Skip to main content
Log in

Mechanofluorochromism with Aggregation-Induced Emission (AIE) Characteristics: A Perspective Applying Isotropic and Anisotropic Force

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Organic mechanofluorochromic (MFC) materials (that change their emission under anisotropic and isotropic pressure) have attracted a great attention in recent years due to their promising applications in sensing pressure, storage devices, security inks, three-dimensional (3D) printing, etc. Stimuli-responsive organic materials with aggregation-induced emission (AIE) characteristics would be an interesting class of materials to enrich the chemistry of MFC compounds. A diamond anvil cell (DAC) is a small tool that is employed to generate high and uniform pressure on materials over a small area. This article discusses the relationship between the chemical structure of AIE compounds and the change in emission properties under anisotropic (mechanical grinding) and isotropic (hydrostatic) pressure. The luminescent properties of such materials depend on the molecular rearrangement in the lattice, conformational changes, excited state transitions and weak intermolecular interactions. Hence, studying the change in luminescent property of these compounds under varying pressure will provide a deeper understanding of the excited-state properties of various emissive compounds with stress. The development of such materials and studies into the effect of pressure on their luminescence properties are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Copyright 2020, royal society of chemistry

Fig. 4

Copyright 2020, Royal Society of Chemistry

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Copyright 2021, Wiley

Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Copyright 2020, Wiley

Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Guo F, Guo Z (2016) Inspired smart materials with external stimuli responsive wettability: a review. Rsc Adv 6(43):36623–36641. https://doi.org/10.1039/C6RA04079A

    Article  CAS  Google Scholar 

  2. Wang H, Zhao E, Lam JWY, Tang BZ (2015) AIE luminogens: emission brightened by aggregation. Mater Today 18(7):365–377. https://doi.org/10.1016/j.mattod.2015.03.004

    Article  CAS  Google Scholar 

  3. Han T, Liu L, Wang D, Yang J, Tang BZ (2021) Mechanochromic fluorescent polymers enabled by AIE processes 42(1):2000311. https://doi.org/10.1002/marc.202000311

    Article  CAS  Google Scholar 

  4. Roy E, Nagar A, Chaudhary S, Pal S (2020) Advanced properties and applications of AIEgens-inspired smart materials. Ind Eng Chem Res 59(23):10721–10736. https://doi.org/10.1021/acs.iecr.0c01869

    Article  CAS  Google Scholar 

  5. Zhang X, Chi Z, Zhang Y, Liu S, Xu J (2013) Recent advances in mechanochromic luminescent metal complexes. J Mater ChemC 1(21):3376–3390. https://doi.org/10.1039/C3TC30316K

    Article  CAS  Google Scholar 

  6. Gundu S, Kim M, Mergu N, Son Y-A (2017) AIE-active and reversible mechanochromic tetraphenylethene-tetradiphenylacrylonitrile hybrid luminogens with re-writable optical data storage application. Dyes Pigm 146:7–13. https://doi.org/10.1016/j.dyepig.2017.06.043

    Article  CAS  Google Scholar 

  7. Feng A, Smet PF (2018) A review of mechanoluminescence in inorganic solids: compounds. Mech Models Appl 11(4):484

    Google Scholar 

  8. La DD, Bhosale SV, Jones LA, Bhosale SV (2018) Tetraphenylethylene-based AIE-active probes for sensing applications. ACS Appl Mater Interfaces 10(15):12189–12216. https://doi.org/10.1021/acsami.7b12320

    Article  CAS  PubMed  Google Scholar 

  9. Di B-H, Chen Y-L (2018) Recent progress in organic mechanoluminescent materials. Chin Chem Lett 29(2):245–251. https://doi.org/10.1016/j.cclet.2017.08.043

    Article  CAS  Google Scholar 

  10. Bustamante C, Alexander L, Maciuba K, Kaiser CM (2020) Single-molecule studies of protein folding with optical tweezers. Annu Rev Biochem 89(1):443–470. https://doi.org/10.1146/annurev-biochem-013118-111442

  11. Xie Y, Li Z (2020) The development of mechanoluminescence from organic compounds: breakthrough and deep insight. Mater Chem Front 4(2):317–331. https://doi.org/10.1039/C9QM00580C

    Article  CAS  Google Scholar 

  12. Zhou X, Li H, Chi Z, Zhang X, Zhang J, Xu B, Zhang Y, Liu S, Xu J (2012) Piezofluorochromism and morphology of a new aggregation-induced emission compound derived from tetraphenylethylene and carbazole. New J Chem 36(3):685–693. https://doi.org/10.1039/C1NJ20782B

