Skip to main content

Advertisement

Log in

Modulation of Aggregation-Induced Emission by Excitation Energy Transfer: Design and Application

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Excitation energy transfer (EET) as a fundamental photophysical process is well-explored for developing functional materials with tunable photophysical properties. Compared to traditional fluorophores, aggregation-induced emission luminogens (AIEgens) exhibit unique advantages for building EET systems, especially serving as energy donors, due to their outstanding photophysical properties such as bright fluorescence in aggregation state, broad absorption and emission spectra, large Stokes shift, and high photobleaching resistance. In addition, the photophysical properties of AIEgens can be modulated by energy transfer for improved luminescence performance. Therefore, a variety of EET systems based on AIEgens have been constructed and their applications in different areas have been explored. In this review, we summarize recent progress in the design strategy of AIE-based energy transfer systems for light-harvesting, fluorescent probes and theranostic systems, with an emphasis on design strategies to achieve desirable properties. The limitations, challenges and future opportunities of AIE–EET systems are briefly outlined.

Graphic Abstract

Design strategies and applications (light-harvesting, fluorescent probe and theranostics) of AIEgen-based excitation energy systems are discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Nadort A, Zhao J, Goldys EM (2016) Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties. Nanoscale 8(27):13099–13130. https://doi.org/10.1039/C5NR08477F

    Article  CAS  PubMed  Google Scholar 

  2. Mirkovic T, Ostroumov EE, Anna JM, van Grondelle R, Govindjee SGD (2017) Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem Rev 117(2):249–293. https://doi.org/10.1021/acs.chemrev.6b00002

    Article  CAS  PubMed  Google Scholar 

  3. Jiang Y, McNeill J (2017) Light-harvesting and amplified energy transfer in conjugated polymer nanoparticles. Chem Rev 117(2):838–859. https://doi.org/10.1021/acs.chemrev.6b00419

    Article  CAS  PubMed  Google Scholar 

  4. Yuan L, Lin W, Zheng K, Zhu S (2013) FRET-based small-molecule fluorescent probes: rational design and bioimaging applications. Acc Chem Res 46(7):1462–1473. https://doi.org/10.1021/ar300273v

    Article  CAS  PubMed  Google Scholar 

  5. Wu L, Huang C, Emery BP, Sedgwick AC, Bull SD, He XP, Tian H, Yoon J, Sessler JL, James TD (2020) Forster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chem Soc Rev 49(15):5110–5139. https://doi.org/10.1039/c9cs00318e

    Article  CAS  PubMed  Google Scholar 

  6. Peng HQ, Niu LY, Chen YZ, Wu LZ, Tung CH, Yang QZ (2015) Biological applications of supramolecular assemblies designed for excitation energy transfer. Chem Rev 115(15):7502–7542. https://doi.org/10.1021/cr5007057

    Article  CAS  PubMed  Google Scholar 

  7. Jia X, Chen Q, Yang Y, Tang Y, Wang R, Xu Y, Zhu W, Qian X (2016) FRET-based mito-specific fluorescent probe for ratiometric detection and imaging of endogenous peroxynitrite: dyad of Cy3 and Cy5. J Am Chem Soc 138(34):10778–10781. https://doi.org/10.1021/jacs.6b06398

    Article  CAS  PubMed  Google Scholar 

  8. Aron AT, Loehr MO, Bogena J, Chang CJ (2016) An endoperoxide reactivity-based FRET probe for ratiometric fluorescence imaging of labile iron pools in living cells. J Am Chem Soc 138(43):14338–14346. https://doi.org/10.1021/jacs.6b08016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim HS, Lee SH, Lee JY, Yoo S, Suh MC (2019) Mitigating the trade-off between triplet harvesting and roll-off by opening a dexter-type channel in OLEDs. J Phys Chem C 123(30):18283–18293. https://doi.org/10.1021/acs.jpcc.9b05007

    Article  CAS  Google Scholar 

  10. Lai Y-S, Pan F, Su Y-H (2018) Firefly-like water splitting cells based on FRET phenomena with ultrahigh performance over 12%. ACS Appl Mater Interfaces 10(5):5007–5013. https://doi.org/10.1021/acsami.7b18003

    Article  CAS  PubMed  Google Scholar 

  11. Wu D, Sedgwick AC, Gunnlaugsson T, Akkaya EU, Yoon J, James TD (2017) Fluorescent chemosensors: the past, present and future. Chem Soc Rev 46(23):7105–7123. https://doi.org/10.1039/c7cs00240h

    Article  CAS  PubMed  Google Scholar 

  12. Ma L, Fang W-H, Shen L, Chen X (2019) Regulatory mechanism and kinetic assessment of energy transfer catalysis mediated by visible light. ACS Catal 9(4):3672–3684. https://doi.org/10.1021/acscatal.9b00146

    Article  CAS  Google Scholar 

  13. Wang X, Gao Z, Zhu J, Gao Z, Wang F (2016) Aggregation induced emission of a cyanostilbene amphiphile as a novel platform for FRET-based ratiometric sensing of mercury ions in water. Polym Chem 7(33):5217–5220. https://doi.org/10.1039/c6py01109h

    Article  CAS  Google Scholar 

  14. Teunissen AJP, Pérez-Medina C, Meijerink A, Mulder WJM (2018) Investigating supramolecular systems using Förster resonance energy transfer. Chem Soc Rev 47(18):7027–7044. https://doi.org/10.1039/C8CS00278A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Feng H-T, Yuan Y-X, Xiong J-B, Zheng Y-S, Tang BZ (2018) Macrocycles and cages based on tetraphenylethylene with aggregation-induced emission effect. Chem Soc Rev 47(19):7452–7476. https://doi.org/10.1039/C8CS00444G

