Skip to main content
Log in

Aggregation-induced emission: a review of promising cyano-functionalized AIEgens

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The aggregation-induced emission (AIE) is a photochemical process described in 2001, where the aggregation of specific kinds of organic compounds enhances the emission of light performed by these organic compounds. Since then, this phenomenon had attracted much interest because of its potential application in optics, electronics, energy and bioscience. In this review, the main concepts of AIE are going to be explained through the mechanistic decipherment of these photophysical processes. Additionally, some AIE systems will be discussed, describing the phosphorescence enhancement induced in organic molecules by this effect, but we will be focusing on the cyano-containing AIEgens, its recent advances and the driving forces that lead to the AIE effect in these cyano-containing molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Reprinted (adapted) with permission from Ref. [1]. Copyright (2015) American Chemical Society

Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Reprinted (adapted) with permission from Ref. [1]. Copyright (2015) American Chemical Society

Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Reprinted (adapted) from Ref. [45], Copyright (2019), with permission from Elsevier

Figure 12
Figure 13

Reprinted (adapted) from Ref. [43], Copyright (2007), with permission from Royal Society of Chemistry

Figure 14
Figure 15

Reprinted (adapted) with permissions from Refs. [61, 62]. http://creativecommons.org/licenses/by/4.0/ for CC BY

Figure 16
Figure 17
Figure 18

Reprinted (adapted) with permission from Ref. [64]. Copyright (2018) American Chemical Society

Figure 19
Figure 20

Similar content being viewed by others

References

  1. Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ (2015) Aggregation-induced emission: together we shine, united we soar! Chem Rev 115(21):11718–11940. https://doi.org/10.1021/acs.chemrev.5b00263

    Article  CAS  Google Scholar 

  2. Hong Y, Lam JWY, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40(11):5361–5388. https://doi.org/10.1039/C1CS15113D

    Article  CAS  Google Scholar 

  3. Birks JB (1970) Photophysics of aromatic molecules. Wiley, London

    Google Scholar 

  4. Pålsson LO, Wang C, Batsanov AS et al (2010) Efficient intramolecular charge transfer in oligoyne-linked donor-π-acceptor molecules. Chem A Eur J 16(5):1470–1479. https://doi.org/10.1002/chem.200902099

    Article  CAS  Google Scholar 

  5. Bagchi B, Fleming GR, Oxtoby DW (2003) Theory of electronic relaxation in solution in the absence of an activation barrier. J Chem Phys 78(12):7375–7385. https://doi.org/10.1063/1.444729

    Article  Google Scholar 

  6. Ben-Amotz D, Scott TW (1987) Microscopic frictional forces on molecular motion in liquids. Picosecond rotational diffusion in alkanes and alcohols. J Chem Phys 87(7):3739–3748. https://doi.org/10.1063/1.452928

    Article  CAS  Google Scholar 

  7. Castner EW, Maroncelli M, Fleming GR (1987) Subpicosecond resolution studies of solvation dynamics in polar aprotic and alcohol solvents. J Chem Phys 86(3):1090–1097. https://doi.org/10.1063/1.452249

    Article  CAS  Google Scholar 

  8. Kramers HA (1940) Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7(4):284–304

    Article  CAS  Google Scholar 

  9. Sun YP, Saltiel J (1989) Application of the Kramers equation to stilbene photoisomerization in n-alkanes using translational diffusion coefficients to define microviscosity. J Phys Chem 93(26):8310–8316. https://doi.org/10.1021/j100363a008

    Article  CAS  Google Scholar 

  10. Xu Q, Fleming GR (2001) Isomerization dynamics of 1, 1′-diethyl-4, 4′-cyanine (1144C) studied by different third-order nonlinear spectroscopic measurements. J Phys Chem A 105:10187–10195

    Article  CAS  Google Scholar 

  11. Yoshihara T, Druzhinin SI, Zachariasse KA (2004) Fast intramolecular charge transfer with a planar rigidized electron donor/acceptor molecule. J Am Chem Soc 18:8535–8539

    Article  Google Scholar 

  12. Mei J, Hong Y, Lam JWY, Qin A, Tang Y, Tang BZ (2014) Aggregation-induced emission: the whole is more brilliant than the parts. Adv Mater 26(31):5429–5479. https://doi.org/10.1002/adma.201401356