    Article  CAS  Google Scholar 

  13. Moggach SA, Allan DR, Parsons S, Warren JE (2008) Incorporation of a new design of backing seat and anvil in a Merrill-Bassett diamond anvil cell. J Appl Crystallogr 41(2):249–251. https://doi.org/10.1107/S0021889808000514

    Article  CAS  Google Scholar 

  14. Evans WJ, Yoo C-S, Lee GW, Cynn H, Lipp MJ, Visbeck K (2007) Dynamic diamond anvil cell (dDAC): a novel device for studying the dynamic-pressure properties of materials. Rev Sci Instrum 78(7):073904. https://doi.org/10.1063/1.2751409

  15. Zhao F, Chen Z, Fan C, Liu G, Pu S (2019) Aggregation-induced emission (AIE)-active highly emissive novel carbazole-based dyes with various solid-state fluorescence and reversible mechanofluorochromism characteristics. Dyes Pigm 164:390–397. https://doi.org/10.1016/j.dyepig.2019.01.057

    Article  CAS  Google Scholar 

  16. Zhang G, Singer JP, Kooi SE, Evans RE, Thomas EL, Fraser CL (2011) Reversible solid-state mechanochromic fluorescence from a boron lipid dye. J Mater Chem 21(23):8295–8299. https://doi.org/10.1039/C0JM03871G

    Article  CAS  Google Scholar 

  17. Hong Y, Lam JWY, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40(11):5361–5388. https://doi.org/10.1039/C1CS15113D

    Article  CAS  PubMed  Google Scholar 

  18. Wu W, Duan Y, Liu B (2020) Mechanoluminescence: quantitative pressure-brightness relationship enables new applications. Matter 2(2):291–293. https://doi.org/10.1016/j.matt.2020.01.007

    Article  Google Scholar 

  19. Ubba E, Tao Y, Yang Z, Zhao J, Wang L, Chi Z (2018) Organic mechanoluminescence aggregation-induced emission. Chemistry 13(21):3106–3121. https://doi.org/10.1002/asia.201800926

  20. Suman GR, Pandey M, Jeevan Chakravarthy AS (2021) Review on new horizons of aggregation induced emission: from design to development. Materials Chem Front 5(4):1541–1584. https://doi.org/10.1039/D0QM00825G

  21. Clough JM, Weder C, Schrettl S (2021) Mechanochromism in structurally colored polymeric materials. Macromol Rapid Commun 42(1):2000528. https://doi.org/10.1002/marc.202000528

  22. Pucci A (2019) Mechanochromic fluorescent polymers aggregation-induced emission features. Sensors 19(22):4969

  23. Liu J-J, Yang J, Wang J-L, Chang Z-F, Li B, Song W-T, Zhao Z, Lou X, Dai J, Xia F (2018) Tetrathienylethene based red aggregation-enhanced emission probes: super red-shifted mechanochromic behavior and highly photostable cell membrane imaging. Mater Chem Front 2(6):1126–1136. https://doi.org/10.1039/C8QM00008E

    Article  CAS  Google Scholar 

  24. Hao J, Xu C-N (2018) Piezophotonics: From fundamentals and materials to applications. MRS Bull 43(12):965–969. https://doi.org/10.1557/mrs.2018.296

    Article  Google Scholar 

  25. Wang L, Ye K-Q, Zhang H-Y (2016) Organic materials with hydrostatic pressure induced mechanochromic properties. Chin Chem Lett 27(8):1367–1375. https://doi.org/10.1016/j.cclet.2016.06.049

    Article  CAS  Google Scholar 

  26. Fu Z, Wang K, Zou B (2019) Recent advances in organic pressure-responsive luminescent materials. Chin Chem Lett 30(11):1883–1894

    Article  CAS  Google Scholar 

  27. Wang L, Liu L, Xu B, Tian W (2021) Recent advances in mechanism of AIE mechanochromic materials. Chem Res Chin Univ 37(1):100–109. https://doi.org/10.1007/s40242-021-0431-0

    Article  CAS  Google Scholar 

  28. Mei J, Hong Y, Lam JWY, Qin A, Tang Y, Tang BZ (2014) Aggregation-induced emission. Adv Mater 26(31):5429–5479. https://doi.org/10.1002/adma.201401356

  29. Valuer B (2001) Molecular fluorescence: principles and applications. In: Digital encyclopedia of applied physics. Wiley, New York, pp 477–531. https://doi.org/10.1002/3527600434.eap684

  30. Yuan H, Wang K, Yang K, Liu B, Zou B (2014) Luminescence properties of compressed tetraphenylethene: the role of intermolecular interactions. J Phys Chem Lett 5(17):2968–2973. https://doi.org/10.1021/jz501371k