    Article  CAS  PubMed  Google Scholar 

  16. Li J, Wang J, Li H, Song N, Wang D, Tang BZ (2020) Supramolecular materials based on AIE luminogens (AIEgens): construction and applications. Chem Soc Rev 49(4):1144–1172. https://doi.org/10.1039/C9CS00495E

    Article  CAS  PubMed  Google Scholar 

  17. Peng H-Q, Liu B, Wei P, Zhang P, Zhang H, Zhang J, Li K, Li Y, Cheng Y, Lam JWY, Zhang W, Lee C-S, Tang BZ (2019) Visualizing the initial step of self-assembly and the phase transition by stereogenic amphiphiles with aggregation-induced emission. ACS Nano 13(1):839–846. https://doi.org/10.1021/acsnano.8b08358

    Article  CAS  PubMed  Google Scholar 

  18. Gao M, Tang BZ (2017) Fluorescent sensors based on aggregation-induced emission: recent advances and perspectives. ACS Sens 2(10):1382–1399. https://doi.org/10.1021/acssensors.7b00551

    Article  CAS  PubMed  Google Scholar 

  19. Luo M, Wang S, Li C, Miao W, Ma X (2019) Aggregation-induced emission organogel formed by both sonication and thermal processing based on tetraphenylethylene and cholesterol derivative. Dyes Pigments 165:436–443. https://doi.org/10.1016/j.dyepig.2019.02.041

    Article  CAS  Google Scholar 

  20. Wang B, Wu Z, Fang B, Yin M (2020) Blue-shifted mechanochromism of a dimethoxynaphthalene-based crystal with aggregation-induced emission. Dyes Pigments 182:108618. https://doi.org/10.1016/j.dyepig.2020.108618

    Article  CAS  Google Scholar 

  21. Xu L, Yu Y, Shi J, Cui W, Lv X, Cang M, Sun Q, Xue S, Yang W (2020) Highly efficient nondoped blue organic light-emitting diodes based on a star-group tetraphenylethylene-substituted aggregation-induced-emission-active organic fluorescent small molecules. Dyes Pigments 175:108082. https://doi.org/10.1016/j.dyepig.2019.108082

    Article  CAS  Google Scholar 

  22. Hu R, Leung NL, Tang BZ (2014) AIE macromolecules: syntheses, structures and functionalities. Chem Soc Rev 43(13):4494–4562. https://doi.org/10.1039/c4cs00044g

    Article  CAS  PubMed  Google Scholar 

  23. Yuan Y, Liu B (2017) Visualization of drug delivery processes using AIEgens. Chem Sci 8(4):2537–2546. https://doi.org/10.1039/c6sc05421h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mei J, Leung NL, Kwok RT, Lam JW, Tang BZ (2015) Aggregation-induced emission: together we shine, united we soar! Chem Rev 115(21):11718–11940. https://doi.org/10.1021/acs.chemrev.5b00263

    Article  CAS  PubMed  Google Scholar 

  25. Gu K, Qiu W, Guo Z, Yan C, Zhu S, Yao D, Shi P, Tian H, Zhu WH (2019) An enzyme-activatable probe liberating AIEgens: on-site sensing and long-term tracking of beta-galactosidase in ovarian cancer cells. Chem Sci 10(2):398–405. https://doi.org/10.1039/c8sc04266g

    Article  CAS  PubMed  Google Scholar 

  26. Zhang W, Huang Y, Chen Y, Zhao E, Hong Y, Chen S, Lam JWY, Chen Y, Hou J, Tang BZ (2019) Amphiphilic tetraphenylethene-based pyridinium salt for selective cell-membrane imaging and room-light-induced special reactive oxygen species generation. ACS Appl Mater Interfaces 11(11):10567–10577. https://doi.org/10.1021/acsami.9b00643

    Article  CAS  PubMed  Google Scholar 

  27. Chen H, Li S, Wu M, Kenry HZ, Lee CS, Liu B (2020) Membrane-anchoring photosensitizer with aggregation-induced emission characteristics for combating multidrug-resistant bacteria. Angew Chem Int Ed Engl 59(2):632–636. https://doi.org/10.1002/anie.201907343

    Article  CAS  PubMed  Google Scholar 

  28. Chen Y, Lam JWY, Kwok RTK, Liu B, Tang BZ (2019) Aggregation-induced emission: fundamental understanding and future developments. Mater Horizons 6(3):428–433. https://doi.org/10.1039/c8mh01331d

    Article  CAS  Google Scholar 

  29. He Z, Ke C, Tang BZ (2018) Journey of aggregation-induced emission research. ACS Omega 3(3):3267–3277. https://doi.org/10.1021/acsomega.8b00062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Michel H, Epp O, Deisenhofer J (1986) Pigment–protein interactions in the photosynthetic reaction centre from Rhodopseudomonas viridis. EMBO J 5(10):2445–2451

    Article  CAS  Google Scholar 

  31. Wasielewski MR (1992) Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. Chem Rev 92(3):435–461. https://doi.org/10.1021/cr00011a005

    Article  CAS  Google Scholar 

  32. Miller RA, Presley AD, Francis MB (2007) Self-assembling light-harvesting systems from synthetically modified tobacco mosaic virus coat proteins. J Am Chem Soc 129(11):3104–3109. https://doi.org/10.1021/ja063887t

    Article  CAS  PubMed  Google Scholar 

  33. Kühlbrandt W (1995) Many wheels make light work. Nature 374(6522):497–498. https://doi.org/10.1038/374497a0

    Article  Google Scholar 

  34. Sen E, Meral K, Atilgan S (2016) From dark to light to fluorescence resonance energy transfer (FRET): polarity-sensitive aggregation-induced emission (AIE)-active tetraphenylethene-fused BODIPY dyes with a very large pseudo-stokes shift. Chem 22(2):736–745. https://doi.org/10.1002/chem.201503457