    Article  CAS  Google Scholar 

  13. Luo J, Xie Z, Xie Z et al (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun 18:1740–1741. https://doi.org/10.1039/b105159h

    Article  Google Scholar 

  14. Wilson JN, Smith MD, Enkelmann V, Bunz UHF (2004) Cruciform π-systems: effect of aggregation on emission. Chem Commun 4(15):1700–1701. https://doi.org/10.1039/b406495j

    Article  CAS  Google Scholar 

  15. Hong Y, Lam JWY, Tang BZ (2009) Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun 29:4332–4353. https://doi.org/10.1039/b904665h

    Article  CAS  Google Scholar 

  16. Jayanty S, Radhakrishnan TP (2004) Enhanced fluorescence of remote functionalized diaminodicyanoquinodimethanes in the solid state and fluorescence switching in a doped polymer by solvent vapors. Chem A Eur J 10(3):791–797. https://doi.org/10.1002/chem.200305123

    Article  CAS  Google Scholar 

  17. Davis R, Saleesh Kumar NS, Abraham S et al (2008) Molecular packing and solid-state fluorescence of alkoxy-cyano substituted diphenylbutadienes: structure of the luminescent aggregates. J Phys Chem C 112(6):2137–2146. https://doi.org/10.1021/jp710352m

    Article  CAS  Google Scholar 

  18. Zhao Z, Lam JWY, Tang BZ (2012) Tetraphenylethene: a versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes. J Mater Chem 22(45):23726–23740. https://doi.org/10.1039/c2jm31949g

    Article  CAS  Google Scholar 

  19. Turro NJ, Scaiano JC, Ramamurthy V (2010) Modern molecular photochemistry of organic molecules, 1st edn. University Science Books, Herndon

    Google Scholar 

  20. Peng Q, Yi Y, Shuai Z, Shao J (2007) Supporting information for towards quantitative prediction of molecular fluorescence quantum efficiency: role of Duschinsky rotation. Sci York 129(30):1–10. https://doi.org/10.1021/ja067946e

    Article  CAS  Google Scholar 

  21. He Z, Ke C, Tang BZ (2018) Journey of aggregation-induced emission research. ACS Omega 3(3):3267–3277. https://doi.org/10.1021/acsomega.8b00062

    Article  CAS  Google Scholar 

  22. Chen J, Law CCW, Lam JWY et al (2003) Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4,5-tetraphenylsiloles. Chem Mater 15(7):1535–1546. https://doi.org/10.1021/cm021715z

    Article  CAS  Google Scholar 

  23. Ren Y, Lam JWY, Dong Y, Tang BZ, Wong KS (2005) Enhanced emission efficiency and excited state lifetime due to restricted intramolecular motion in silole aggregates. J Phys Chem B 109(3):1135–1140. https://doi.org/10.1021/jp046659z

    Article  CAS  Google Scholar 

  24. Leung NLC, Xie N, Yuan W et al (2014) Restriction of intramolecular motions: the general mechanism behind aggregation-induced emission. Chem A Eur J 20(47):15349–15353. https://doi.org/10.1002/chem.201403811

    Article  CAS  Google Scholar 

  25. Zhao W, He Z, Lam JWY et al (2016) Rational molecular design for achieving persistent and efficient pure organic room-temperature phosphorescence. Chemistry 1(4):592–602. https://doi.org/10.1016/j.chempr.2016.08.010

    Article  CAS  Google Scholar 

  26. Marian CM (2012) Spin-orbit coupling and intersystem crossing in molecules. Wiley Interdiscip Rev Comput Mol Sci 2(2):187–203. https://doi.org/10.1002/wcms.83

    Article  CAS  Google Scholar 

  27. Kwon MS, Yu Y, Coburn C et al (2015) Suppressing molecular motions for enhanced room-temperature phosphorescence of metal-free organic materials. Nat Commun. https://doi.org/10.1038/ncomms9947

    Article  Google Scholar 

  28. Zhang J, Sharman E, Yang L, Jiang J, Zhang G (2018) Aggregation-induced enhancement of molecular phosphorescence lifetime: a first-principle study. J Phys Chem C. https://doi.org/10.1021/acs.jpcc.8b07087

