Scholar 

  32. Samadi S, Jadidi K, Khanmohammadi B, Tavakoli N (2016) Heterogenization of chiral mono oxazoline ligands by grafting onto mesoporous silica MCM-41 and their application in copper-catalyzed asymmetric allylic oxidation of cyclic olefins. J Catal 340:344–353

    Article  CAS  Google Scholar 

  33. Braunstein P, Naud F (2001) Hemilability of hybrid ligands and the coordination chemistry of oxazoline-based systems. Angew Chem Int Ed 40:680–699

    Article  CAS  Google Scholar 

  34. Gómez M, Muller G, Rocamora M (1999) Coordination chemistry of oxazoline ligands. Coord Chem Rev 193:769–835

    Article  Google Scholar 

  35. Kangani CO, Kelley DE, Day BW (2006) One pot direct synthesis of oxazolines, benzoxazoles, and oxadiazoles from carboxylic acids using the Deoxo-Fluor reagent. Tetrahedron Lett 47:6497–6499

    Article  CAS  Google Scholar 

  36. Wipf P, Venkatraman S (1997) From aziridines to oxazolines and thiazolines: the heterocyclic route to thiangazole. Synlett 1:1–10

    Article  Google Scholar 

  37. Wuts PG, Northuis JM, Kwan TA (2000) The synthesis of oxazolines using the Vilsmeier reagent. J Org Chem 65:9223–9225

    Article  CAS  PubMed  Google Scholar 

  38. Cryder JL, Killgore AJ, Moore C, Golen JA, Rheingold AL, Daley CJ (2010) Novel metal complexes containing a chiral trinitrogen isoindoline-based pincer ligand: in situ synthesis and structural characterization. Dalton Trans 39:10671–10677

    Article  CAS  PubMed  Google Scholar 

  39. Fraile JM, García JI, Herrerías CI, Mayoral JA, Reiser O, Socuéllamos A, Werner H (2004) The role of binding constants in the efficiency of chiral catalysts immobilized by electrostatic interactions: the case of azabis (oxazoline)–copper complexes. Chem Eur J 10:2997–3005

    Article  CAS  PubMed  Google Scholar 

  40. Gissibl A, Finn M, Reiser O (2005) Cu(II)-Aza (bisoxazoline)-catalyzed asymmetric benzoylations. Org Lett 7:2325–2328

    Article  CAS  PubMed  Google Scholar 

  41. Lang K, Park J, Hong S (2010) Development of bifunctional aza-bis (oxazoline) copper catalysts for enantioselective henry reaction. J Org Chem 75:6424–6435

    Article  CAS  PubMed  Google Scholar 

  42. Pilsl LK, Ertl T, Reiser O (2017) Enantioselective three-step synthesis of homo-β-proline: a donor–acceptor cyclopropane as key intermediate. Org Lett 19:2754–2757

    Article  CAS  PubMed  Google Scholar 

  43. Kochi J (1962) The mechanism of the copper salt catalysed reactions of peroxides. Tetrahedron 18:483–497

    Article  CAS  Google Scholar 

  44. Kochi J, Subramanian R (1965) Kinetics of electron-transfer oxidation of alkyl radicals by copper (II) complexes. J Am Chem Soc 87:4855–4866

    Article  CAS  Google Scholar 

  45. Kochi JK (1962) Copper salt-catalyzed reaction of butenes with peresters. J Am Chem Soc 84:774–784

    Article  CAS  Google Scholar 

  46. Kochi JK, Krusic PJ (1968) Isomerization and electron spin resonance of allylic radicals. J Am Chem Soc 90:7157–7159

    Article  CAS  Google Scholar 

  47. Walling C, Thaler W (1961) Positive halogen compounds. III. allylic chlorination with t-butyl hypochlorite the stereochemistry of allylic radicals1. J Am Chem Soc 83:3877–3884

    Article  CAS  Google Scholar 

  48. Walling C, Zavitsas AA (1963) The copper-catalyzed reaction of peresters with hydrocarbons. J Am Chem Soc 85:2084–2090

    Article  CAS  Google Scholar 

  49. Beckwith AL, Zavitsas AA (1986) Allylic oxidations by peroxy esters catalyzed by copper salts. The potential for stereoselective syntheses. J Am Chem Soc 108:8230–8234

    Article  CAS  Google Scholar 

  50. Mayoral JA, Rodríguez-Rodríguez S, Salvatella L (2008) Theoretical insights into enantioselective catalysis: the mechanism of the Kharasch–Sosnovsky reaction. Chem Eur J 14:9274–9285

    Article  CAS  PubMed  Google Scholar 

  51. Smith K, Hupp CD, Allen KL, Slough GA (2005) Catalytic allylic amination versus allylic oxidation: a mechanistic dichotomy. Organometallics 24:1747–1755

