Skip to main content
Log in

Learning from streaming data with unsupervised heterogeneous domain adaptation

  • Regular Paper
  • Published:
International Journal of Data Science and Analytics Aims and scope Submit manuscript

Abstract

Many efforts on domain adaptation focus on stationary environments and assume that the target domain samples are available before the learning process. However, real-world applications frequently involve the availability of non-stationary data sequentially. This study develops an unsupervised heterogeneous domain adaptation approach to address non-stationary scenarios where data streams continually feed the learning model. This process employs a fuzzy-based model that has been trained on a different but related domain. Subsequently, a neighborhood-based weight assignment fine-tunes the attraction and repulsion between neighbors based on prior knowledge about their domains and the similarity between class labels. To avoid unnecessary adaptation for each target domain chunk, domain adaptation is triggered only when concept drift is detected. This way, the model gradually adjusts to the evolving data, incorporating the unique characteristics of the new domain. When no drift is detected, existing parameters are reused for feature adaptation. At the end, the source domain is updated by incorporating the drifting data and their predicted labels. The proposed method offers several advantages, including avoidance of excessive alignment, reduction in domain adaptation cost, and a gradual reduction in dependency on the source domain for domain adaptation. To evaluate the method’s performance, experiments were conducted on several tasks extracted from two benchmark datasets, considering different types of concept drift. The experimental results demonstrate that the proposed model significantly improves classification accuracy while reducing computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper and its Supplementary Information.

Notes

  1. http://qwone.com/~jason/20Newsgroups/.

  2. https://jmcauley.ucsd.edu/data/amazon/.

References

  1. Ruiz Sánchez E.: Learning rules in data stream mining: algorithms and applications, in, Universidad de Granada (2021)

  2. Lobo, J.L., Del Ser, J., Bifet, A., Kasabov, N.: Spiking neural networks and online learning: an overview and perspectives. Neural Netw. 121, 88–100 (2020)

    Article  Google Scholar 

  3. Wen, Y.-M., Liu, S.: Semi-supervised classification of data streams by BIRCH ensemble and local structure mapping. J. Comput. Sci. Technol. 35, 295–304 (2020)

    Article  Google Scholar 

  4. Yu, H., Liu, W., Lu, J., Wen, Y., Luo, X., Zhang, G.: Detecting group concept drift from multiple data streams. Pattern Recogn. 134, 109113 (2023)

    Article  Google Scholar 

  5. Yu, H., Zhang, Q., Liu, T., Lu, J., Wen, Y., Zhang, G.: Meta-ADD: a meta-learning based pre-trained model for concept drift active detection. Inform. Sci. 608, 996–1009 (2022)

    Article  Google Scholar 

  6. Yu H., Liu T., Lu J., Zhang G.: Automatic learning to detect concept drift, arXiv preprint arXiv:2105.01419 (2021)

  7. Maciąg, P.S., Kryszkiewicz, M., Bembenik, R., Lobo, J.L., Del Ser, J.: Unsupervised anomaly detection in stream data with online evolving spiking neural networks. Neural Netw. 139, 118–139 (2021)

    Article  Google Scholar 

  8. Wiwatcharakoses, C., Berrar, D.: SOINN+, a self-organizing incremental neural network for unsupervised learning from noisy data streams. Expert Syst. Appl. 143, 113069 (2020)

    Article  Google Scholar 

  9. de Mello, R.F., Vaz, Y., Grossi, C.H., Bifet, A.: On learning guarantees to unsupervised concept drift detection on data streams. Expert Syst. Appl. 117, 90–102 (2019)

    Article  Google Scholar 

  10. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 22, 199–210 (2010)

    Article  Google Scholar 

  11. Ding, Y., Jia, M., Zhuang, J., Cao, Y., Zhao, X., Lee, C.-G.: Deep imbalanced domain adaptation for transfer learning fault diagnosis of bearings under multiple working conditions. Reliab. Eng. Syst. Saf. 230, 108890 (2023)

    Article  Google Scholar 

  12. Hong, Y., Chern, W.-C., Nguyen, T.V., Cai, H., Kim, H.: Semi-supervised domain adaptation for segmentation models on different monitoring settings. Autom. Constr. 149, 104773 (2023)

    Article  Google Scholar 

  13. Tian, Q., Ma, C., Zhang, F.-Y., Peng, S., Xue, H.: Source-free unsupervised domain adaptation with sample transport learning. J. Comput. Sci. Technol. 36, 606–616 (2021)