    Article  Google Scholar 

  29. Shimizu M, Takeda Y, Higashi M, Hiyama T (2009) 1,4-Bis(alkenyl)-2,5-dipiperidinobenzenes: minimal fluorophores exhibiting highly efficient emission in the solid state. Angew Chem Int Ed 48(20):3653–3656. https://doi.org/10.1002/anie.200900963

    Article  CAS  Google Scholar 

  30. Shimizu M, Tatsumi H, Mochida K, Shimono K, Hiyama T (2009) Synthesis, crystal structure, and photophysical properties of (1E,3E,5E)-1,3,4,6-tetraarylhexa-1,3,5-trienes: a new class of fluorophores exhibiting aggregation-induced emission. Chem Asian J 4(8):1289–1297. https://doi.org/10.1002/asia.200900110

    Article  CAS  Google Scholar 

  31. Ning Z, Chen Z, Zhang Q et al (2007) Aggregation-induced emission (AIE)-active starburst triarylamine fluorophores as potential non-doped red emitters for organic light-emitting diodes and Cl2 gas chemodosimeter. Adv Funct Mater 17(18):3799–3807. https://doi.org/10.1002/adfm.200700649

    Article  CAS  Google Scholar 

  32. Nosova DA, Zarochentseva EP, Vysotskaya SO, Klemesheva NA, Korotkov VI (2014) The influence of the crystal structure on aggregation-induced luminescence of derivatives of aminobenzoic acid. Opt Spectrosc 117(6):880–886. https://doi.org/10.1134/s0030400x14120170

    Article  CAS  Google Scholar 

  33. Goulle V, Harriman A, Lehn JM (1993) An electro-photoswitch: redox switching of the luminescence of a bipyridine metal complex. J Chem Soc Chem Commun 12:1034–1036. https://doi.org/10.1039/C39930001034

    Article  Google Scholar 

  34. Lin HT, Huang CL, Liou GS (2019) Design, synthesis, and electrofluorochromism of new triphenylamine derivatives with AIE-active pendent groups. ACS Appl Mater Interfaces 11(12):11684–11690. https://doi.org/10.1021/acsami.9b00659

    Article  CAS  Google Scholar 

  35. Yen HJ, Liou GS (2019) Design and preparation of triphenylamine-based polymeric materials towards emergent optoelectronic applications. Prog Polym Sci 89:250–287. https://doi.org/10.1016/j.progpolymsci.2018.12.001

    Article  CAS  Google Scholar 

  36. Yeh HC, Wu WC, Wen YS, Dai DC, Wang JK, Chen CT (2004) Derivative of α, β-dicyanostilbene: convenient precursor for the synthesis of diphenylmaleimide compounds, E-Z isomerization, crystal structure, and solid-state fluorescence. J Org Chem 69(19):6455–6462. https://doi.org/10.1021/jo049512c

    Article  CAS  Google Scholar 

  37. Toh KC, Stojkovic EA, van Stokkum IHM, Moffat K, Kennis JTM (2010) Proton-transfer and hydrogen-bond interactions determine fluorescence quantum yield and photochemical efficiency of bacteriophytochrome. Proc Natl Acad Sci 107(20):9170–9175. https://doi.org/10.1073/pnas.0911535107

    Article  CAS  Google Scholar 

  38. Petong P, Pottel R, Kaatze U (2002) Dielectric relaxation of H-bonded liquids. mixtures of ethanol and n-hexanol at different compositions and temperatures. J Phys Chem A 103(31):6114–6121. https://doi.org/10.1021/jp991046l

    Article  CAS  Google Scholar 

  39. Mondal JA, Ghosh HN, Mukherjee T, Palit DK (2005) S2 fluorescence and ultrafast relaxation dynamics of the S2 and S1 states of a ketocyanine dye. J Phys Chem A 109(31):6836–6846. https://doi.org/10.1021/jp0508498

    Article  CAS  Google Scholar 

  40. Mondal JA, Samant V, Varne M et al (2009) The role of hydrogen-bonding interactions in the ultrafast relaxation dynamics of the excited states of 3- and 4-aminofluoren-9-ones. ChemPhysChem 10(17):2995–3012. https://doi.org/10.1002/cphc.200900325

