Materials Integrating Photochemical Upconversion

  • Catherine E. McCusker
  • Felix N. Castellano
Part of the following topical collections:
  1. Photoluminescent Materials and Electroluminescent Devices


This review features recent experimental work focused on the preparation and characterization of materials that integrate photochemical upconversion derived from sensitized triplet–triplet annihilation, resulting in the conversion of low energy photons to higher energy light, thereby enabling numerous wavelength-shifting applications. Recent topical developments in upconversion include encapsulating or rigidifying fluid solutions to give them mechanical strength, adapting inert host materials to enable upconversion, and using photoactive materials that incorporate the sensitizer and/or the acceptor. The driving force behind translating photochemical upconversion from solution into hard and soft materials is the incorporation of upconversion into devices and other applications. At present, some of the most promising applications of upconversion materials include imaging and fluorescence microscopy, photoelectrochemical devices, water disinfection, and solar cell enhancement.


Photochemical upconversion Triplet–triplet Annihilation Wavelength shifting Light emitting materials Solid state upconversion Soft photonic materials 



This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0011979. Some of the work on solid-state upconversion performed in this laboratory was supported by the Air Force Office of Scientific Research (FA9550-13-1-0106).


  1. 1.
    Parker CA, Hatchard CG (1962) Proc Chem Soc London, pp 386–387Google Scholar
  2. 2.
    Parker CA (1963) Proc R Soc A 276:125–135CrossRefGoogle Scholar
  3. 3.
    Parker CA, Hatchard CG, Joyce TA (1964) J Mol Spectrosc 14:311–319CrossRefGoogle Scholar
  4. 4.
    Kozlov DV, Castellano FN (2004) Chem Commun, pp 2860–2861Google Scholar
  5. 5.
    Islangulov RR, Kozlov DV, Castellano FN (2005) Chem Commun, pp 3776–3778Google Scholar
  6. 6.
    Singh-Rachford TN, Castellano FN (2010) Coord Chem Rev 254:2560–2573CrossRefGoogle Scholar
  7. 7.
    Haefele A, Blumhoff J, Khnayzer RS, Castellano FN (2012) J Phys Chem Lett 3:299–303CrossRefGoogle Scholar
  8. 8.
    Montalti M, Credi A, Prodi L, Gandolfi MT (2006) Handbook of photochemistry, 3rd edn. CRC Press, Boca RatonGoogle Scholar
  9. 9.
    Cheng YY, Khoury T, Clady RG, Tayebjee MJ, Ekins-Daukes NJ, Crossley MJ, Schmidt TW (2010) Phys Chem Chem Phys 12:66–71CrossRefGoogle Scholar
  10. 10.
    Wohnhaas C, Turshatov A, Mailander V, Lorenz S, Baluschev S, Miteva T, Landfester K (2011) Macromol Biosci 11:772–778CrossRefGoogle Scholar
  11. 11.
    Wohnhaas C, Friedemann K, Busko D, Landfester K, Baluschev S, Crespy D, Turshatov A (2013) ACS Macro Lett 2:446–450CrossRefGoogle Scholar
  12. 12.
    Kang JH, Reichmanis E (2012) Angew Chem Int Ed 51:11841–11844CrossRefGoogle Scholar