    Article  Google Scholar 

  14. Xu, Z., Pang, S., Zhang, T., Luo, X.-P., Liu, J., Tang, Y.-T., Yu, X., Xue, L.: Cross project defect prediction via balanced distribution adaptation based transfer learning. J. Comput. Sci. Technol. 34, 1039–1062 (2019)

    Article  Google Scholar 

  15. Zhao, P., Hoi, S.C., Wang, J., Li, B.: Online transfer learning. Artif. Intell. 216, 76–102 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chandra S., Haque A., Khan L., Aggarwal C.: An adaptive framework for multistream classification, in: Proceedings of the 25th ACM international on conference on information and knowledge management (2016), pp. 1181–1190

  17. Liu, F., Lu, J., Zhang, G.: Unsupervised heterogeneous domain adaptation via shared fuzzy equivalence relations. IEEE Trans. Fuzzy Syst. 26, 3555–3568 (2018)

    Article  Google Scholar 

  18. Omran, T.M., Sharef, B.T., Grosan, C., Li, Y.: Transfer learning and sentiment analysis of Bahraini dialects sequential text data using multilingual deep learning approach. Data Knowl. Eng. 143, 102106 (2023)

    Article  Google Scholar 

  19. Farahani A., Voghoei S., Rasheed K., Arabnia H.R.: A brief review of domain adaptation, Advances in data science and information engineering (2021) pp. 877–894

  20. Chen D., Zhu H., Yang S.: UC-SFDA: source-free domain adaptation via uncertainty prediction and evidence-based contrastive learning, knowledge-based systems (2023) p. 110728

  21. Khan, S., Asim, M., Khan, S., Musyafa, A., Wu, Q.: Unsupervised domain adaptation using fuzzy rules and stochastic hierarchical convolutional neural networks. Comput. Electr. Eng. 105, 108547 (2023)

    Article  Google Scholar 

  22. Li, H., He, F., Pan, Y.: Multi-objective dynamic distribution adaptation with instance reweighting for transfer feature learning. Knowl.-Based Syst. 263, 110303 (2023)

    Article  Google Scholar 

  23. Du, H., He, L., Liu, P., Hao, X.: Inter-domain fusion and intra-domain style normalization network for unsupervised domain adaptive person re-identification. Digit. Signal Process. 133, 103848 (2023)

    Article  Google Scholar 

  24. Liu, X., Prince, J.L., Xing, F., Zhuo, J., Reese, T., Stone, M., El Fakhri, G., Woo, J.: Attentive continuous generative self-training for unsupervised domain adaptive medical image translation. Med. Image Anal. 88, 102851 (2023)

    Article  Google Scholar 

  25. Feitosa Neto, A., Canuto, A.M.P.: EOCD: an ensemble optimization approach for concept drift applications. Inform. Sci. 561, 81–100 (2021)

    Article  MathSciNet  Google Scholar 

  26. Chen, J., Lécué, F., Pan, J.Z., Deng, S., Chen, H.: Knowledge graph embeddings for dealing with concept drift in machine learning. J. Web Semant. 67, 100625 (2021)

    Article  Google Scholar 

  27. Zheng, X., Li, P., Hu, X., Yu, K.: Semi-supervised classification on data streams with recurring concept drift and concept evolution. Knowl.-Based Syst. 215, 106749 (2021)

    Article  Google Scholar 

  28. Page, E.S.: Continuous inspection schemes. Biometrika 41, 100–115 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  29. Baidari, I., Honnikoll, N.: Bhattacharyya distance based concept drift detection method for evolving data stream. Expert Syst. Appl. 183, 115303 (2021)

    Article  Google Scholar 

  30. Gama J., Medas P., Castillo G., Rodrigues P.: Learning with drift detection, in: Brazilian symposium on artificial intelligence, Springer (2004), pp. 286–295

  31. Baena-Garcıa M., del Campo-Ávila J., Fidalgo R., Bifet A., Gavalda R., Morales-BuenoR.: Early drift detection method, in: Fourth international workshop on knowledge discovery from data streams (2006), pp. 77–86

  32. Barros, R.S.M., Cabral, D.R.L., Gonçalves, P.M., Jr., Santos, S.G.T.C.: RDDM: reactive drift detection method. Expert Syst. Appl. 90, 344–355 (2017)