    Article  CAS  Google Scholar 

  41. Fayed TA, El-Morsi MA, El-Nahass MN (2011) Intramolecular charge transfer emission of a new ketocyanine dye: effects of hydrogen bonding and electrolyte. J Photochem Photobiol A Chem 224(1):38–45. https://doi.org/10.1016/j.jphotochem.2011.09.004

    Article  CAS  Google Scholar 

  42. Benigno AJ, Ahmed E, Berg M (1996) The influence of solvent dynamics on the lifetime of solute-solvent hydrogen bonds. J Chem Phys 104(19):7382–7394. https://doi.org/10.1063/1.471454

    Article  CAS  Google Scholar 

  43. Li Y, Li F, Zhang H et al (2007) Tight intermolecular packing through supramolecular interactions in crystals of cyano substituted oligo(para-phenylene vinylene): a key factor for aggregation-induced emission. Chem Commun 1(3):231–233. https://doi.org/10.1039/b612732k

    Article  CAS  Google Scholar 

  44. Kurita M, Momma M, Mizuguchi K, Nakano H (2013) Fluorescence color change of aggregation-induced emission of 4-[bis(4-methylphenyl)amino]benzaldehyde. ChemPhysChem 14(17):3898–3901. https://doi.org/10.1002/cphc.201300781

    Article  CAS  Google Scholar 

  45. Nie H, Liang Y, Han C, Zhang R, Zhang X, Yan H (2019) Rational design of cyanovinyl-pyrene dual-emission AIEgens for potential application in dual-channel imaging and ratiometric sensing in living cells. Dye Pigment 168:42–48. https://doi.org/10.1016/j.dyepig.2019.04.034

    Article  CAS  Google Scholar 

  46. Zhu L, Zhao Y (2013) Cyanostilbene-based intelligent organic optoelectronic materials. J Mater Chem C 1(6):1059–1065. https://doi.org/10.1039/c2tc00593j

    Article  CAS  Google Scholar 

  47. Grabowski ZR, Rotkiewicz K, Rettig W (2003) Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem Rev 103(10):3899–4032. https://doi.org/10.1021/cr940745l

    Article  Google Scholar 

  48. Kawamura Y, Sasabe H, Adachi C (2004) Simple accurate system for measuring absolute photoluminescence quantum efficiency in organic solid-state thin films. Jpn J Appl Phys Part 1 Regul Pap Short Notes Rev Pap 43(11A):7729–7730. https://doi.org/10.1143/jjap.43.7729

    Article  CAS  Google Scholar 

  49. Sharafy S, Muszkat KA (1971) Viscosity dependence of fluorescence quantum yields. J Am Chem Soc 93(17):4119–4125. https://doi.org/10.1021/ja00746a004

    Article  CAS  Google Scholar 

  50. Liu Y, Cao Y, Li X, Li Y, Wang B (2019) Cyano-functionalized diarylethene derivatives with aggregation-induced emission enhancement and piezofluorochromic behaviours. Aust J Chem 72(5):369–374. https://doi.org/10.1071/CH18450

    Article  CAS  Google Scholar 

  51. Chen Z, Li Z, Hu F, Yu GA, Yin J, Liu SH (2016) Novel carbazole-based aggregation-induced emission-active gold(I) complexes with various mechanofluorochromic behaviors, vol 125. Elsevier, Amsterdam. https://doi.org/10.1016/j.dyepig.2015.10.038

    Book  Google Scholar 

  52. Han T, Feng X, Chen D, Dong Y (2015) A diethylaminophenol functionalized Schiff base: crystallization-induced emission-enhancement, switchable fluorescence and application for security printing and data storage. J Mater Chem C 3(28):7446–7454. https://doi.org/10.1039/c5tc00891c

    Article  CAS  Google Scholar 

  53. Sheng O, Jin C, Luo J et al (2018) Mg2B2O5 nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance. Nano Lett. https://doi.org/10.1021/acs.nanolett.8b00659