    Article  CAS  PubMed  Google Scholar 

  31. Li N, Gu Y, Chen Y, Zhang L, Zeng Q, Geng T, Wu L, Jiang L, Xiao G, Wang K, Zou B (2019) Pressure-induced emission enhancement and piezochromism of triphenylethylene. J Phys Chem C 123(11):6763–6767. https://doi.org/10.1021/acs.jpcc.9b00670

    Article  CAS  Google Scholar 

  32. Schmidtke JP, Kim J-S, Gierschner J, Silva C, Friend RH (2007) Optical spectroscopy of a polyfluorene copolymer at high pressure: intra- and intermolecular interactions. Phys Rev Lett 99(16):167401. https://doi.org/10.1103/PhysRevLett.99.167401

    Article  CAS  PubMed  Google Scholar 

  33. Wu J, Tang J, Wang H, Qi Q, Fang X, Liu Y, Xu S, Zhang SX-A, Zhang H, Xu W (2015) Reversible piezofluorochromic property and intrinsic structure changes of tetra(4-methoxyphenyl)ethylene under high pressure. J Phys Chem A 119(35):9218–9224. https://doi.org/10.1021/acs.jpca.5b02362

    Article  CAS  PubMed  Google Scholar 

  34. Kwon JE, Park SY (2011) Advanced organic optoelectronic materials: harnessing excited-state intramolecular proton transfer (ESIPT) process. Adv Mater 23(32):3615–3642. https://doi.org/10.1002/adma.201102046

  35. Guo Z-H, Jin Z-X, Wang J-Y, Pei J (2014) A donor–acceptor–donor conjugated molecule: twist intramolecular charge transfer and piezochromic luminescent properties. Chem Commun 50(46):6088–6090. https://doi.org/10.1039/C3CC48980A

    Article  CAS  Google Scholar 

  36. Qi Q, Qian J, Tan X, Zhang J, Wang L, Xu B, Zou B, Tian W (2015) Remarkable turn-on color-tuned piezochromic luminescence. Adv Funct Mater 25(26):4005–4010. https://doi.org/10.1002/adfm.201501224

  37. Xiong J, Wang K, Yao Z, Zou B, Xu J, Bu X-H (2018) Multi-stimuli-responsive fluorescence switching from a pyridine-functionalized tetraphenylethene AIEgen. ACS Appl Mater Interfaces 10(6):5819–5827. https://doi.org/10.1021/acsami.7b18718

    Article  CAS  PubMed  Google Scholar 

  38. Huang L, Liu J, Liu L, Yang Q, Ma Z, Jia X (2020) A D-A-D’ type organic molecule with persistent phosphorescence exhibiting dual-mode mechanochromism. Dyes Pigm 173:107963. https://doi.org/10.1016/j.dyepig.2019.107963

    Article  CAS  Google Scholar 

  39. Qiu X, Ying S, Wang C, Hanif M, Xu Y, Li Y, Zhao R, Hu D, Ma D, Ma Y (2019) Novel 9,9-dimethylfluorene-bridged D–π–A-type fluorophores with a hybridized local and charge-transfer excited state for deep-blue electroluminescence with CIEy ~ 0.05. J Mater Chem C 7(3):592–600. https://doi.org/10.1039/C8TC05469J

  40. Li W, Pan Y, Yao L, Liu H, Zhang S, Wang C, Shen F, Lu P, Yang B, Ma Y (2014) A hybridized local and charge-transfer excited state for highly efficient fluorescent OLEDs: molecular design, spectral character, and full exciton utilization. Adv Opt Mater 2(9):892–901. https://doi.org/10.1002/adom.201400154

  41. Li W, Pan Y, Xiao R, Peng Q, Zhang S, Ma D, Li F, Shen F, Wang Y, Yang B, Ma Y (2014) Employing ~100% Excitons in OLEDs by utilizing a fluorescent molecule with hybridized local and charge-transfer excited state. Adv Funct Mater 24(11):1609–1614. https://doi.org/10.1002/adfm.201301750

  42. Liu X, Li A, Xu W, Ma Z, Jia X (2018) Pressure-induced emission band separation of the hybridized local and charge transfer excited state in a TPE-based crystal. Phys Chem Chem Phys 20(19):13249–13254. https://doi.org/10.1039/C8CP02096E

    Article  CAS  PubMed  Google Scholar 

  43. Liu X, Ma C, Li A, Xu W, Ma Z, Jia X (2019) Schiff base-bridged TPE-rhodamine dyad: facile synthesis, distinct response to shearing and hydrostatic pressure, and sequential multicolored acidichromism. J Mater Chem C 7(27):8398–8403. https://doi.org/10.1039/C9TC02113B