    Article  CAS  Google Scholar 

  52. Zhu N, Qian B, Xiong H, Bao H (2017) Copper-catalyzed regioselective allylic oxidation of olefins via C–H activation. Tetrahedron Lett 58:4125–4128

    Article  CAS  Google Scholar 

  53. Wang X-S, Zhao H, Li Y-H, Xiong R-G, You X-Z (2005) Olefin-copper (I) complexes and their properties. Top Catal 35:43–61

    Article  CAS  Google Scholar 

  54. Gokhale AS, Minidis AB, Pfaltz A (1995) Enantioselective allylic oxidation catalyzed by chiral bisoxazoline-copper complexes. Tetrahedron Lett 36:1831–1834

    Article  CAS  Google Scholar 

  55. Andrus MB, Argade AB, Chen X, Pamment MG (1995) The asymmetric Kharasch reaction. catalytic enantioselective allylic acyloxylation of olefins with chiral copper (I) complexes and tert-butyl perbenzoate. Tetrahedron Lett 36:2945–2948

    Article  CAS  Google Scholar 

  56. Andrus MB, Chen X (1997) Catalytic enantioselective allylic oxidation of olefins with copper (I) catalysts and new perester oxidants. Tetrahedron 53:16229–16240

    Article  CAS  Google Scholar 

  57. Kawasaki K, Tsumura S, Katsuki T (1995) Enantioselective allylic oxidation using biomimetic tris (oxazolines)-copper (II) complex. Synlett 20:1245–1246

    Article  Google Scholar 

  58. Kawasaki K, Katsuki T (1997) Enantioselective allylic oxidation of cycloalkenes by using Cu (II)-tris (oxazoline) complex as a catalyst. Tetrahedron 53:6337–6350

    Article  CAS  Google Scholar 

  59. Kohmura Y, Katsuki T (2000) Asymmetric allylic oxidation of cycloalkenes using a tridentate tris (oxazoline) ligand as a chiral auxiliary. Tetrahedron Lett 41:3941–3945

    Article  CAS  Google Scholar 

  60. DattaGupta A, Singh VK (1996) Catalytic enantioselective allylic oxidation of olefins with copper complexes of chiral nonracemic bis (oxazolinyl) pyridine type ligands. Tetrahedron Lett 37:2633–2636

    Article  CAS  Google Scholar 

  61. Sekar G, DattaGupta A, Singh VK (1998) Asymmetric Kharasch reaction: catalytic enantioselective allylic oxidation of olefins using chiral pyridine bis (diphenyloxazoline)—copper complexes and tert-butyl perbenzoate. J Org Chem 63:2961–2967

    Article  CAS  Google Scholar 

  62. Ginotra SK, Singh VK (2006) Enantioselective oxidation of olefins catalyzed by chiral copper bis (oxazolinyl) pyridine complexes: a reassessment. Tetrahedron 62:3573–3581

    Article  CAS  Google Scholar 

  63. Ginotra SK, Singh VK (2006) Studies on enantioselective allylic oxidation of olefins using peresters catalyzed by Cu (I)-complexes of chiral pybox ligands. Org Biomol Chem 4:4370–4374

    Article  CAS  PubMed  Google Scholar 

  64. Singh PK, Singh VK (2010) Enantioselective reactions catalyzed by chiral pyridine 2, 6-bis (5’, 5’-diphenyloxazoline)-metal complexes. Pure Appl Chem 82:1845–1853

    Article  CAS  Google Scholar 

  65. Andrus MB, Asgari D (2000) Asymmetric allylic oxidation with biarylbisoxazoline-copper (I) catalysis. Tetrahedron 56:5775–5780

    Article  CAS  Google Scholar 

  66. Andrus MB, Sekhar BS (2001) Synthesis and preliminary use of naphthyl quinazoline and isoquinoline oxazolines for asymmetric allylic oxidation. J Heterocycl Chem 38:1265–1271

    Article  CAS  Google Scholar 

  67. Li ZP, Wu XY, Zhou QL, Chan WL (2001) Enantioselective allylic oxidation of olefins using chiral quinolinyl-oxazoline copper complex catalysts. Chin J Chem 19:40–44

    Article  CAS  Google Scholar 

  68. Andrus MB, Zhou Z (2002) Highly enantioselective copper-bisoxazoline-catalyzed allylic oxidation of cyclic olefins with tert-butyl p-nitroperbenzoate. J Am Chem Soc 124:8806–8807

    Article  CAS  PubMed  Google Scholar 

  69. Thorhauge J, Roberson M, Hazell RG, Jørgensen KA (2002) On the intermediates in chiral bis (oxazoline) copper (II)-catalyzed enantioselective reactions-experimental and theoretical investigations. Chem Eur J 8:1888–1898