    Article  Google Scholar 

  54. Zhang X, Ma Z, Yang Y, Zhang X, Jia X, Wei Y (2014) Fine-tuning the mechanofluorochromic properties of benzothiadiazole-cored cyano-substituted diphenylethene derivatives through D–A effect. J Mater Chem C 2(42):8932–8938. https://doi.org/10.1039/c4tc01457j

    Article  CAS  Google Scholar 

  55. Luo X, Li J, Li C et al (2011) Reversible switching of the emission of diphenyldibenzofulvenes by thermal and mechanical stimuli. Adv Mater 23(29):3261–3265. https://doi.org/10.1002/adma.201101059

    Article  CAS  Google Scholar 

  56. Shen XY, Wang YJ, Zhao E et al (2013) Effects of substitution with donor–acceptor groups on the properties of tetraphenylethene trimer: aggregation-induced emission, solvatochromism, and mechanochromism. J Phys Chem C 117(14):7334–7347. https://doi.org/10.1021/jp311360p

    Article  CAS  Google Scholar 

  57. Cao YQ, Xi Y, Teng XY, Li Y, Yan X, Chen L (2017) Alkoxy substituted D-π-A dimethyl-4-pyrone derivatives: aggregation induced emission enhancement, mechanochromic and solvatochromic properties. Dye Pigment 137:75–83. https://doi.org/10.1016/j.dyepig.2016.09.063

    Article  CAS  Google Scholar 

  58. Liu Y, Lei Y, Li F et al (2016) Indene-1,3-dionemethylene-4H-pyran derivatives containing alkoxy chains of various lengths: aggregation-induced emission enhancement, mechanofluorochromic properties and solvent-induced emission changes. J Mater Chem C 4(14):2862–2870. https://doi.org/10.1039/c5tc02932e

    Article  CAS  Google Scholar 

  59. Teng XY, Wu XC, Cao YQ et al (2017) Piezochromic luminescence and aggregation induced emission of 9,10-bis[2-(2-alkoxynaphthalen-1-yl)vinyl]anthracene derivatives. Chin Chem Lett 28(7):1485–1491. https://doi.org/10.1016/j.cclet.2017.02.018

    Article  CAS  Google Scholar 

  60. Vincett PS, Voigt EM, Rieckhoff KE (1971) Phosphorescence and fluorescence of phthalocyanines. J Chem Phys 55(8):4131–4140. https://doi.org/10.1063/1.1676714

    Article  CAS  Google Scholar 

  61. Caruso U, Panunzi B, Diana R et al (2018) Supplementary materials AIE/ACQ effects in two DR/NIR emitters: a structural and DFT comparative analysis. Molecules 23:2–6

    Article  Google Scholar 

  62. Caruso U, Panunzi B, Diana R et al (2018) AIE/ACQ effects in two DR/NIR emitters: a structural and DFT comparative analysis. Molecules 23(8):1947. https://doi.org/10.3390/molecules23081947

    Article  CAS  Google Scholar 

  63. Chen SY, Chiu YW, Liou GS (2019) Substituent effects of AIE-active α-cyanostilbene-containing triphenylamine derivatives on electrofluorochromic behavior. Nanoscale 11(17):8597–8603. https://doi.org/10.1039/c9nr02692d

    Article  CAS  Google Scholar 

  64. Hurlock MJ, Kan Y, Lećrivain T, Lapka J, Nash KL, Zhang Q (2018) Molecular association-induced emission shifts for E/Z isomers and selective sensing of nitroaromatic explosives. Cryst Growth Des 18(10):6197–6203. https://doi.org/10.1021/acs.cgd.8b01065

    Article  CAS  Google Scholar 

  65. Li Q, Li Z (2017) The strong light-emission materials in the aggregated state: what happens from a single molecule to the collective group. Adv Sci 4(7):1–15. https://doi.org/10.1002/advs.201600484

    Article  CAS  Google Scholar 

  66. Xie Y, Tu J, Zhang T et al (2017) Mechanoluminescence from pure hydrocarbon AIEgen. Chem Commun 53(82):11330–11333. https://doi.org/10.1039/c7cc04663d

    Article  CAS  Google Scholar 

  67. Li Y, Lin H, Luo C et al (2017) Aggregation induced red shift emission of phosphorus doped carbon dots. RSC Adv 7(51):32225–32228. https://doi.org/10.1039/c7ra04781a