    Article  CAS  Google Scholar 

  44. Nian H, Li A, Li Y, Cheng L, Wang L, Xu W, Cao L (2020) Tetraphenylethene-based tetracationic dicyclophanes: synthesis, mechanochromic luminescence, and photochemical reactions. Chem Commun 56(21):3195–3198. https://doi.org/10.1039/D0CC00860E

    Article  CAS  Google Scholar 

  45. Gao YW, Jun; Zhang, Chao-Feng; Xu, Xiang-Hong; Zhang, Mian; Kong, Ling-Yi, (2014) CCDC 940012: experimental crystal structure determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/CC10K4ZP

    Article  Google Scholar 

  46. Wang X, Qi C, Fu Z, Zhang H, Wang J, Feng H-T, Wang K, Zou B, Lam JWY, Tang BZ (2021) A synergy between the push–pull electronic effect and twisted conformation for high-contrast mechanochromic AIEgens. Mater Horiz 8(2):630–638. https://doi.org/10.1039/D0MH01251C

    Article  CAS  Google Scholar 

  47. Yang W, Li C, Zhang M, Zhou W, Xue R, Liu H, Li Y (2016) Aggregation-induced emission and intermolecular charge transfer effect in triphenylamine fluorophores containing diphenylhydrazone structures. Phys Chem Chem Phys 18(40):28052–28060. https://doi.org/10.1039/C6CP04755F

    Article  CAS  PubMed  Google Scholar 

  48. Pham HD, Hu H, Feron K, Manzhos S, Wang H, Lam YM, Sonar P (2017) Thienylvinylenethienyl and naphthalene core substituted with triphenylamines—highly efficient hole transporting materials and their comparative study for inverted perovskite solar cells. Sol RRL 1(8):1700105. https://doi.org/10.1002/solr.201700105

  49. Jia J, Zhao H (2019) Structure-dependent reversible mechanochromism of D-π-A triphenylamine derivatives. Tetrahedron Lett 60(3):252–259. https://doi.org/10.1016/j.tetlet.2018.12.024

    Article  CAS  Google Scholar 

  50. Fang M, Yang J, Liao Q, Gong Y, Xie Z, Chi Z, Peng Q, Li Q, Li Z (2017) Triphenylamine derivatives: different molecular packing and the corresponding mechanoluminescent or mechanochromism property. J Mater ChemC 5(38):9879–9885. https://doi.org/10.1039/C7TC03641H

    Article  CAS  Google Scholar 

  51. Wu J, Wang H, Xu S, Xu W (2015) Comparison of Shearing force and hydrostatic pressure on molecular structures of triphenylamine by fluorescence and Raman spectroscopies. J Phys Chem A 119(8):1303–1308. https://doi.org/10.1021/jp511380a

    Article  CAS  PubMed  Google Scholar 

  52. Yue B, Xie Z, Lu P, Ma Y (2013) The organic photoelectric functions and applications in organic light-emitting diodes of aggregation-induced emission molecules. Sci China 43(1674–7224):1065. https://doi.org/10.1360/032013-197

  53. Zhang Y, Zhuang G, Ouyang M, Hu B, Song Q, Sun J, Zhang C, Gu C, Xu Y, Ma Y (2013) Mechanochromic and thermochromic fluorescent properties of cyanostilbene derivatives. Dyes Pigm 98(3):486–492. https://doi.org/10.1016/j.dyepig.2013.03.017

    Article  CAS  Google Scholar 

  54. Zhao H, Wang Y, Harrington S, Ma L, Hu S, Wu X, Tang H, Xue M, Wang Y (2016) Remarkable substitution influence on the mechanochromism of cyanostilbene derivatives. Rsc Adv 6(71):66477–66483. https://doi.org/10.1039/C6RA14707K

    Article  CAS  Google Scholar 

  55. Ouyang M, Zhan L, Lv X, Cao F, Li W, Zhang Y, Wang K, Zhang C (2016) Clear piezochromic behaviors of AIE-active organic powders under hydrostatic pressure. Rsc Adv 6(2):1188–1193. https://doi.org/10.1039/C5RA21218A

    Article  CAS  Google Scholar 

  56. Zhang Y, Qile M, Sun J, Xu M, Wang K, Cao F, Li W, Song Q, Zou B, Zhang C (2016) Ratiometric pressure sensors based on cyano-substituted oligo(p-phenylene vinylene) derivatives in the hybridized local and charge-transfer excited state. J Mater ChemC 4(42):9954–9960. https://doi.org/10.1039/C6TC03157A