    Article  CAS  PubMed  Google Scholar 

  70. Johnson JS, Evans DA (2000) Chiral bis (oxazoline) copper (II) complexes: versatile catalysts for enantioselective cycloaddition, aldol, Michael, and carbonyl ene reactions. Acc Chem Res 33:325–335

    Article  CAS  PubMed  Google Scholar 

  71. Zhou Z, Andrus MB (2012) Naphthyl-substituted bisoxazoline and pyridylbisoxazoline–copper (I) catalysts for asymmetric allylic oxidation. Tetrahedron Lett 53:4518–4521

    Article  CAS  Google Scholar 

  72. Reddy KL, Sharpless KB (1998) From styrenes to enantiopure α-arylglycines in two steps. J Am Chem Soc 120:1207–1217

    Article  CAS  Google Scholar 

  73. Clark JS, Tolhurst KF, Taylor M, Swallow S (1998) Enantioselective allylic acyloxylation catalysed by copper–oxazoline complexes. J Chem Soc Perkin Trans 1:1167–1170

    Article  Google Scholar 

  74. Clark JS, Clarke M-R, Clough J, Blake AJ, Wilson C (2004) Asymmetric allylic oxidation of bridged-bicyclic alkenes using a copper-catalysed symmetrising–desymmetrising Kharasch-Sosnovsky reaction. Tetrahedron Lett 45:9447–9450

    Article  CAS  Google Scholar 

  75. Clark JS, Roche C (2005) Tuneable asymmetric copper-catalysed allylic amination and oxidation reactions. Chem Commun 20:5175–5177

    Article  CAS  Google Scholar 

  76. Liu B, Zhu S-F, Wang L-X, Zhou Q-L (2006) Preparation and application of bisoxazoline ligands with a chiral spirobiindane skeleton for asymmetric cyclopropanation and allylic oxidation. Tetrahedron Asymmetry 17:634–641

    Article  CAS  Google Scholar 

  77. Zhang B, Zhu S-F, Zhou Q-L (2013) Copper-catalyzed enantioselective allylic oxidation of acyclic olefins. Tetrahedron Lett 54:2665–2668

    Article  CAS  Google Scholar 

  78. Anet F, Kozerski L (1973) Determination of conformational barriers in 1, 5-cyclooctadiene by proton and carbon-13 nuclear magnetic resonance. J Am Chem Soc 95:3407–3408

    Article  CAS  Google Scholar 

  79. Anet FA, Easton NR Jr, Yavari I (1979) Carbon-13 nuclear magnetic resonance spectra and conformations of cis, cis-1, 5-cyclooctadiene monoepoxide and cis, syn, cis-1, 5-cyclooctadiene diepoxide. Org Magn Reson 12:299–301

    Article  CAS  Google Scholar 

  80. Sauriol-Lord F, St-Jacques M (1975) Stereodynamic investigation of dibenzo-1, 5-cyclooctadiene and 5, 6, 11, 12-tetrahydrodibenzo [b, f][1, 4] diazocine derivatives. Can J Chem 53:3768–3776

    Article  CAS  Google Scholar 

  81. Beck AK, Dahinden R, Kühnle FN (1996) Tartrate-derived ligands for the enantioselective LiAlH4 reduction of ketones: a comparison of TADDOLates and BINOLates. ACS Symp Ser Am Chem Soc 641:52–69

    CAS  Google Scholar 

  82. Meyers A, Himmelsbach RJ (1985) An enantioselective synthesis of 2, 2’, 6-trisubstituted biphenyls. J Am Chem Soc 107:682–685

    Article  CAS  Google Scholar 

  83. Meyers A, Meier A, Rawson DJ (1992) A highly stereoselective synthesis of axially chiral biaryls. Application to the synthesis of a potential chiral catalysts. Tetrahedron Lett 33:853–856

    Article  CAS  Google Scholar 

  84. Imai Y, Zhang W, Kida T, Nakatsuji Y, Ikeda I (2000) Novel chiral bisoxazoline ligands with a biphenyl backbone: preparation, complexation, and application in asymmetric catalytic reactions. J Org Chem 65:3326–3333

    Article  CAS  PubMed  Google Scholar 

  85. Samadi S, Jadidi K, Samadi M, Ashouri A, Notash B (2019) Designing chiral amido-oxazolines as new chelating ligands devoted to direct Cu-catalyzed oxidation of allylic C-H bonds in cyclic olefins. Tetrahedron 75:862–867

    Article  CAS  Google Scholar 

  86. Zondervan C, Feringa BL (1996) Remarkable reversal of the non-linear effect in the catalytic enantioselective allylic oxidation of cyclohexene using copper proline complexes and t-butyl hydroperoxide. Tetrahedron Asymmetry 7:1895–1898