    Article  CAS  Google Scholar 

  35. Yao J, Yang M, Duan Y (2014) Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem Rev 114(12):6130–6178. https://doi.org/10.1021/cr200359p

    Article  CAS  PubMed  Google Scholar 

  36. Dong R, Pang Y, Su Y, Zhu X (2015) Supramolecular hydrogels: synthesis, properties and their biomedical applications. Biomater Sci 3(7):937–954. https://doi.org/10.1039/c4bm00448e

    Article  CAS  PubMed  Google Scholar 

  37. Li C, Zhang J, Zhang S, Zhao Y (2019) Efficient light-harvesting systems with tunable emission through controlled precipitation in confined nanospace. Angew Chem Int Ed Engl 58(6):1643–1647. https://doi.org/10.1002/anie.201812146

    Article  CAS  PubMed  Google Scholar 

  38. Li Y, Dong Y, Cheng L, Qin C, Nian H, Zhang H, Yu Y, Cao L (2019) Aggregation-induced emission and light-harvesting function of tetraphenylethene-based tetracationic dicyclophane. J Am Chem Soc 141(21):8412–8415. https://doi.org/10.1021/jacs.9b02617

    Article  CAS  PubMed  Google Scholar 

  39. Geng J, Zhu Z, Qin W, Ma L, Hu Y, Gurzadyan GG, Tang BZ, Liu B (2014) Near-infrared fluorescence amplified organic nanoparticles with aggregation-induced emission characteristics for in vivo imaging. Nanoscale 6(2):939–945. https://doi.org/10.1039/c3nr04243j

    Article  CAS  PubMed  Google Scholar 

  40. Liu W, Wang Y, Han X, Lu P, Zhu L, Sun C, Qian J, He S (2018) Fluorescence resonance energy transfer (FRET) based nanoparticles composed of AIE luminogens and NIR dyes with enhanced three-photon near-infrared emission for in vivo brain angiography. Nanoscale 10(21):10025–10032. https://doi.org/10.1039/c8nr00066b

    Article  CAS  PubMed  Google Scholar 

  41. Tang P, Wang Y, Wang K (2020) Preparation of high-efficiency near-infrared aggregation-induced emission nanoparticles based on FRET and their use in bio-imaging. Methods Appl Fluoresc 8(1):015007. https://doi.org/10.1088/2050-6120/ab6704

    Article  CAS  PubMed  Google Scholar 

  42. Wang X, Li J, Yan Q, Chen Y, Fan A, Wang Z, Zhao Y (2018) In situ probing intracellular drug release from redox-responsive micelles by united FRET and AIE. Macromol Biosci 18(3):170039. https://doi.org/10.1002/mabi.201700339

    Article  CAS  Google Scholar 

  43. Xu L, Wang Z, Wang R, Wang L, He X, Jiang H, Tang H, Cao D, Tang BZ (2019) A Conjugated polymeric supramolecular network with aggregation-induced emission enhancement: an efficient light-harvesting system with an ultrahigh antenna effect. Angew Chem Int Ed Engl 59:9908–9913. https://doi.org/10.1002/anie.201907678

    Article  CAS  PubMed  Google Scholar 

  44. Wang Y, Xu JF, Chen YZ, Niu LY, Wu LZ, Tung CH, Yang QZ (2014) Photoresponsive supramolecular self-assembly of monofunctionalized pillar[5]arene based on stiff stilbene. Chem Commun 50(53):7001–7003. https://doi.org/10.1039/c4cc02760d

    Article  CAS  Google Scholar 

  45. Lv Y, Liu P, Ding H, Wu Y, Yan Y, Liu H, Wang X, Huang F, Zhao Y, Tian Z (2015) Conjugated polymer-based hybrid nanoparticles with two-photon excitation and near-infrared emission features for fluorescence bioimaging within the biological window. ACS Appl Mater Interfaces 7(37):20640–20648. https://doi.org/10.1021/acsami.5b05150

    Article  CAS  PubMed  Google Scholar 

  46. Zhong W, Zeng X, Chen J, Hong Y, Xiao L, Zhang P (2017) Photoswitchable fluorescent polymeric nanoparticles for rewritable fluorescence patterning and intracellular dual-color imaging with AIE-based fluorogens as FRET donors. Polym Chem 8(33):4849–4855. https://doi.org/10.1039/c7py00834a

    Article  CAS  Google Scholar 

  47. Xu Y, Yang W, Yao D, Bian K, Zeng W, Liu K, Wang D, Zhang B (2020) An aggregation-induced emission dye-powered afterglow luminogen for tumor imaging. Chem Sci 11(2):419–428. https://doi.org/10.1039/c9sc04901k

    Article  CAS  PubMed  Google Scholar 

  48. Chen XM, Cao Q, Bisoyi HK, Wang M, Yang H, Li Q (2020) An efficient near-infrared emissive artificial supramolecular light-harvesting system for imaging in the Golgi apparatus. Angew Chem Int Ed Engl 59(26):10493–10497. https://doi.org/10.1002/anie.202003427

    Article  CAS  PubMed  Google Scholar 

  49. Kamtekar KT, Monkman AP, Bryce MR (2010) Recent advances in white organic light-emitting materials and devices (WOLEDs). Adv Mater 22(5):572–582. https://doi.org/10.1002/adma.200902148

    Article  CAS  PubMed  Google Scholar 

  50. Farinola GM, Ragni R (2011) Electroluminescent materials for white organic light emitting diodes. Chem Soc Rev 40(7):3467–3482. https://doi.org/10.1039/c0cs00204f

    Article  CAS  PubMed  Google Scholar 

  51. Geng W-C, Liu Y-C, Wang Y-Y, Xu Z, Zheng Z, Yang C-B, Guo D-S (2017) A self-assembled white-light-emitting system in aqueous medium based on a macrocyclic amphiphile. Chem Commun 53(2):392–395. https://doi.org/10.1039/C6CC09079F