    Article  CAS  Google Scholar 

  57. Wang B, Wei C (2018) Stimuli-responsive fluorescence switching of cyanostilbene derivatives: ultrasensitive water, acidochromism and mechanochromism. Rsc Adv 8(40):22806–22812. https://doi.org/10.1039/C8RA03598A

    Article  CAS  Google Scholar 

  58. Zhang Y, Wang K, Zhuang G, Xie Z, Zhang C, Cao F, Pan G, Chen H, Zou B, Ma Y (2015) Multicolored-fluorescence switching ICT-type organic solids clear color difference: mechanically controlled excited state. Chemistry 21(6):2474–2479. https://doi.org/10.1002/chem.201405348

  59. Zhang S, Dai Y, Luo S, Gao Y, Gao N, Wang K, Zou B, Yang B, Ma Y (2017) Rehybridization of nitrogen atom induced photoluminescence enhancement pressure stimulation. Adv Funct Mater 27(1):1602276. https://doi.org/10.1002/adfm.201602276

  60. Zhang Y, Zhang J, Shen J, Sun J, Wang K, Xie Z, Gao H, Zou B (2018) Solid-state TICT-emissive cruciform: aggregation-enhanced emission, deep-red to near-infrared piezochromism and imaging in vivo. Adv Opt Mater 6(22):1800956. https://doi.org/10.1002/adom.201800956

  61. Li A, Chu N, Liu J, Liu H, Wang J, Xu S, Cui H, Zhang H, Xu W, Ma Z (2019) Pressure-induced remarkable luminescence switch of a dimer form of donor–acceptor–donor triphenylamine (TPA) derivative. Mater Chem Front 3(12):2768–2774. https://doi.org/10.1039/C9QM00529C

    Article  CAS  Google Scholar 

  62. Mosca S, Milani A, Peña-Álvarez M, Yamaguchi S, Hernández V, Ruiz Delgado MC, Castiglioni C (2018) Mechanochromic luminescent tetrathiazolylthiophenes: evaluating the role of intermolecular interactions through pressure and temperature-dependent Raman spectroscopy. J Phys Chem C 122(30):17537–17543. https://doi.org/10.1021/acs.jpcc.8b05423

    Article  CAS  Google Scholar 

  63. Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11(1):19–32. https://doi.org/10.1039/B818330A

    Article  CAS  Google Scholar 

  64. Zhang J, Li A, Zou H, Peng J, Guo J, Wu W, Zhang H, Zhang J, Gu X, Xu W, Xu S, Liu SH, Qin A, Lam JWY, Tang BZ (2020) A “simple” donor–acceptor AIEgen with multi-stimuli responsive behavior. Mater Horiz 7(1):135–142. https://doi.org/10.1039/C9MH01041F

    Article  CAS  Google Scholar 

  65. Yoshizawa M, Klosterman JK (2014) Molecular architectures of multi-anthracene assemblies. Chem Soc Rev 43(6):1885–1898. https://doi.org/10.1039/C3CS60315F

    Article  CAS  PubMed  Google Scholar 

  66. Sun B, Yang X, Ma L, Niu C, Wang F, Na N, Wen J, Ouyang J (2013) Design and application of anthracene derivative with aggregation-induced emission charateristics for visualization and monitoring of erythropoietin unfolding. Langmuir 29(6):1956–1962. https://doi.org/10.1021/la3048278

    Article  CAS  PubMed  Google Scholar 

  67. Dong Y, Xu B, Zhang J, Tan X, Wang L, Chen J, Lv H, Wen S, Li B, Ye L, Zou B, Tian W (2012) Piezochromic luminescence based on the molecular aggregation of 9,10-bis((E)-2-(pyrid-2-yl)vinyl)anthracene. Angew Chem Int Ed 51(43):10782–10785. https://doi.org/10.1002/anie.201204660

  68. Shao B, Jin R, Li A, Liu Y, Li B, Xu S, Xu W, Xu B, Tian W (2019) Luminescent switching and structural transition through multiple external stimuli based on organic molecular polymorphs. J Mater ChemC 7(11):3263–3268. https://doi.org/10.1039/C9TC00051H

    Article  CAS  Google Scholar 

  69. Li A, Wang J, Xu S, Huo Z, Geng Y, Xu W, Cui H (2019) Distinct stimuli-responsive behavior for two polymorphs of 9,10-bis(phenylethynyl)anthracene under pressure based on intermolecular interactions. Dyes Pigm 170:107603. https://doi.org/10.1016/j.dyepig.2019.107603