    Article  Google Scholar 

  33. Ross, G.J., Adams, N.M., Tasoulis, D.K., Hand, D.J.: Exponentially weighted moving average charts for detecting concept drift. Pattern Recogn. Lett. 33, 191–198 (2012)

    Article  Google Scholar 

  34. Frías-Blanco, I., Campo-Ávila, J.D., Ramos-Jiménez, G., Morales-Bueno, R., Ortiz-Díaz, A., Caballero-Mota, Y.: Online and non-parametric drift detection methods based on Hoeffding’s bounds. IEEE Trans. Knowl. Data Eng. 27, 810–823 (2015)

    Article  Google Scholar 

  35. Bifet A., Gavalda R.: Learning from time-changing data with adaptive windowing, in: Proceedings of the 2007 SIAM international conference on data mining, SIAM (2007), pp. 443–448

  36. Frias-Blanco, I., del Campo-Ávila, J., Ramos-Jimenez, G., Morales-Bueno, R., Ortiz-Diaz, A., Caballero-Mota, Y.: Online and non-parametric drift detection methods based on Hoeffding’s bounds. IEEE Trans. Knowl. Data Eng. 27, 810–823 (2014)

    Article  Google Scholar 

  37. Pears, R., Sakthithasan, S., Koh, Y.S.: Detecting concept change in dynamic data streams. Mach. Learn. 97, 259–293 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pesaranghader, A., Viktor, H., Paquet, E.: Reservoir of diverse adaptive learners and stacking fast hoeffding drift detection methods for evolving data streams. Mach. Learn. 107, 1711–1743 (2018)

    Article  MathSciNet  Google Scholar 

  39. Goel, K., Batra, S.: Dynamically adaptive and diverse dual ensemble learning approach for handling concept drift in data streams. Comput. Intell. 38, 463–505 (2022)

    Article  Google Scholar 

  40. Liao, G., Zhang, P., Yin, H., Deng, X., Li, Y., Zhou, H., Zhao, D.: A novel semi-supervised classification approach for evolving data streams. Expert Syst. Appl. 215, 119273 (2023)

    Article  Google Scholar 

  41. Li, Y., Wang, Y., Liu, Q., Bi, C., Jiang, X., Sun, S.: Incremental semi-supervised learning on streaming data. Pattern Recogn. 88, 383–396 (2019)

    Article  Google Scholar 

  42. Ren, S., Liao, B., Zhu, W., Li, K.: Knowledge-maximized ensemble algorithm for different types of concept drift. Inform. Sci. 430–431, 261–281 (2018)

    Article  Google Scholar 

  43. Mohawesh, R., Tran, S., Ollington, R., Xu, S.: Analysis of concept drift in fake reviews detection. Expert Syst. Appl. 169, 114318 (2021)

    Article  Google Scholar 

  44. Altendeitering, M., Dübler, S.: Scalable detection of concept drift: a learning technique based on support vector machines. Proc. Manuf. 51, 400–407 (2020)

    Google Scholar 

  45. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23, 69–101 (1996)

    Article  Google Scholar 

  46. Wang, Y.-Y., Gu, J.-M., Wang, C., Chen, S.-C., Xue, H.: Discrimination-aware domain adversarial neural network. J. Comput. Sci. Technol. 35, 259–267 (2020)

    Article  Google Scholar 

  47. Li, Y., Xu, J.-J., Zhao, P.-P., Fang, J.-H., Chen, W., Zhao, L.: ATLRec: an attentional adversarial transfer learning network for cross-domain recommendation. J. Comput. Sci. Technol. 35, 794–808 (2020)

    Article  Google Scholar 

  48. Guo, H., Zhang, S., Wang, W.: Selective ensemble-based online adaptive deep neural networks for streaming data with concept drift. Neural Netw. 142, 437–456 (2021)

    Article  Google Scholar 

  49. Ashfahani A., Pratama M.: Autonomous deep learning: continual learning approach for dynamic environments, in, SIAM, pp. 666–674

  50. Hammami, Z., Mouelhi, W., Ben Said, L.: On-line self-adaptive framework for tailoring a neural-agent learning model addressing dynamic real-time scheduling problems. J. Manuf. Syst. 45, 97–108 (2017)