    Article  CAS  Google Scholar 

  52. Gong Q, Hu Z, Deibert BJ, Emge TJ, Teat SJ, Banerjee D, Mussman B, Rudd ND, Li J (2014) Solution processable MOF yellow phosphor with exceptionally high quantum efficiency. J Am Chem Soc 136(48):16724–16727. https://doi.org/10.1021/ja509446h

    Article  CAS  PubMed  Google Scholar 

  53. Yang Q-Y, Lehn J-M (2014) Bright white-light emission from a single organic compound in the solid state. Angew Chem Int Ed Engl 53(18):4572–4577. https://doi.org/10.1002/anie.201400155

    Article  CAS  PubMed  Google Scholar 

  54. Zhang Z, Chen Y-A, Hung W-Y, Tang W-F, Hsu Y-H, Chen C-L, Meng F-Y, Chou P-T (2016) Control of the reversibility of excited-state intramolecular proton transfer (ESIPT) reaction: host-polarity tuning white organic light emitting diode on a new thiazolo[5,4-d]thiazole ESIPT system. Chem Mater 28(23):8815–8824. https://doi.org/10.1021/acs.chemmater.6b04707

    Article  CAS  Google Scholar 

  55. Samanta S, Manna U, Das G (2017) White-light emission from simple AIE–ESIPT-excimer tripled single molecular system. New J Chem 41(3):1064–1072. https://doi.org/10.1039/C6NJ03070J

    Article  CAS  Google Scholar 

  56. Vijayakumar C, Sugiyasu K, Takeuchi M (2011) Oligofluorene-based electrophoretic nanoparticles in aqueous medium as a donor scaffold for fluorescence resonance energy transfer and white-light emission. Chem Sci 2(2):291–294. https://doi.org/10.1039/C0SC00343C

    Article  CAS  Google Scholar 

  57. Giansante C, Raffy G, Schäfer C, Rahma H, Kao M-T, Olive AGL, Del Guerzo A (2011) White-light-emitting self-assembled nanofibers and their evidence by microspectroscopy of individual objects. J Am Chem Soc 133(2):316–325. https://doi.org/10.1021/ja106807u

    Article  CAS  PubMed  Google Scholar 

  58. Ni X-L, Chen S, Yang Y, Tao Z (2016) Facile cucurbit[8]uril-based supramolecular approach to fabricate tunable luminescent materials in aqueous solution. J Am Chem Soc 138(19):6177–6183. https://doi.org/10.1021/jacs.6b01223

    Article  CAS  PubMed  Google Scholar 

  59. Jing YN, Li SS, Su M, Bao H, Wan WM (2019) Barbier hyperbranching polymerization-induced emission toward facile fabrication of white light-emitting diode and light-harvesting film. J Am Chem Soc 141(42):16839–16848. https://doi.org/10.1021/jacs.9b08065

    Article  CAS  PubMed  Google Scholar 

  60. Bottari G, Trukhina O, Ince M, Torres T (2012) Towards artificial photosynthesis: supramolecular, donor–acceptor, porphyrin- and phthalocyanine/carbon nanostructure ensembles. Coordin Chem Rev 256(21):2453–2477. https://doi.org/10.1016/j.ccr.2012.03.011

    Article  CAS  Google Scholar 

  61. Lou X-Y, Song N, Yang Y-W (2017) Fluorescence resonance energy transfer systems in supramolecular macrocyclic chemistry. Molecules 22(10):1640

    Article  Google Scholar 

  62. Zhang M, Yin X, Tian T, Liang Y, Li W, Lan Y, Li J, Zhou M, Ju Y, Li G (2015) AIE-induced fluorescent vesicles containing amphiphilic binding pockets and the FRET triggered by host–guest chemistry. Chem Commun 51(50):10210–10213. https://doi.org/10.1039/c5cc02377g

    Article  CAS  Google Scholar 

  63. Wang S, Ye J-H, Han Z, Fan Z, Wang C, Mu C, Zhang W, He W (2017) Highly efficient FRET from aggregation-induced emission to BODIPY emission based on host–guest interaction for mimicking the light-harvesting system. RSC Adv 7(57):36021–36025. https://doi.org/10.1039/c7ra05925f

    Article  CAS  Google Scholar 

  64. Li JJ, Chen Y, Yu J, Cheng N, Liu Y (2017) A supramolecular artificial light-harvesting system with an ultrahigh antenna effect. Adv Mater 29:30. https://doi.org/10.1002/adma.201701905

    Article  CAS  Google Scholar 

  65. Fu S, Su X, Li M, Song S, Wang L, Wang D, Tang BZ (2020) Controllable and diversiform topological morphologies of self-assembling supra-amphiphiles with aggregation-induced emission characteristics for mimicking light-harvesting antenna. Adv Sci 7(20):2001909. https://doi.org/10.1002/advs.202001909

    Article  CAS  Google Scholar 

  66. Guo S, Song Y, He Y, Hu XY, Wang L (2018) Highly efficient artificial light-harvesting systems constructed in aqueous solution based on supramolecular self-assembly. Angew Chem Int Ed Engl 57(12):3163–3167. https://doi.org/10.1002/anie.201800175

    Article  CAS  PubMed  Google Scholar 

  67. Kim H-J, Nandajan PC, Gierschner J, Park SY (2018) Light-harvesting fluorescent supramolecular block copolymers based on cyanostilbene derivatives and cucurbit[8]urils in aqueous solution. Adv Func Mater 28(4):1705141. https://doi.org/10.1002/adfm.201705141

    Article  CAS  Google Scholar 

  68. Wang XH, Song N, Hou W, Wang CY, Wang Y, Tang J, Yang YW (2019) Efficient aggregation-induced emission manipulated by polymer host materials. Adv Mater 31(37):e1903962. https://doi.org/10.1002/adma.201903962