    Article  CAS  Google Scholar 

  70. Liu Y, Li A, Xu S, Xu W, Liu Y, Tian W, Xu B (2020) Reversible luminescent switching in an organic cocrystal: multi-stimuli-induced crystal-to-crystal phase transformation. Angew Chem Int Ed 59(35):15098–15103. https://doi.org/10.1002/anie.202002220

  71. Bénard S, Yu P (2000) New spiropyrans showing crystalline-state photochromism. Adv Mater 12(1):48–50. https://doi.org/10.1002/(SICI)1521-4095(200001)12:1%3c48::AID-ADMA48%3e3.0.CO;2-G

  72. Klajn R (2014) Spiropyran-based dynamic materials. Chem Soc Rev 43(1):148–184. https://doi.org/10.1039/C3CS60181A

    Article  CAS  PubMed  Google Scholar 

  73. Kortekaas L, Browne WR (2019) The evolution of spiropyran: fundamentals and progress of an extraordinarily versatile photochrome. Chem Soc Rev 48(12):3406–3424. https://doi.org/10.1039/C9CS00203K

    Article  CAS  PubMed  Google Scholar 

  74. Such G, Evans RA, Yee LH, Davis TP (2003) Factors influencing photochromism of spiro-compounds within polymeric matrices. J Macromol Sci Part C 43(4):547–579. https://doi.org/10.1081/MC-120025978

    Article  CAS  Google Scholar 

  75. Wang Y, Tan X, Zhang Y-M, Zhu S, Zhang I, Yu B, Wang K, Yang B, Li M, Zou B, Zhang SX-A (2015) Dynamic behavior of molecular switches in crystal under pressure and its reflection on tactile sensing. J Am Chem Soc 137(2):931–939. https://doi.org/10.1021/ja511499p

    Article  CAS  PubMed  Google Scholar 

  76. Meng X, Qi G, Zhang C, Wang K, Zou B, Ma Y (2015) Visible mechanochromic responses of spiropyrans in crystals via pressure-induced isomerization. Chem Commun 51(45):9320–9323. https://doi.org/10.1039/C5CC01064K

    Article  CAS  Google Scholar 

  77. Deng X, Guo H, Meng X, Wang K, Zou B, Ma Y (2019) Visible responses under high pressure in crystals: phenolphthalein and its analogues with adjustable ring-opening threshold pressures. Chem Commun 55(32):4663–4666. https://doi.org/10.1039/C9CC01145E

    Article  CAS  Google Scholar 

  78. Parris MD, MacKay BA, Rathke JW, Klingler RJ, Gerald RE (2008) Influence of pressure on boron cross-linked polymer gels. Macromolecules 41(21):8181–8186. https://doi.org/10.1021/ma801187q

    Article  CAS  Google Scholar 

  79. Wang L, Wang K, Zhang H, Jiao C, Zou B, Ye K, Zhang H, Wang Y (2015) The facile realization of RGB luminescence based on one yellow emissive four-coordinate organoboron material. Chem Commun 51(36):7701–7704. https://doi.org/10.1039/C5CC01113B

    Article  CAS  Google Scholar 

  80. Wang X, Liu Q, Yan H, Liu Z, Yao M, Zhang Q, Gong S, He W (2015) Piezochromic luminescence behaviors of two new benzothiazole–enamido boron difluoride complexes: intra- and inter-molecular effects induced by hydrostatic compression. Chem Commun 51(35):7497–7500. https://doi.org/10.1039/C5CC01902H

    Article  CAS  Google Scholar 

  81. Pasha SS, Yadav HR, Choudhury AR, Laskar IR (2017) Synthesis of an aggregation-induced emission (AIE) active salicylaldehyde based Schiff base: study of mechanoluminescence and sensitive Zn(ii) sensing. J Mater ChemC 5(37):9651–9658. https://doi.org/10.1039/C7TC03046K

    Article  CAS  Google Scholar 

  82. Yadav P, Singh AK, Upadhyay C, Singh VP (2019) Photoluminescence behaviour of a stimuli responsive schiff base: aggregation induced emission and piezochromism. Dyes Pigm 160:731–739. https://doi.org/10.1016/j.dyepig.2018.08.065

    Article  CAS  Google Scholar 

  83. Shi P, Duan Y, Wei W, Xu Z, Li Z, Han T (2018) A turn-on type mechanochromic fluorescent material based on defect-induced emission: implication for pressure sensing and mechanical printing. J Mater ChemC 6(10):2476–2482. https://doi.org/10.1039/C7TC05683D

    Article  CAS  Google Scholar 

  84. Zhang M, Zhao L, Zhao R, Li Z, Liu Y, Duan Y, Han T (2019) A mechanochromic luminescent material with aggregation-induced emission: application for pressure sensing and mapping. Spectrochim Acta Pt A 220:117125. https://doi.org/10.1016/j.saa.2019.05.030