    Article  Google Scholar 

  51. Mirza, B., Lin, Z.: Meta-cognitive online sequential extreme learning machine for imbalanced and concept-drifting data classification. Neural Netw. 80, 79–94 (2016)

    Article  Google Scholar 

  52. Yu, H., Webb, G.I.: Adaptive online extreme learning machine by regulating forgetting factor by concept drift map. Neurocomputing 343, 141–153 (2019)

    Article  Google Scholar 

  53. Sun, L., Ji, Y., Zhu, M., Gu, F., Dai, F., Li, K.: A new predictive method supporting streaming data with hybrid recurring concept drifts in process industry. Comput. Ind. Eng. 161, 107625 (2021)

    Article  Google Scholar 

  54. Kuncheva, L.I.: Change detection in streaming multivariate data using likelihood detectors. IEEE Trans. Knowl. Data Eng. 25, 1175–1180 (2011)

    Article  Google Scholar 

  55. Yamada M., Kimura A., Naya F., Sawada H.: Change-point detection with feature selection in high-dimensional time-series data. In: Proceedings of the twenty-third international joint conference on Artificial Intelligence, AAAI Press, Beijing, China, pp. 1827–1833 (2013)

  56. Alippi C., Boracchi G., Carrera D., Roveri M.: Change detection in multivariate datastreams: likelihood and detectability loss, arXiv preprint arXiv:1510.04850 (2015)

  57. Liu, S., Yamada, M., Collier, N., Sugiyama, M.: Change-point detection in time-series data by relative density-ratio estimation. Neural Netw. 43, 72–83 (2013)

    Article  MATH  Google Scholar 

  58. Hushchyn, M., Ustyuzhanin, A.: Generalization of change-point detection in time series data based on direct density ratio estimation. J. Comput. Sci. 53, 101385 (2021)

    Article  MathSciNet  Google Scholar 

  59. Sethi, T.S., Kantardzic, M.: On the reliable detection of concept drift from streaming unlabeled data. Expert Syst. Appl. 82, 77–99 (2017)

    Article  Google Scholar 

  60. Hamidzadeh, J., Rezaeenik, E., Moradi, M.: Predicting users’ preferences by fuzzy rough set quarter-sphere support vector machine. Appl. Soft Comput. 112, 107740 (2021)

    Article  Google Scholar 

  61. Li, H., Zhang, N., Zhu, J., Wang, Y., Cao, H.: Probabilistic frequent itemset mining over uncertain data streams. Expert Syst. Appl. 112, 274–287 (2018)

    Article  Google Scholar 

  62. Liu, Z., Loo, C.K., Pasupa, K., Seera, M.: Meta-cognitive recurrent kernel online sequential extreme learning machine with kernel adaptive filter for concept drift handling. Eng. Appl. Artif. Intell. 88, 103327 (2020)

    Article  Google Scholar 

  63. Hamidzadeh, J., Moradi, M.: Incremental one-class classifier based on convex–concave hull. Pattern Anal. Appl. 23, 1523–1549 (2020)

    Article  Google Scholar 

  64. Paudel, R., Eberle, W.: An approach for concept drift detection in a graph stream using discriminative subgraphs. ACM Trans.Knowl. Discov. Data (TKDD) 14, 1–25 (2020)

    Article  Google Scholar 

  65. Amen, B., Faiz, S., Do, T.-T.: Big data directed acyclic graph model for real-time COVID-19 twitter stream detection. Pattern Recogn. 123, 108404 (2022)

    Article  Google Scholar 

  66. Moulton R.H., Viktor H.L., Japkowicz N., Gama J.: Clustering in the presence of concept drift, in, Springer, pp. 339–355

  67. Ding, G., Wang, Y., Li, C., Sun, H., Li, C., Wang, L., Yin, H., Huang, T.: HSCFC: high-dimensional streaming data clustering algorithm based on feedback control system. Futur. Gener. Comput. Syst. 146, 156–165 (2023)

    Article  Google Scholar 

  68. Yuan, Y., Wang, Z., Wang, W.: Unsupervised concept drift detection based on multi-scale slide windows. Ad Hoc Netw. 111, 102325 (2021)

    Article  Google Scholar 

  69. Wankhade, K.K., Jondhale, K.C., Dongre, S.S.: A clustering and ensemble based classifier for data stream classification. Appl. Soft Comput. 102, 107076 (2021)