    Article  CAS  PubMed  Google Scholar 

  69. Feng H-T, Zheng X, Gu X, Chen M, Lam JWY, Huang X, Tang BZ (2018) White-light emission of a binary light-harvesting platform based on an amphiphilic organic cage. Chem Mater 30(4):1285–1290. https://doi.org/10.1021/acs.chemmater.7b04703

    Article  CAS  Google Scholar 

  70. Peng H-Q, Zheng X, Han T, Kwok RTK, Lam JWY, Huang X, Tang BZ (2017) Dramatic differences in aggregation-induced emission and supramolecular polymerizability of tetraphenylethene-based stereoisomers. J Am Chem Soc 139(29):10150–10156. https://doi.org/10.1021/jacs.7b05792

    Article  CAS  PubMed  Google Scholar 

  71. Peng HQ, Liu B, Liu J, Wei P, Zhang H, Han T, Qi J, Lam JWY, Zhang W, Tang BZ (2019) “Seeing” and controlling photoisomerization by (Z)-/(E)-isomers with aggregation-induced emission characteristics. ACS Nano 13(10):12120–12126. https://doi.org/10.1021/acsnano.9b06578

    Article  CAS  PubMed  Google Scholar 

  72. Sijbesma RP, Beijer FH, Brunsveld L, Folmer BJB, Hirschberg JHKK, Lange RFM, Lowe JKL, Meijer EW (1997) Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278(5343):1601–1604. https://doi.org/10.1126/science.278.5343.1601

    Article  CAS  PubMed  Google Scholar 

  73. Söntjens SHM, Sijbesma RP, van Genderen MHP, Meijer EW (2000) Stability and lifetime of quadruply hydrogen bonded 2-ureido-4[1H]-pyrimidinone dimers. J Am Chem Soc 122(31):7487–7493. https://doi.org/10.1021/ja000435m

    Article  CAS  Google Scholar 

  74. Sijbesma RP, Meijer EW (2003) Quadruple hydrogen bonded systems. Chem Commun 1:5–16. https://doi.org/10.1039/B205873C

    Article  Google Scholar 

  75. Peng HQ, Xu JF, Chen YZ, Wu LZ, Tung CH, Yang QZ (2014) Water-dispersible nanospheres of hydrogen-bonded supramolecular polymers and their application for mimicking light-harvesting systems. Chem Commun 50(11):1334–1337. https://doi.org/10.1039/c3cc48618d

    Article  CAS  Google Scholar 

  76. Peng HQ, Sun CL, Xu JF, Niu LY, Chen YZ, Wu LZ, Tung CH, Yang QZ (2014) Convenient synthesis of functionalized bis-ureidopyrimidinones based on thiol-yne reaction. Chem 20(37):11699–11702. https://doi.org/10.1002/chem.201402955

    Article  CAS  Google Scholar 

  77. Wang R-F, Peng H-Q, Chen P-Z, Niu L-Y, Gao J-F, Wu L-Z, Tung C-H, Chen Y-Z, Yang Q-Z (2016) A hydrogen-bonded-supramolecular-polymer-based nanoprobe for ratiometric oxygen sensing in living cells. Adv Func Mater 26(30):5419–5425. https://doi.org/10.1002/adfm.201601831

    Article  CAS  Google Scholar 

  78. Peng H-Q, Sun C-L, Niu L-Y, Chen Y-Z, Wu L-Z, Tung C-H, Yang Q-Z (2016) Supramolecular polymeric fluorescent nanoparticles based on quadruple hydrogen bonds. Adv Func Mater 26(30):5483–5489. https://doi.org/10.1002/adfm.201600593

    Article  CAS  Google Scholar 

  79. Zhu X, Wang J-X, Niu L-Y, Yang Q-Z (2019) Aggregation-induced emission materials with narrowed emission band by light-harvesting strategy: fluorescence and chemiluminescence imaging. Chem Mater 31(9):3573–3581. https://doi.org/10.1021/acs.chemmater.9b01338

    Article  CAS  Google Scholar 

  80. Xiao T, Wu H, Sun G, Diao K, Wei X, Li Z-Y, Sun X-Q, Wang L (2020) An efficient artificial light-harvesting system with tunable emission in water constructed from a H-bonded AIE supramolecular polymer and Nile Red. Chem Commun 56:12021–12024. https://doi.org/10.1039/d0cc05077f

  81. Heilemann M, Tinnefeld P, Sanchez Mosteiro G, Garcia Parajo M, Van Hulst NF, Sauer M (2004) Multistep energy transfer in single molecular photonic wires. J Am Chem Soc 126(21):6514–6515. https://doi.org/10.1021/ja049351u

    Article  CAS  PubMed  Google Scholar 

  82. Wagner RW, Lindsey JS (1994) A molecular photonic wire. J Am Chem Soc 116(21):9759–9760. https://doi.org/10.1021/ja00100a055

    Article  CAS  Google Scholar 

  83. Dutta PK, Varghese R, Nangreave J, Lin S, Yan H, Liu Y (2011) DNA-directed artificial light-harvesting antenna. J Am Chem Soc 133(31):11985–11993. https://doi.org/10.1021/ja1115138

    Article  CAS  PubMed  Google Scholar 

  84. Klein WP, Díaz SA, Buckhout-White S, Melinger JS, Cunningham PD, Goldman ER, Ancona MG, Kuang W, Medintz IL (2018) Utilizing HomoFRET to extend DNA-scaffolded photonic networks and increase light-harvesting capability. Adv Opt Mater 6(1):1700679. https://doi.org/10.1002/adom.201700679

    Article  CAS  Google Scholar 

  85. Boulais É, Sawaya NPD, Veneziano R, Andreoni A, Banal JL, Kondo T, Mandal S, Lin S, Schlau-Cohen GS, Woodbury NW, Yan H, Aspuru-Guzik A, Bathe M (2018) Programmed coherent coupling in a synthetic DNA-based excitonic circuit. Nat Mater 17(2):159–166. https://doi.org/10.1038/nmat5033