  13. 13.
    Kim J-H, Kim J-H (2015) ACS Photonics 2:633–638CrossRefGoogle Scholar
  14. 14.
    Kim J-H, Deng F, Castellano FN, Kim J-H (2014) ACS Photonics 1:382–388CrossRefGoogle Scholar
  15. 15.
    Svagan AJ, Busko D, Avlasevich Y, Glasser G, Baluschev S, Landfester K (2014) ACS Nano 8:8198–8207CrossRefGoogle Scholar
  16. 16.
    Terech P, Weiss RG (1997) Chem Rev 97:3133–3160CrossRefGoogle Scholar
  17. 17.
    Okesola BO, Vieira VM, Cornwell DJ, Whitelaw NK, Smith DK (2015) Soft Matter 11:4768–4787CrossRefGoogle Scholar
  18. 18.
    Sripathy K, MacQueen RW, Peterson JR, Cheng YY, Dvořák M, McCamey DR, Treat ND, Stingelin N, Schmidt TW (2015) J Mater Chem C 3:616–622CrossRefGoogle Scholar
  19. 19.
    Vadrucci R, Weder C, Simon YC (2015) Mater Horiz 2:120–124CrossRefGoogle Scholar
  20. 20.
    Duan P, Yanai N, Nagatomi H, Kimizuka N (2015) J Am Chem Soc 137:1887–1894CrossRefGoogle Scholar
  21. 21.
    Islangulov RR, Lott J, Weder C, Castellano FN (2007) J Am Chem Soc 129:12652–12653CrossRefGoogle Scholar
  22. 22.
    Singh-Rachford TN, Lott J, Weder C, Castellano FN (2009) J Am Chem Soc 131:12007–12014CrossRefGoogle Scholar
  23. 23.
    Kim J-H, Deng F, Castellano FN, Kim J-H (2012) Chem Mater 24:2250–2252CrossRefGoogle Scholar
  24. 24.
    Monguzzi A, Bianchi F, Bianchi A, Mauri M, Simonutti R, Ruffo R, Tubino R, Meinardi F (2013) Adv Energy Mater 3:680–686CrossRefGoogle Scholar
  25. 25.
    Merkel PB, Dinnocenzo JP (2009) J Lumin 129:303–306CrossRefGoogle Scholar
  26. 26.
    Monguzzi A, Tubino R, Meinardi F (2009) J Phys Chem C 113(7):1171–1174CrossRefGoogle Scholar
  27. 27.
    Lee SH, Lott JR, Simon YC, Weder C (2013) J Mater Chem C 1:5142–5148CrossRefGoogle Scholar
  28. 28.
    Zimmermann J, Mulet R, Scholes GD, Wellens T, Buchleitner A (2014) J Chem Phys 141:184104CrossRefGoogle Scholar
  29. 29.
    Monguzzi A, Frigoli M, Larpent C, Tubino R, Meinardi F (2012) Adv Funct Mater 22:139–143CrossRefGoogle Scholar
  30. 30.
    Lissau JS, Gardner JM, Morandeira A (2011) J Phys Chem C 115:23226–23232CrossRefGoogle Scholar
  31. 31.
    Lissau JS, Nauroozi D, Santoni M-P, Ott S, Gardner JM, Morandeira A (2013) J Phys Chem C 117:14493–14501CrossRefGoogle Scholar
  32. 32.
    Lissau JS, Nauroozi D, Santoni M-P, Edvinsson T, Ott S, Gardner JM, Morandeira A (2015) J Phys Chem C 119:4550–4564CrossRefGoogle Scholar
  33. 33.
    Karpicz R, Puzinas S, Gulbinas V, Vakhnin A, Kadashchuk A, Rand BP (2014) Chem Phys 429:57–62CrossRefGoogle Scholar
  34. 34.
    Jankus V, Snedden EW, Bright DW, Whittle VL, Williams JAG, Monkman A (2013) Adv Funct Mater 23:384–393CrossRefGoogle Scholar
  35. 35.
    Vadrucci R, Weder C, Simon YC (2014) J Mater Chem C 2:2837CrossRefGoogle Scholar
  36. 36.
    Wu TC, Congreve DN, Baldo MA (2015) Appl Phys Lett 107:031103CrossRefGoogle Scholar
  37. 37.
    Lee SH, Ayer MA, Vadrucci R, Weder C, Simon YC (2014) Polym Chem 5:6898–6904CrossRefGoogle Scholar