    Article  Google Scholar 

  70. Zhao, K., Jiang, H., Wu, Z., Lu, T.: A novel transfer learning fault diagnosis method based on manifold embedded distribution alignment with a little labeled data. J. Intell. Manuf. 33, 151–165 (2022)

    Article  Google Scholar 

  71. Wang J., Feng W., Chen Y., Yu H., Huang M., Yu P.S.: Visual domain adaptation with manifold embedded distribution alignment, in: the 26th ACM international conference on Multimedia (2018), pp. 402–410

  72. Ghifary, M., Balduzzi, D., Kleijn, W.B., Zhang, M.: Scatter component analysis: a unified framework for domain adaptation and domain generalization. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1414–1430 (2016)

    Article  Google Scholar 

  73. Moradi, M., Hamidzadeh, J.: A domain adaptation method by incorporating belief function in twin quarter-sphere SVM. Knowl. Inform. Syst. 65, 3125–3163 (2023)

    Article  Google Scholar 

  74. Morsing L.H., Sheikh-Omar O.A., Iosifidis A.: Supervised domain adaptation using graph embedding, in: the 25th International Conference on Pattern Recognition (ICPR), IEEE (2020), pp. 7841–7847

  75. Sun, J., Wang, Z., Wang, W., Li, H., Sun, F.: Domain adaptation with geometrical preservation and distribution alignment. Neurocomputing 454, 152–167 (2021)

    Article  Google Scholar 

  76. Yan, Y., Wu, Q., Tan, M., Ng, M.K., Min, H., Tsang, I.W.: Online heterogeneous transfer by hedge ensemble of offline and online decisions. IEEE Trans. Neural Netw. Learn. Syst. 29, 3252–3263 (2017)

    MathSciNet  Google Scholar 

  77. Wu, Q., Zhou, X., Yan, Y., Wu, H., Min, H.: Online transfer learning by leveraging multiple source domains. Knowl. Inform. Syst. 52, 687–707 (2017)

    Article  Google Scholar 

  78. Wu, Q., Wu, H., Zhou, X., Tan, M., Xu, Y., Yan, Y., Hao, T.: Online transfer learning with multiple homogeneous or heterogeneous sources. IEEE Trans. Knowl. Data Eng. 29, 1494–1507 (2017)

    Article  Google Scholar 

  79. Liu, F., Zhang, G., Lu, J.: Heterogeneous domain adaptation: An unsupervised approach. IEEE Trans. Neural Netw. Learn. Syst. 31, 5588–5602 (2020)

    Article  MathSciNet  Google Scholar 

  80. Samat, A., Persello, C., Gamba, P., Liu, S., Abuduwaili, J., Li, E.: Supervised and semi-supervised multi-view canonical correlation analysis ensemble for heterogeneous domain adaptation in remote sensing image classification. Remote sens. 9, 337 (2017)

    Article  Google Scholar 

  81. Huang, J., Gretton, A., Borgwardt, K., Schölkopf, B., Smola, A.: Correcting sample selection bias by unlabeled data. Adv. Neural. Inform. Process. Syst. 19, 601–608 (2006)

    Google Scholar 

  82. Haque A., Wang Z., Chandra S., Dong B., Khan L., Hamlen K.W.: Fusion: an online method for multistream classification, in: Proceedings of the 2017 ACM on conference on information and knowledge management (2017), pp. 919–928

  83. Pratama M., de Carvalho M., Xie R., Lughofer E., Lu J.: ATL: autonomous knowledge transfer from many streaming processes, in: Proceedings of the 28th ACM international conference on information and knowledge management (2019), pp. 269–278

  84. Ye Y., Pan T., Meng Q., Li J., ShenH.T.: Online unsupervised domain adaptation via reducing inter-and intra-domain discrepancies, IEEE Transactions on Neural Networks and Learning Systems (2022)

  85. Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Inform. Theory 37, 145–151 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  86. Lapin, M., Hein, M., Schiele, B.: Learning using privileged information: SVM+ and weighted SVM. Neural Netw. 53, 95–108 (2014)

    Article  MATH  Google Scholar 

  87. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 22, 199–210 (2011)

    Article  Google Scholar 

  88. Read J.: Concept-drifting data streams are time series; the case for continuous adaptation, arXiv preprint arXiv:1810.02266 (2018)

  89. Mikolov T., Chen K., Corrado G., Dean J.: Efficient estimation of word representations in vector space, arXiv preprint arXiv:1301.3781 (2013)

