Skip to main content

Advertisement

Log in

Materials Integrating Photochemical Upconversion

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

This review features recent experimental work focused on the preparation and characterization of materials that integrate photochemical upconversion derived from sensitized triplet–triplet annihilation, resulting in the conversion of low energy photons to higher energy light, thereby enabling numerous wavelength-shifting applications. Recent topical developments in upconversion include encapsulating or rigidifying fluid solutions to give them mechanical strength, adapting inert host materials to enable upconversion, and using photoactive materials that incorporate the sensitizer and/or the acceptor. The driving force behind translating photochemical upconversion from solution into hard and soft materials is the incorporation of upconversion into devices and other applications. At present, some of the most promising applications of upconversion materials include imaging and fluorescence microscopy, photoelectrochemical devices, water disinfection, and solar cell enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Adapted from Ref. [13]

Fig. 5

Reprinted with permission from Duan P, Yanai N, Nagatomi H, Kimizuka N (2015) J. Am. Chem. Soc. 137:1887–1894. Copyright 2015 American Chemical Society

Fig. 6

Adapted from Ref. [20]

Fig. 7

Adapted from Ref. [27]

Fig. 8

Adapted from Ref. [28]

Fig. 9

Adapted from Ref. [38]

Fig. 10

Adapted from Ref. [39]

Fig. 11

Adapted from Ref. [40]

Fig. 12

Reprinted with permission from [41]. Copyright 2013 Society of Photo Optical Instrumentation Engineers

Fig. 13

Reprinted with permission from Nattestad A, Cheng YY, MacQueen RW, Schulze TF, Thompson FW, Mozer AJ, Fückel B, Khoury T, Crossley MJ, Lips K, Wallace GG, Schmidt TW (2013) J. Phys. Chem. Lett. 4:2073–2078. Copyright 2013 American Chemical Society

Fig. 14

Adapted from Ref. [52]

Fig. 15

Reprinted with permission from Liu Q, Yin B, Yang T, Yang Y, Shen Z, Yao P, Li F (2013) J. Am. Chem. Soc. 135:5029–5037. Copyright 2013 American Chemical Society

Fig. 16

Adapted from Ref. [56]

Similar content being viewed by others

References

  1. Parker CA, Hatchard CG (1962) Proc Chem Soc London, pp 386–387

  2. Parker CA (1963) Proc R Soc A 276:125–135

    Article  CAS  Google Scholar 

  3. Parker CA, Hatchard CG, Joyce TA (1964) J Mol Spectrosc 14:311–319

    Article  CAS  Google Scholar 

  4. Kozlov DV, Castellano FN (2004) Chem Commun, pp 2860–2861

  5. Islangulov RR, Kozlov DV, Castellano FN (2005) Chem Commun, pp 3776–3778

  6. Singh-Rachford TN, Castellano FN (2010) Coord Chem Rev 254:2560–2573

    Article  CAS  Google Scholar 

  7. Haefele A, Blumhoff J, Khnayzer RS, Castellano FN (2012) J Phys Chem Lett 3:299–303

    Article  CAS  Google Scholar 

  8. Montalti M, Credi A, Prodi L, Gandolfi MT (2006) Handbook of photochemistry, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  9. Cheng YY, Khoury T, Clady RG, Tayebjee MJ, Ekins-Daukes NJ, Crossley MJ, Schmidt TW (2010) Phys Chem Chem Phys 12:66–71

    Article  CAS  Google Scholar 

  10. Wohnhaas C, Turshatov A, Mailander V, Lorenz S, Baluschev S, Miteva T, Landfester K (2011) Macromol Biosci 11:772–778