    Article  CAS  PubMed  Google Scholar 

  86. Trofymchuk K, Reisch A, Didier P, Fras F, Gilliot P, Mely Y, Klymchenko AS (2017) Giant light-harvesting nanoantenna for single-molecule detection in ambient light. Nat Photon 11(10):657–663. https://doi.org/10.1038/s41566-017-0001-7

    Article  CAS  Google Scholar 

  87. Han X, Chen Q, Lu H, Ma J, Gao H (2015) Probe intracellular trafficking of a polymeric DNA delivery vehicle by functionalization with an aggregation-induced emissive tetraphenylethene derivative. ACS Appl Mater Interfaces 7(51):28494–28501. https://doi.org/10.1021/acsami.5b09639

    Article  CAS  PubMed  Google Scholar 

  88. Li H, Wang C, Hou T, Li F (2017) Amphiphile-mediated ultrasmall aggregation induced emission dots for ultrasensitive fluorescence biosensing. Anal Chem 89(17):9100–9107. https://doi.org/10.1021/acs.analchem.7b01797

    Article  CAS  PubMed  Google Scholar 

  89. Zhao Z, Yang H, Deng S, Dong Y, Yan B, Zhang K, Deng R, He Q (2019) Intrinsic conformation response-leveraged aptamer probe based on aggregation-induced emission dyes for aflatoxin B1 detection. Dyes Pigments 171:107767. https://doi.org/10.1016/j.dyepig.2019.107767

    Article  CAS  Google Scholar 

  90. Malinovskii VL, Wenger D, Häner R (2010) Nucleic acid-guided assembly of aromatic chromophores. Chem Soc Rev 39(2):410–422. https://doi.org/10.1039/B910030J

    Article  CAS  PubMed  Google Scholar 

  91. Dutta PK, Levenberg S, Loskutov A, Jun D, Saer R, Beatty JT, Lin S, Liu Y, Woodbury NW, Yan H (2014) A DNA-directed light-harvesting/reaction center system. J Am Chem Soc 136(47):16618–16625. https://doi.org/10.1021/ja509018g

    Article  CAS  PubMed  Google Scholar 

  92. Garo F, Häner R (2012) A DNA-based light-harvesting antenna. Angew Chem Int Ed Engl 51(4):916–919. https://doi.org/10.1002/anie.201103295

    Article  CAS  PubMed  Google Scholar 

  93. Chen L-J, Yang H-B (2018) Construction of stimuli-responsive functional materials via hierarchical self-assembly involving coordination interactions. Acc Chem Res 51(11):2699–2710. https://doi.org/10.1021/acs.accounts.8b00317

    Article  CAS  PubMed  Google Scholar 

  94. Wei P, Yan X, Huang F (2015) Supramolecular polymers constructed by orthogonal self-assembly based on host–guest and metal–ligand interactions. Chem Soc Rev 44(3):815–832. https://doi.org/10.1039/C4CS00327F

    Article  CAS  PubMed  Google Scholar 

  95. Cook TR, Stang PJ (2015) Recent developments in the preparation and chemistry of metallacycles and metallacages via coordination. Chem Rev 115(15):7001–7045. https://doi.org/10.1021/cr5005666

    Article  CAS  PubMed  Google Scholar 

  96. Acharyya K, Bhattacharyya S, Sepehrpour H, Chakraborty S, Lu S, Shi B, Li X, Mukherjee PS, Stang PJ (2019) Self-assembled fluorescent Pt(II) metallacycles as artificial light-harvesting systems. J Am Chem Soc 141(37):14565–14569. https://doi.org/10.1021/jacs.9b08403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhang Z, Zhao Z, Hou Y, Wang H, Li X, He G, Zhang M (2019) Aqueous platinum(II)-cage-based light-harvesting system for photocatalytic cross-coupling hydrogen evolution reaction. Angew Chem Int Ed Engl 58(26):8862–8866. https://doi.org/10.1002/anie.201904407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Stryer L, Haugland RP (1967) Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci USA 58(2):719–726. https://doi.org/10.1073/pnas.58.2.719

    Article  CAS  PubMed  Google Scholar 

  99. Zhang L, Gao J, Qi A, Gao Y (2020) A novel DRET and FRET combined fluorescent molecule and its applications in sensing and bioimaging. Sens Actuat B-Chem 320:128457. https://doi.org/10.1016/j.snb.2020.128457

    Article  CAS  Google Scholar 

  100. Guan P, Yang B, Liu B (2020) Fabricating a fluorescence resonance energy transfer system with AIE molecular for sensitive detection of Cu(II) ions. Spectrochim Acta A Mol Biomol Spectrosc 225:117604. https://doi.org/10.1016/j.saa.2019.117604

    Article  CAS  PubMed  Google Scholar 

  101. Dong L, Fu M, Liu L, Han H-H, Zang Y, Chen G-R, Li J, He X-P, Vidal S (2020) Supramolecular assembly of TPE-Based glycoclusters with dicyanomethylene-4H-pyran (DM) fluorescent probes improve their properties for peroxynitrite sensing and cell imaging. Chem-Eur J 26(63):14445–14452. https://doi.org/10.1002/chem.202002772

    Article  CAS  PubMed  Google Scholar 

  102. Yuan Y, Zhang R, Cheng X, Xu S, Liu B (2016) A FRET probe with AIEgen as the energy quencher: dual signal turn-on for self-validated caspase detection. Chem Sci 7(7):4245–4250. https://doi.org/10.1039/c6sc00055j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang JD, Mei J, Hu XL, He XP, Tian H (2016) Ratiometric detection of beta-amyloid and discrimination from lectins by a supramolecular AIE glyconanoparticle. Small 12(47):6562–6567. https://doi.org/10.1002/smll.201601470