    Article  CAS  Google Scholar 

  85. Hou Y, Li Y, Zhang M, Zhang X, Xu Z, Li Y, Duan Y, Han T (2020) A dihedral-angle-controlled mechanochromic luminescent material: application for pressure sensing. Dyes Pigm 180:108505. https://doi.org/10.1016/j.dyepig.2020.108505

    Article  CAS  Google Scholar 

  86. Gu Y, Wang K, Dai Y, Xiao G, Ma Y, Qiao Y, Zou B (2017) Pressure-induced emission enhancement of carbazole: the restriction of intramolecular vibration. J PhysChemLett 8(17):4191–4196. https://doi.org/10.1021/acs.jpclett.7b01796

    Article  CAS  Google Scholar 

  87. Mei X, Wei K, Wen G, Liu Z, Lin Z, Zhou Z, Huang L, Yang E, Ling Q (2016) Carbazole-based diphenyl maleimides: multi-functional smart fluorescent materials for data process and sensing for pressure, explosive and pH. Dyes Pigm 133:345–353. https://doi.org/10.1016/j.dyepig.2016.06.015

    Article  CAS  Google Scholar 

  88. Liu Y, Li A, Ma Z, Xu W, Ma Z, Jia X (2020) Multicolored fluorescence variation of a new carbazole-based AIEE molecule by external stimuli. Phys Chem Chem Phys 22(34):19195–19201. https://doi.org/10.1039/D0CP02783A

    Article  CAS  PubMed  Google Scholar 

  89. Zhao Y, Ding J, Han X, Geng T, Zhou X, Hu C, Wang Y, Xiao G, Zou B, Hou H (2020) Tuning the optical properties of N-aryl benzothiadiazole via Cu(ii)-catalyzed intramolecular C-H amination: the impact of the molecular structure on aggregation and solid state luminescence. Organic Chem Front 7(23):3853–3861. https://doi.org/10.1039/D0QO00915F

    Article  CAS  Google Scholar 

  90. Takeda Y, Mizuno H, Okada Y, Okazaki M, Minakata S, Penfold T, Fukuhara G (2019) Hydrostatic pressure-controlled ratiometric luminescence responses of a dibenzo[a,j]phenazine-cored mechanoluminophore. ChemPhotoChem 3(12):1203–1211. https://doi.org/10.1002/cptc.201900190

  91. Yang Y, Li A, Ma Z, Liu J, Xu W, Ma Z, Jia X (2020) Dibenzo[a, c]phenazine-phenothiazine dyad: AIEE, polymorphism, distinctive mechanochromism, high sensitivity to pressure. Dyes Pigm 181:108575. https://doi.org/10.1016/j.dyepig.2020.108575

    Article  CAS  Google Scholar 

  92. Xiong Y, Huang J, Liu Y, Xiao B, Xu B, Zhao Z, Tang BZ (2020) High-contrast luminescence dependent on polymorphism and mechanochromism of AIE-active (4-(phenothiazin-10-yl)phenyl)(pyren-1-yl)methanone. J Mater ChemC 8(7):2460–2466. https://doi.org/10.1039/C9TC05064G

    Article  CAS  Google Scholar 

  93. Wang C, Li Z (2017) Molecular conformation and packing: their critical roles in the emission performance of mechanochromic fluorescence materials. Mater Chem Front 1(11):2174–2194. https://doi.org/10.1039/C7QM00201G

    Article  CAS  Google Scholar 

  94. Meng X, Qi G, Li X, Wang Z, Wang K, Zou B, Ma Y (2016) Spiropyran-based multi-colored switching tuned by pressure and mechanical grinding. J Mater ChemC 4(32):7584–7588. https://doi.org/10.1039/C6TC02578A

    Article  CAS  Google Scholar 

  95. Meng X, Chen C, Qi G, Li X, Wang K, Zou B, Ma Y (2017) From two, to three, to multi-color switches: developing AIEgen-based mechanochromic materials. ChemNanoMat 3(8):569–574. https://doi.org/10.1002/cnma.201700120

  96. Ma Z, Meng X, Ji Y, Li A, Qi G, Xu W, Zou B, Ma Y, Kuang G-C, Jia X (2019) Pressure induced the largest emission wavelength change in a single crystal. Dyes Pigm 162:136–144. https://doi.org/10.1016/j.dyepig.2017.11.036