    Article  CAS  Google Scholar 

  68. Zhang Q, Su J, Feng D, Wei Z, Zou X, Zhou H (2015) Piezofluorochromic metal-organic framework: a micro-scissor lift. J Am Chem Soc 137:2–7

    Article  Google Scholar 

  69. Wei Z, Gu Z, Arvapally RK et al (2014) Rigidifying fluorescent linkers by MOF formation for fluorescence blue shift and quantum yield enhancement. J Am Ceram Soc 136:8269–8276

    CAS  Google Scholar 

  70. Shustova NB, McCarthy BD, Dincǎ M (2011) Turn-on fluorescence in tetraphenylethylene-based metal-organic frameworks: an alternative to aggregation-induced emission. J Am Chem Soc 133(50):20126–20129. https://doi.org/10.1021/ja209327q

    Article  CAS  Google Scholar 

  71. Yang X, Lu R, Zhou H et al (2009) Aggregation-induced blue shift of fluorescence emission due to suppression of TICT in a phenothiazine-based organogel. J Colloid Interface Sci 339(2):527–532. https://doi.org/10.1016/j.jcis.2009.07.033

    Article  CAS  Google Scholar 

  72. Bloor D, Kagawa Y, Szablewski M et al (2001) Matrix dependence of light emission from TCNQ adducts. J Mater Chem 11(12):3053–3062. https://doi.org/10.1039/b104992p

    Article  CAS  Google Scholar 

  73. Chandaluri CG, Patra A, Radhakrishnan TP (2010) Polyelectrolyte-assisted formation of molecular nanoparticles exhibiting strongly enhanced fluorescence. Chem A Eur J 16(29):8699–8706. https://doi.org/10.1002/chem.201000502

    Article  CAS  Google Scholar 

  74. Patra A, Chandaluri CG, Radhakrishnan TP (2012) Optical materials based on molecular nanoparticles. Nanoscale 4(2):343–359. https://doi.org/10.1039/c1nr11313e

    Article  CAS  Google Scholar 

  75. Srujana P, Radhakrishnan TP (2015) Extensively reversible thermal transformations of a bistable, fluorescence-switchable molecular solid: entry into functional molecular phase-change materials. Angew Chem Int Ed 54(25):7270–7274. https://doi.org/10.1002/anie.201501032

    Article  CAS  Google Scholar 

  76. Kagawa Y, Takada N, Matsuda H et al (2016) Photo-and electroluminescence for TCNQ-amino adducts. Mol Cryst Liq Cryst Sci Technol Sect A 2000(349):499–502. https://doi.org/10.1080/10587250008024971

    Article  Google Scholar 

  77. Pålsson LO, Vaughan HL, Smith A et al (2006) Guest-host interactions between dichroic dyes and anisotropic hosts. J Lumin 117(1):113–122. https://doi.org/10.1016/j.jlumin.2005.03.017

    Article  CAS  Google Scholar 

  78. Chandaluri CG, Radhakrishnan TP (2012) Amorphous-to-crystalline transformation with fluorescence enhancement and switching of molecular nanoparticles fixed in a polymer thin film. Angew Chem Int Ed 51(47):11849–11852. https://doi.org/10.1002/anie.201205081

    Article  CAS  Google Scholar 

  79. Jayanty S, Gangopadhyay P, Radhakrishnan TP (2002) Steering molecular dipoles from centrosymmetric to a noncentrosymmetric and SHG active assembly using remote functionality and complexation. J Mater Chem 12(9):2792–2797. https://doi.org/10.1039/b202804m

    Article  CAS  Google Scholar 

  80. Patra A, Hebalkar N, Sreedhar B, Radhakrishnan TP (2007) Formation and growth of molecular nanocrystals probed by their optical properties. J Phys Chem C 111(44):16184–16191. https://doi.org/10.1021/jp075103j

    Article  CAS  Google Scholar 

  81. Cole JM, Copley RC, McIntyre GJ, Howard JA, Szablewski M, Cross GH (2002) Charge-density study of the nonlinear optical precursor DED-TCNQ at 20 K. Phys Rev B Condens Matter Mater Phys 65(12):1251071–12510711. https://doi.org/10.1103/PhysRevB.65.125107