    Article  CAS  PubMed  Google Scholar 

  104. Zhuang Y, Zhang M, Chen B, Duan R, Min X, Zhang Z, Zheng F, Liang H, Zhao Z, Lou X, Xia F (2015) Quencher group induced high specificity detection of telomerase in clear and bloody urines by AIEgens. Anal Chem 87(18):9487–9493. https://doi.org/10.1021/acs.analchem.5b02699

    Article  CAS  PubMed  Google Scholar 

  105. Zhuang Y, Huang F, Xu Q, Zhang M, Lou X, Xia F (2016) Facile, fast-responsive, and photostable imaging of telomerase activity in living cells with a fluorescence turn-on manner. Anal Chem 88(6):3289–3294. https://doi.org/10.1021/acs.analchem.5b04756

    Article  CAS  PubMed  Google Scholar 

  106. Qiu J, Jiang S, Guo H, Yang F (2018) An AIE and FRET-based BODIPY sensor with large Stoke shift: novel pH probe exhibiting application in CO32− detection and living cell imaging. Dyes Pigments 157:351–358. https://doi.org/10.1016/j.dyepig.2018.05.013

    Article  CAS  Google Scholar 

  107. Chen Y, Zhang W, Cai Y, Kwok RTK, Hu Y, Lam JWY, Gu X, He Z, Zhao Z, Zheng X, Chen B, Gui C, Tang BZ (2017) AIEgens for dark through-bond energy transfer: design, synthesis, theoretical study and application in ratiometric Hg(2+) sensing. Chem Sci 8(3):2047–2055. https://doi.org/10.1039/c6sc04206f

    Article  CAS  PubMed  Google Scholar 

  108. Jiang Y, Duan Q, Zheng G, Yang L, Zhang J, Wang Y, Zhang H, He J, Sun H, Ho D (2019) An ultra-sensitive and ratiometric fluorescent probe based on the DTBET process for Hg(2+) detection and imaging applications. Analyst 144(4):1353–1360. https://doi.org/10.1039/c8an02126k

    Article  CAS  PubMed  Google Scholar 

  109. Wang J, Xia S, Bi J, Fang M, Mazi W, Zhang Y, Conner N, Luo FT, Lu HP, Liu H (2018) Ratiometric near-infrared fluorescent probes based on through-bond energy transfer and pi-conjugation modulation between tetraphenylethene and hemicyanine moieties for sensitive detection of pH changes in live cells. Bioconjug Chem 29(4):1406–1418. https://doi.org/10.1021/acs.bioconjchem.8b00111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Fang M, Xia S, Bi J, Wigstrom TP, Valenzano L, Wang J, Mazi W, Tanasova M, Luo FT, Liu H (2018) A cyanine-based fluorescent cassette with aggregation-induced emission for sensitive detection of pH changes in live cells. Chem Commun 54(9):1133–1136. https://doi.org/10.1039/c7cc08986d

    Article  CAS  Google Scholar 

  111. Nie K, Yuan Y, Peng X, Song J, Qu J (2020) A diketopyrrolopyrrole-based hybrid organic nanoprobe for ratiometric imaging of endogenous hypochlorite in live cells. Sens Actuat B-Chem 307:127632. https://doi.org/10.1016/j.snb.2019.127632

    Article  CAS  Google Scholar 

  112. Duan Q, Zheng G, Li Z, Cheng K, Zhang J, Yang L, Jiang Y, Zhang H, He J, Sun H (2019) An ultra-sensitive ratiometric fluorescent probe for hypochlorous acid detection by the synergistic effect of AIE and TBET and its application of detecting exogenous/endogenous HOCl in living cells. J Mater Chem B 7(33):5125–5131. https://doi.org/10.1039/c9tb01279f

    Article  CAS  PubMed  Google Scholar 

  113. Han X, Liu DE, Wang T, Lu H, Ma J, Chen Q, Gao H (2015) Aggregation-induced-emissive molecule incorporated into polymeric nanoparticulate as FRET donor for observing doxorubicin delivery. ACS Appl Mater Interfaces 7(42):23760–23766. https://doi.org/10.1021/acsami.5b08202

    Article  CAS  PubMed  Google Scholar 

  114. Hao N, Sun C, Wu Z, Xu L, Gao W, Cao J, Li L, He B (2017) Fabrication of polymeric micelles with aggregation-induced emission and forster resonance energy transfer for anticancer drug delivery. Bioconjug Chem 28(7):1944–1954. https://doi.org/10.1021/acs.bioconjchem.7b00274

    Article  CAS  PubMed  Google Scholar 

  115. Wang TT, Wei QC, Zhang ZT, Lin MT, Chen JJ, Zhou Y, Guo NN, Zhong XC, Xu WH, Liu ZX, Han M, Gao JQ (2020) AIE/FRET-based versatile PEG-Pep-TPE/DOX nanoparticles for cancer therapy and real-time drug release monitoring. Biomater Sci 8(1):118–124. https://doi.org/10.1039/c9bm01546a

    Article  CAS  PubMed  Google Scholar 

  116. Chen JI, Wu WC (2013) Fluorescent polymeric micelles with aggregation-induced emission properties for monitoring the encapsulation of doxorubicin. Macromol Biosci 13(5):623–632. https://doi.org/10.1002/mabi.201200396

    Article  CAS  PubMed  Google Scholar 

  117. Wang Z, Wang C, Fang Y, Yuan H, Quan Y, Cheng Y (2018) Color-tunable AIE-active conjugated polymer nanoparticles as drug carriers for self-indicating cancer therapy via intramolecular FRET mechanism. Polym Chem 9(23):3205–3214. https://doi.org/10.1039/c8py00329g