    Article  CAS  Google Scholar 

  87. Schulz M, Kluge R, Gelalcha FG (1998) Asymmetric peroxidation of prochiral allylic and benzylic compounds with tert-butyl hydroperoxide and chiral bisoxazoline–copper complexes. Tetrahedron Asymmetry 9:4341–4360

    Article  CAS  Google Scholar 

  88. Fahrni CJ (1998) Allylic oxidation catalyzed by chiral dinuclear copper complexes. Tetrahedron 54:5465–5470

    Article  CAS  Google Scholar 

  89. Alvarez LX, Christ ML, Sorokin AB (2007) Selective oxidation of alkenes and alkynes catalyzed by copper complexes. Appl Catal A Gen 325:303–308

    Article  CAS  Google Scholar 

  90. Clariana J, Comelles J, Moreno-Mañas M, Vallribera A (2002) 2, 2′-isopropylidenebis [(4R)-(1-adamantyl)-2-oxazoline](Adam-Box). A new enantiopure C2-symmetrical ligand: enantioselective cyclopropanations, Diels-Alder reactions, and allylic oxidations. Tetrahedron Asymmetry 13:1551–1554

    Article  CAS  Google Scholar 

  91. Bayardon J, Sinou D, Guala M, Desimoni G (2004) Applications of enantiopure 4, 5-diphenyl substituted box and pybox ligands in asymmetric catalysis. Tetrahedron Asymmetry 15:3195–3200

    Article  CAS  Google Scholar 

  92. Seitz M, Capacchione C, Bellemin-Laponnaz S, Wadepohl H, Ward BD, Gade LH (2006) Bisoxazolines with one and two sidearms: stereodirecting ligands for copper-catalysed asymmetric allylic oxidations of alkenes. Dalton Trans 20:193–202

    Article  Google Scholar 

  93. Malkov AV, Stewart-Liddon AJ, Teplý F, Kobr L, Muir KW, Haigh D, Kočovský P (2008) New pinene-derived pyridines as bidentate chiral ligands. Tetrahedron 64:4011–4025

    Article  CAS  Google Scholar 

  94. Köhler V, Mazet C, Toussaint A, Kulicke K, Häussinger D, Neuburger M, Schaffner S, Kaiser S, Pfaltz A (2008) Chiral boron-bridged bisoxazoline (borabox) ligands: structures and reactivities of Pd and Cu complexes. Chem Eur J 14:8530–8539

    Article  PubMed  CAS  Google Scholar 

  95. De Vos DE, Dams M, Sels BF, Jacobs PA (2002) Ordered mesoporous and microporous molecular sieves functionalized with transition metal complexes as catalysts for selective organic transformations. Chem Rev 102:3615–3640

    Article  PubMed  CAS  Google Scholar 

  96. Li C, Zhang H, Jiang D, Yang Q (2007) Chiral catalysis in nanopores of mesoporous materials. Chem Commun 20:547–558

    Article  Google Scholar 

  97. Fan Q-H, Li Y-M, Chan AS (2002) Recoverable catalysts for asymmetric organic synthesis. Chem Rev 102:3385–3466

    Article  CAS  PubMed  Google Scholar 

  98. Bayardon J, Sinou D (2004) Enantiopure fluorous bis (oxazolines): synthesis and applications in catalytic asymmetric reactions. J Org Chem 69:3121–3128

    Article  CAS  PubMed  Google Scholar 

  99. Bayardon J, Sinou D (2005) Synthesis of two new chiral fluorous bis (oxazolines) and their applications as ligands in catalytic asymmetric reactions. Tetrahedron Asymmetry 16:2965–2972

    Article  CAS  Google Scholar 

  100. Aldea L, Delso I, Hager M, Glos M, García JI, Mayoral JA, Reiser O (2012) A reusable enantioselective catalytic system for the Kharasch–Sosnovsky allylic oxidation of alkenes based on a ditopic azabis (oxazoline) ligand. Tetrahedron 68:3417–3422

    Article  CAS  Google Scholar 

  101. Samadi S, Ashouri A, Samadi M (2020) Synthesis of chiral allylic esters by using the new recyclable chiral heterogeneous oxazoline-based catalysts. ACS Omega 5:22367–22378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the University of Kurdistan Research Councils for the partial support of this work. The authors gratefully thank Prof. Andreas Pfaltz (University of Basel) for his helpful suggestions, consultations, and all his kindness. We would also wish to offer our deepest gratitude to Dr. Khosrow Jadidi (Shahid Beheshti University) for his efforts in the development and promotion of asymmetric synthesis in Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saadi Samadi.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samadi, S., Arvinnezhad, H., Nazari, S. et al. Enantioselective Allylic C–H Bond Oxidation of Olefins Using Copper Complexes of Chiral Oxazoline Based Ligands. Top Curr Chem (Z) 380, 20 (2022). https://doi.org/10.1007/s41061-022-00375-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-022-00375-9

Keywords

Navigation