    Article  CAS  Google Scholar 

  97. Zhang Z, Zhang Y, Yao D, Bi H, Javed I, Fan Y, Zhang H, Wang Y (2009) Anthracene-arrangement-dependent emissions of crystals of 9-anthrylpyrazole derivatives. Cryst Growth Des 9(12):5069–5076. https://doi.org/10.1021/cg9008569

    Article  CAS  Google Scholar 

  98. Zhang HY, Zhang ZL, Ye KQ, Zhang JY, Wang Y (2006) Organic crystals with tunable emission colors based on a single organic molecule and different molecular packing structures. Adv Mater 18(18):2369–2372. https://doi.org/10.1002/adma.200600704

  99. Lekha PK, Prasad E (2010) Aggregation-controlled excimer emission from anthracene-containing polyamidoamine dendrimers. Chem Eur J 16(12):3699–3706. https://doi.org/10.1002/chem.200902391

  100. Lin T, Su X, Wang K, Li M, Guo H, Liu L, Zou B, Zhang Y-M, Liu Y, Zhang SX-A (2019) An AIE fluorescent switch with multi-stimuli responsive properties and applications for quantitatively detecting pH value, sulfite anion and hydrostatic pressure. Mater Chem Front 3(6):1052–1061. https://doi.org/10.1039/C8QM00544C

    Article  CAS  Google Scholar 

  101. Liu L, Su X, Yu Q, Guo H, Wang K, Yu B, Li M, Zou B, Liu Y, Xiao-An Zhang S (2019) Photoacid-spiropyran exhibits different mechanofluorochromism before and after modification of tetraphenylethene under grinding and hydrostatic pressure. J Phys Chem C 123(41):25366–25372. https://doi.org/10.1021/acs.jpcc.9b06928

  102. Li A, Liu Y, Bi C, Xu W, Ma Z, Cui H, Xu S (2020) Pressure-dependent distinct luminescent evolutions of pyrene and TPA-Py single crystals. Spectrochim Acta Part A Mol Biomol Spectrosc 237:118390. https://doi.org/10.1016/j.saa.2020.118390

    Article  CAS  Google Scholar 

  103. Li A, Ma Z, Wu J, Li P, Wang H, Geng Y, Xu S, Yang B, Zhang H, Cui H, Xu W (2018) Pressure-induced wide-range reversible emission shift of triphenylamine-substituted anthracene via hybridized local and charge transfer (HLCT) excited state. Adv Opt Mater 6(3):1700647. https://doi.org/10.1002/adom.201700647

  104. Liu H, Gu Y, Dai Y, Wang K, Zhang S, Chen G, Zou B, Yang B (2020) Pressure-induced blue-shifted and enhanced emission: a cooperative effect between aggregation-induced emission and energy-transfer suppression. J Am Chem Soc 142(3):1153–1158. https://doi.org/10.1021/jacs.9b11080

    Article  CAS  PubMed  Google Scholar 

  105. Luo Q, Lv C, Sheng H, Cao F, Sun J, Zhang C, Ouyang M, Zou B, Zhang Y (2020) Highly bright fluorescence from dispersed dimers: deep-red polymorphs and wide-range piezochromism. Adv Opt Mater 8(7):1901836. https://doi.org/10.1002/adom.201901836

    Article  CAS  Google Scholar 

  106. Nagura K, Saito S, Yusa H, Yamawaki H, Fujihisa H, Sato H, Shimoikeda Y, Yamaguchi S (2013) Distinct responses to mechanical grinding and hydrostatic pressure in luminescent chromism of tetrathiazolylthiophene. J Am Chem Soc 135(28):10322–10325. https://doi.org/10.1021/ja4055228

    Article  CAS  PubMed  Google Scholar 

  107. Sui Q, Ren X-T, Dai Y-X, Wang K, Li W-T, Gong T, Fang J-J, Zou B, Gao E-Q, Wang L (2017) Piezochromism and hydrochromism through electron transfer: new stories for viologen materials. Chem Sci 8(4):2758–2768. https://doi.org/10.1039/C6SC04579K

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank DST, Government of India, for financial assistance under the following project (SB/S1/IC-13/2014). V.K. thanks CSIR India for the SRF fellowship [09/719(0082)/2018EMR-I]. BITS Pilani, Pilani Campus, are also acknowledged for infrastructure and facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inamur Rahaman Laskar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “Aggregation Induced Emission”, edited by Youhong Tang and Ben Zhong Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kachwal, V., Laskar, I.R. Mechanofluorochromism with Aggregation-Induced Emission (AIE) Characteristics: A Perspective Applying Isotropic and Anisotropic Force. Top Curr Chem (Z) 379, 28 (2021). https://doi.org/10.1007/s41061-021-00341-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-021-00341-x

Keywords

Navigation