  38. 38.
    Mahato P, Monguzzi A, Yanai N, Yamada T, Kimizuka N (2015) Nat Mater 14:924–930CrossRefGoogle Scholar
  39. 39.
    Duan P, Yanai N, Kurashige Y, Kimizuka N (2015) Angew Chem Int Ed 54:7544–7549CrossRefGoogle Scholar
  40. 40.
    Lee S-H, Sonseca Á, Vadrucci R, Giménez E, Foster EJ, Simon YC (2014) J Inorg Organomet Polym 24:898–903CrossRefGoogle Scholar
  41. 41.
    MacQueen RW, Schulze TF, Khoury T, Cheng YY, Stannowski B, Lips K, Crossley MJ, Schmidt T (2013) Proc SPIE 882408Google Scholar
  42. 42.
    Trupke T, Green MA, Würfel P (2002) J Appl Phys 92:4117CrossRefGoogle Scholar
  43. 43.
    Atre AC, Dionne JA (2011) J Appl Phys 110:034505–034505–034505–034509CrossRefGoogle Scholar
  44. 44.
    de Wild J, Meijerink A, Rath JK, van Sark WGJHM, Schropp REI (2011) Energy Environ. Sci. 4:4835Google Scholar
  45. 45.
    Gray V, Dzebo D, Abrahamsson M, Albinsson B, Moth-Poulsen K (2014) Phys Chem Chem Phys 16:10345–10352CrossRefGoogle Scholar
  46. 46.
    Schulze TF, Schmidt TW (2015) Energy Environ Sci 8:103–125CrossRefGoogle Scholar
  47. 47.
    Goldschmidt JC, Fischer S (2015) Adv Opt Mater 3:510–535CrossRefGoogle Scholar
  48. 48.
    Schulze TF, Czolk J, Cheng Y-Y, Fückel B, MacQueen RW, Khoury T, Crossley MJ, Stannowski B, Lips K, Lemmer U, Colsmann A, Schmidt TW (2012) J Phys Chem C 116:22794–22801CrossRefGoogle Scholar
  49. 49.
    Cheng YY, Fückel B, MacQueen RW, Khoury T, Clady RGCR, Schulze TF, Ekins-Daukes NJ, Crossley MJ, Stannowski B, Lips K, Schmidt TW (2012) Energy Environ Sci 5:6953CrossRefGoogle Scholar
  50. 50.
    Schulze TF, Cheng YY, Fückel B, MacQueen RW, Danos A, Davis NJLK, Tayebjee MJY, Khoury T, Clady RGCR, Ekins-Daukes NJ, Crossley MJ, Stannowski B, Lips K, Schmidt TW (2012) Aust J Chem 65:480CrossRefGoogle Scholar
  51. 51.
    Nattestad A, Cheng YY, MacQueen RW, Schulze TF, Thompson FW, Mozer AJ, Fückel B, Khoury T, Crossley MJ, Lips K, Wallace GG, Schmidt TW (2013) J Phys Chem Lett 4:2073–2078CrossRefGoogle Scholar
  52. 52.
    Khnayzer RS, Blumhoff J, Harrington JA, Haefele A, Deng F, Castellano FN (2012) Chem Commun 48:209–211CrossRefGoogle Scholar
  53. 53.
    Kim JH, Kim JH (2012) J Am Chem Soc 134:17478–17481CrossRefGoogle Scholar
  54. 54.
    Liu Q, Yang T, Feng W, Li F (2012) J Am Chem Soc 134:5390–5397CrossRefGoogle Scholar
  55. 55.
    Liu Q, Yin B, Yang T, Yang Y, Shen Z, Yao P, Li F (2013) J Am Chem Soc 135:5029–5037CrossRefGoogle Scholar
  56. 56.
    Askes SH, Bahreman A, Bonnet S (2014) Angew. Chem. Int Ed 53:1029–1033CrossRefGoogle Scholar
  57. 57.
    Borisov SM, Larndorfer C, Klimant I (2012) Adv Funct Mater 22:4360–4368CrossRefGoogle Scholar
  58. 58.
    Mongin C, Garakyaraghi S, Razgoniaeva N, Zamkov M, Castellano FN (2016) Science 351:369–372CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of ChemistryNorth Carolina State UniversityRaleighUSA

Personalised recommendations