    Article  CAS  Google Scholar 

  11. Wohnhaas C, Friedemann K, Busko D, Landfester K, Baluschev S, Crespy D, Turshatov A (2013) ACS Macro Lett 2:446–450

    Article  CAS  Google Scholar 

  12. Kang JH, Reichmanis E (2012) Angew Chem Int Ed 51:11841–11844

    Article  CAS  Google Scholar 

  13. Kim J-H, Kim J-H (2015) ACS Photonics 2:633–638

    Article  CAS  Google Scholar 

  14. Kim J-H, Deng F, Castellano FN, Kim J-H (2014) ACS Photonics 1:382–388

    Article  CAS  Google Scholar 

  15. Svagan AJ, Busko D, Avlasevich Y, Glasser G, Baluschev S, Landfester K (2014) ACS Nano 8:8198–8207

    Article  CAS  Google Scholar 

  16. Terech P, Weiss RG (1997) Chem Rev 97:3133–3160

    Article  CAS  Google Scholar 

  17. Okesola BO, Vieira VM, Cornwell DJ, Whitelaw NK, Smith DK (2015) Soft Matter 11:4768–4787

    Article  CAS  Google Scholar 

  18. Sripathy K, MacQueen RW, Peterson JR, Cheng YY, Dvořák M, McCamey DR, Treat ND, Stingelin N, Schmidt TW (2015) J Mater Chem C 3:616–622

    Article  CAS  Google Scholar 

  19. Vadrucci R, Weder C, Simon YC (2015) Mater Horiz 2:120–124

    Article  CAS  Google Scholar 

  20. Duan P, Yanai N, Nagatomi H, Kimizuka N (2015) J Am Chem Soc 137:1887–1894

    Article  CAS  Google Scholar 

  21. Islangulov RR, Lott J, Weder C, Castellano FN (2007) J Am Chem Soc 129:12652–12653

    Article  CAS  Google Scholar 

  22. Singh-Rachford TN, Lott J, Weder C, Castellano FN (2009) J Am Chem Soc 131:12007–12014

    Article  CAS  Google Scholar 

  23. Kim J-H, Deng F, Castellano FN, Kim J-H (2012) Chem Mater 24:2250–2252

    Article  CAS  Google Scholar 

  24. Monguzzi A, Bianchi F, Bianchi A, Mauri M, Simonutti R, Ruffo R, Tubino R, Meinardi F (2013) Adv Energy Mater 3:680–686