    Article  CAS  Google Scholar 

  118. Yu G, Zhao R, Wu D, Zhang F, Shao L, Zhou J, Yang J, Tang G, Chen X, Huang F (2016) Pillar[5]arene-based amphiphilic supramolecular brush copolymer: fabrication, controllable self-assembly and application in self-imaging targeted drug delivery. Polym Chem 7(40):6178–6188. https://doi.org/10.1039/C6PY01402J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wu D, Li Y, Yang J, Shen J, Zhou J, Hu Q, Yu G, Tang G, Chen X (2017) Supramolecular nanomedicine constructed from cucurbit[8]uril-based amphiphilic brush copolymer for cancer therapy. ACS Appl Mater Interfaces 9(51):44392–44401. https://doi.org/10.1021/acsami.7b16734

    Article  CAS  PubMed  Google Scholar 

  120. Dong Z, Bi Y, Cui H, Wang Y, Wang C, Li Y, Jin H, Wang C (2019) AIE supramolecular assembly with FRET effect for visualizing drug delivery. ACS Appl Mater Interfaces 11(27):23840–23847. https://doi.org/10.1021/acsami.9b04938

    Article  CAS  PubMed  Google Scholar 

  121. Teng K-X, Niu L-Y, Kang Y-F, Yang Q-Z (2020) Rational design of a “dual lock-and-key” supramolecular photosensitizer based on aromatic nucleophilic substitution for specific and enhanced photodynamic therapy. Chem Sci 11(35):9703–9711. https://doi.org/10.1039/D0SC01122C

    Article  CAS  Google Scholar 

  122. Liu Z, Jiang Z, Yan M, Wang X (2019) Recent progress of BODIPY dyes with aggregation-induced emission. Front Chem 7:712. https://doi.org/10.3389/fchem.2019.00712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hu F, Xu S, Liu B (2018) Photosensitizers with aggregation-induced emission: materials and biomedical applications. Adv Mater 30(45):1801350. https://doi.org/10.1002/adma.201801350

    Article  CAS  Google Scholar 

  124. Fateminia SMA, Kacenauskaite L, Zhang CJ, Ma S, Kenry MPN, Chen J, Xu S, Hu F, Xu B, Laursen BW, Liu B (2018) Simultaneous increase in brightness and singlet oxygen generation of an organic photosensitizer by nanocrystallization. Small 14(52):e1803325. https://doi.org/10.1002/smll.201803325

    Article  CAS  PubMed  Google Scholar 

  125. Wu W, Mao D, Hu F, Xu S, Chen C, Zhang CJ, Cheng X, Yuan Y, Ding D, Kong D, Liu B (2017) A Highly efficient and photostable photosensitizer with near-infrared aggregation-induced emission for image-guided photodynamic anticancer therapy. Adv Mater 29:33. https://doi.org/10.1002/adma.201700548

    Article  CAS  Google Scholar 

  126. Cai X, Mao D, Wang C, Kong D, Cheng X, Liu B (2018) Multifunctional liposome: a bright AIEgen-lipid conjugate with strong photosensitization. Angew Chem Int Ed Engl 57(50):16396–16400. https://doi.org/10.1002/anie.201809641

    Article  CAS  PubMed  Google Scholar 

  127. Wang S, Wu W, Manghnani P, Xu S, Wang Y, Goh CC, Ng LG, Liu B (2019) Polymerization-enhanced two-photon photosensitization for precise photodynamic therapy. ACS Nano 13(3):3095–3105. https://doi.org/10.1021/acsnano.8b08398

    Article  CAS  PubMed  Google Scholar 

  128. Wu W, Mao D, Cai X, Duan Y, Hu F, Kong D, Liu B (2018) ONOO– and ClO– responsive organic nanoparticles for specific in vivo image-guided photodynamic bacterial ablation. Chem Mater 30(11):3867–3873. https://doi.org/10.1021/acs.chemmater.8b01320

    Article  CAS  Google Scholar 

  129. Mao D, Wu W, Ji S, Chen C, Hu F, Kong D, Ding D, Liu B (2017) Chemiluminescence-guided cancer therapy using a chemiexcited photosensitizer. Chem 3(6):991–1007. https://doi.org/10.1016/j.chempr.2017.10.002

    Article  CAS  Google Scholar 

  130. Fu H, Huang Y, Lu H, An J, Liu DE, Zhang Y, Chen Q, Gao H (2019) A theranostic saponin nano-assembly based on FRET of an aggregation-induced emission photosensitizer and photon up-conversion nanoparticles. J Mater Chem B 7(35):5286–5290. https://doi.org/10.1039/c9tb01248f

    Article  CAS  PubMed  Google Scholar 

  131. Ding F, Zhan Y, Lu X, Sun Y (2018) Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging. Chem Sci 9(19):4370–4380. https://doi.org/10.1039/c8sc01153b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Li C, Chen G, Zhang Y, Wu F, Wang Q (2020) Advanced fluorescence imaging technology in the near-infrared-II window for biomedical applications. J Am Chem Soc 142(35):14789–14804. https://doi.org/10.1021/jacs.0c07022

    Article  CAS  PubMed  Google Scholar 

  133. Xu W, Wang D, Tang BZ (2020) NIR-II AIEgens: a Win-Win integration towards bioapplications. Angew Chem Int Ed Engl 59:2–14. https://doi.org/10.1002/anie.202005899

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by National Natural Science Foundation of China (21971023 and 21525206) the start-up funding from Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui-Qing Peng or Li-Ya Niu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “Aggregation Induced Emission”; edited by Youhong Tang and Ben Zhong Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, L., Peng, HQ., Niu, LY. et al. Modulation of Aggregation-Induced Emission by Excitation Energy Transfer: Design and Application. Top Curr Chem (Z) 379, 18 (2021). https://doi.org/10.1007/s41061-021-00330-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-021-00330-0

Keywords

Navigation