    Article  CAS  Google Scholar 

  82. Chandaluri CG, Radhakrishnan TP (2013) Hierarchical assembly of a molecular material through the amorphous phase and the evolution of its fluorescence emission. J Mater Chem C 1(29):4464–4471. https://doi.org/10.1039/c3tc30615a

    Article  CAS  Google Scholar 

  83. Szablewski M, Fox MA, Dias FB et al (2014) Ultrafast dynamics and computational studies on diaminodicyanoquinodimethanes (DADQs). J Phys Chem B 118(24):6815–6828. https://doi.org/10.1021/jp411358d

    Article  CAS  Google Scholar 

  84. Szablewski M, Bloor D, Kagawa Y et al (2006) Matrix dependence of blue light emission from a novel NH 2-functionalized dicyanoquinodimethane derivative. J Phys Org Chem 19(3):206–213. https://doi.org/10.1002/poc.1020

    Article  CAS  Google Scholar 

  85. Cross GH, Hackman NA, Thomas PR, Szablewski M, Pålsson LO, Bloor D (2003) Local field and aggregation dependence of the micro- and macroscopic optical non-linearity of zwitterionic molecules. Opt Mater Amst 21(1–3):29–37. https://doi.org/10.1016/S0925-3467(02)00108-8

    Article  CAS  Google Scholar 

  86. Ravi M (1998) A simple method for the estimation of hyperpolarisabilities: application to diamino substituted dicyanoquinodimethane molecules. Proc Indian Acad Sci (Chem Sci) 110(2):133–141. https://doi.org/10.1007/BF02871150

    Article  Google Scholar 

  87. Jayanty S, Radhakrishnan TP (2001) Solid-state charge transfer promoted by an anchoring agent: a two-component analogue of Kofler’s ternary complex. Chem Mater 13(6):2072–2077. https://doi.org/10.1021/cm000884l

    Article  CAS  Google Scholar 

  88. Jayanty S, Radhakrishnan TP (2001) Modeling molecule-in-a-crystal: the case of push–pull quinonoids structural modifications that molecules undergo when they assemble into the crystalline state are important indicators of the microenvironment in the molecular crystal. Accurate Appra 12:2460–2462

    Google Scholar 

  89. Ravi M, Szablewski M, Hackman NA et al (1999) Crystal structures of amino substituted dicyanoquinodimethanes with potential nonlinear optical applications. New J Chem 23(8):841–844. https://doi.org/10.1039/a903793d

    Article  Google Scholar 

  90. Srinivasa Gopalan R, Kulkarni GU, Ravi M, Rao CNR (2001) A charge density study of an intramolecular charge-transfer quinoid compound with strong NLO properties. New J Chem 25(9):1108–1110. https://doi.org/10.1039/b103117c

    Article  CAS  Google Scholar 

  91. Jayanty S (2004) Enhanced fluorescence of remote functionalized diaminodicyanoquinodimethanes in the solid state and fluorescence switching in a doped polymer by solvent vapors. Chem A Eur J Wiley Online Libr. https://doi.org/10.1002/chem.200305123/full

    Article  Google Scholar 

  92. Ravi M, Gangopadhyay P, Rao DN, Cohen S, Agranat I, Radhakrishnan TP (1998) Dual influence of H-bonding on the solid-state second-harmonic generation of a chiral quinonoid compound. Chem Mater 10(9):2371–2377. https://doi.org/10.1021/cm9800128

    Article  Google Scholar 

  93. Srujana P, Gera T, Radhakrishnan TP (2016) Fluorescence enhancement in crystals tuned by a molecular torsion angle: a model to analyze structural impact. J Mater Chem C 4(27):6510–6515. https://doi.org/10.1039/c6tc01610c

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by Yachay Tech internal Project “Aggregation-induced emission Effect in Diaminodicyanoquinodimethanes derivatives”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hortensia Rodríguez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jimenez, E.R., Rodríguez, H. Aggregation-induced emission: a review of promising cyano-functionalized AIEgens. J Mater Sci 55, 1366–1387 (2020). https://doi.org/10.1007/s10853-019-04157-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04157-5

Navigation