    Article  CAS  Google Scholar 

  25. Merkel PB, Dinnocenzo JP (2009) J Lumin 129:303–306

    Article  CAS  Google Scholar 

  26. Monguzzi A, Tubino R, Meinardi F (2009) J Phys Chem C 113(7):1171–1174

    Article  CAS  Google Scholar 

  27. Lee SH, Lott JR, Simon YC, Weder C (2013) J Mater Chem C 1:5142–5148

    Article  CAS  Google Scholar 

  28. Zimmermann J, Mulet R, Scholes GD, Wellens T, Buchleitner A (2014) J Chem Phys 141:184104

    Article  Google Scholar 

  29. Monguzzi A, Frigoli M, Larpent C, Tubino R, Meinardi F (2012) Adv Funct Mater 22:139–143

    Article  CAS  Google Scholar 

  30. Lissau JS, Gardner JM, Morandeira A (2011) J Phys Chem C 115:23226–23232

    Article  CAS  Google Scholar 

  31. Lissau JS, Nauroozi D, Santoni M-P, Ott S, Gardner JM, Morandeira A (2013) J Phys Chem C 117:14493–14501

    Article  CAS  Google Scholar 

  32. Lissau JS, Nauroozi D, Santoni M-P, Edvinsson T, Ott S, Gardner JM, Morandeira A (2015) J Phys Chem C 119:4550–4564

    Article  CAS  Google Scholar 

  33. Karpicz R, Puzinas S, Gulbinas V, Vakhnin A, Kadashchuk A, Rand BP (2014) Chem Phys 429:57–62

    Article  CAS  Google Scholar 

  34. Jankus V, Snedden EW, Bright DW, Whittle VL, Williams JAG, Monkman A (2013) Adv Funct Mater 23:384–393

    Article  CAS  Google Scholar 

  35. Vadrucci R, Weder C, Simon YC (2014) J Mater Chem C 2:2837

    Article  CAS  Google Scholar 

  36. Wu TC, Congreve DN, Baldo MA (2015) Appl Phys Lett 107:031103

    Article  Google Scholar 

  37. Lee SH, Ayer MA, Vadrucci R, Weder C, Simon YC (2014) Polym Chem 5:6898–6904

    Article  CAS  Google Scholar 

  38. Mahato P, Monguzzi A, Yanai N, Yamada T, Kimizuka N (2015) Nat Mater 14:924–930

    Article  CAS  Google Scholar 

  39. Duan P, Yanai N, Kurashige Y, Kimizuka N (2015) Angew Chem Int Ed 54:7544–7549

    Article  CAS  Google Scholar 

  40. Lee S-H, Sonseca Á, Vadrucci R, Giménez E, Foster EJ, Simon YC (2014) J Inorg Organomet Polym 24:898–903

    Article  CAS  Google Scholar 

  41. MacQueen RW, Schulze TF, Khoury T, Cheng YY, Stannowski B, Lips K, Crossley MJ, Schmidt T (2013) Proc SPIE 882408

  42. Trupke T, Green MA, Würfel P (2002) J Appl Phys 92:4117

    Article  CAS  Google Scholar 

  43. Atre AC, Dionne JA (2011) J Appl Phys 110:034505–034505–034505–034509

    Article  Google Scholar 

  44. de Wild J, Meijerink A, Rath JK, van Sark WGJHM, Schropp REI (2011) Energy Environ. Sci. 4:4835

    Google Scholar 

  45. Gray V, Dzebo D, Abrahamsson M, Albinsson B, Moth-Poulsen K (2014) Phys Chem Chem Phys 16:10345–10352

    Article  CAS  Google Scholar 

  46. Schulze TF, Schmidt TW (2015) Energy Environ Sci 8:103–125

    Article  CAS  Google Scholar 

  47. Goldschmidt JC, Fischer S (2015) Adv Opt Mater 3:510–535

    Article  CAS  Google Scholar 

  48. Schulze TF, Czolk J, Cheng Y-Y, Fückel B, MacQueen RW, Khoury T, Crossley MJ, Stannowski B, Lips K, Lemmer U, Colsmann A, Schmidt TW (2012) J Phys Chem C 116:22794–22801

    Article  CAS  Google Scholar 

  49. Cheng YY, Fückel B, MacQueen RW, Khoury T, Clady RGCR, Schulze TF, Ekins-Daukes NJ, Crossley MJ, Stannowski B, Lips K, Schmidt TW (2012) Energy Environ Sci 5:6953

    Article  CAS  Google Scholar 

  50. Schulze TF, Cheng YY, Fückel B, MacQueen RW, Danos A, Davis NJLK, Tayebjee MJY, Khoury T, Clady RGCR, Ekins-Daukes NJ, Crossley MJ, Stannowski B, Lips K, Schmidt TW (2012) Aust J Chem 65:480

    Article  CAS  Google Scholar 

  51. Nattestad A, Cheng YY, MacQueen RW, Schulze TF, Thompson FW, Mozer AJ, Fückel B, Khoury T, Crossley MJ, Lips K, Wallace GG, Schmidt TW (2013) J Phys Chem Lett 4:2073–2078

    Article  CAS  Google Scholar 

  52. Khnayzer RS, Blumhoff J, Harrington JA, Haefele A, Deng F, Castellano FN (2012) Chem Commun 48:209–211

    Article  CAS  Google Scholar 

  53. Kim JH, Kim JH (2012) J Am Chem Soc 134:17478–17481

    Article  CAS  Google Scholar 

  54. Liu Q, Yang T, Feng W, Li F (2012) J Am Chem Soc 134:5390–5397

    Article  CAS  Google Scholar 

  55. Liu Q, Yin B, Yang T, Yang Y, Shen Z, Yao P, Li F (2013) J Am Chem Soc 135:5029–5037

    Article  CAS  Google Scholar 

  56. Askes SH, Bahreman A, Bonnet S (2014) Angew. Chem. Int Ed 53:1029–1033

    Article  CAS  Google Scholar 

  57. Borisov SM, Larndorfer C, Klimant I (2012) Adv Funct Mater 22:4360–4368

    Article  CAS  Google Scholar 

  58. Mongin C, Garakyaraghi S, Razgoniaeva N, Zamkov M, Castellano FN (2016) Science 351:369–372

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0011979. Some of the work on solid-state upconversion performed in this laboratory was supported by the Air Force Office of Scientific Research (FA9550-13-1-0106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix N. Castellano.

Additional information

This article is part of the Topical Collection “Photoluminescent Materials and Electroluminescent Devices”; edited by Nicola Armaroli, Henk Bolink; please follow CAP workflow

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCusker, C.E., Castellano, F.N. Materials Integrating Photochemical Upconversion. Top Curr Chem (Z) 374, 19 (2016). https://doi.org/10.1007/s41061-016-0021-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-016-0021-7

Keywords

Navigation