  90. Arora S., Liang Y., MaT.: A simple but tough-to-beat baseline for sentence embeddings, in: International conference on learning representations (2017)

  91. Sheskin D.J.: Handbook of parametric and nonparametric statistical procedures, crc Press (2003)

Download references

Acknowledgements

Not applicable

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MM was involved in conceptualization, methodology, validation, investigation, writing—review & editing, analysis and interpretation of results. MR helped in conceptualization, methodology, supervision, review, investigation. AS contributed to conceptualization, supervision, investigation. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Mohammad Rahmanimanesh.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix I

Appendix I

This section contains some detailed information for computing the metric \(\mathcal{D}\) introduced by [17]. For each fuzzy feature vector \({\overline{A} }_{i}\left({a}_{i1}\text{,}{a}_{i2}\text{,}\dots \text{,}{a}_{in}\right)\in F({\mathbb{R}}^{n})\). For each \({\overline{a} }_{ij}\in F({\mathbb{R}})\), its membership function is computed by Eq. (I-1).

$${\mu }_{\mathrm{ij}}(x|{\overline{a} }_{\mathrm{ij}})=\left\{\begin{array}{c}0 \forall x<{a}_{\mathrm{ij}}-{\rho }_{i} \\ 1-\frac{{\Vert x-{a}_{\mathrm{ij}}\Vert }_{1}}{{\rho }_{i}} \forall {\Vert x-{a}_{\mathrm{ij}}\Vert }_{1}\le {\rho }_{i}\text{,} \, x\in R \\ 0 \forall x>{a}_{\mathrm{ij}}+{\rho }_{i}\end{array}\right.$$
(I-1)

where \({a}_{ij}\) indicates the \(j\) th feature value of the \(i\) th sample and \({\rho }_{i}\) shows the hesitation degree of the \(i\) th sample considering a triangular membership function. Utilizing Eq. (I-2), \({\mu }_{\mathrm{ij}}({\varvec{x}}|{\overline{A} }_{i})\) where \({\varvec{x}}=({x}_{1}\text{,}{ x}_{2}\text{,}\dots \text{, }{x}_{n})\) is obtained.

$$ \mu_{{{\text{ij}}}} ({\varvec{x}}|\overline{A}_{i} ) = \left\{ {\begin{array}{*{20}c} 0 & {{\text{if}} \;\; \exists x_{j} {,} x_{j} < a_{{{\text{ij}}}} - \rho_{i} } \\ {1 - \frac{{{\varvec{x}} - a_{{{\text{ij1}}}} }}{{n\rho_{i} }}} & {{\text{if}} \;\;\forall x_{j} {,} x - a_{{{\text{ij1}}}} \le \rho_{i} {,} x \in {\mathbb{R}}^{n} } \\ 0 & {{\text{if}}\;\; \exists x_{j} {,} x_{j} > a_{{{\text{ij}}}} + \rho_{i} } \\ \end{array} } \right. $$
(I-2)

To define the fuzzy relation between two heterogeneous domains (source and target), the following metric is defined to measure the distance between the fuzzy vectors.

$$\begin{aligned} {\mathcal{D}}\left( {\bar{A}_{i} ,\bar{A}_{j} } \right) &= \frac{1}{n}\mathop \smallint \limits_{0}^{1} \sup \left\{ {{\mathcal{D}}_{\lambda } \left( {u,v} \right):~{\mathcal{D}}_{\lambda } \left( {u,v} \right) \in \Omega \left( \lambda \right)} \right\}{\text{d}}\lambda ;\\ &\quad\quad u \in \bar{A}_{i} \left( \lambda \right),~v \in \bar{A}_{j} \left( \lambda \right)\end{aligned} $$
(I-3)

where \(\lambda \) is the membership value, and \({\mathcal{D}}_{\lambda }\left(u\text{,}v\right)\) indicates the distance between points \(u\) and \(v\) in \({\mathbb{R}}^{n}\) with the given \(\lambda \). \(\Omega \left(\lambda \right)\) is computed by Eq. (I-4).

$$ \begin{gathered} \Omega \left( \lambda \right) = \left\{ {d\left( {u,\overline{A}_{j} \left( \lambda \right)} \right)} \right\} \cup \left\{ {d\left( {v,\overline{A}_{i} \left( \lambda \right)} \right)} \right\} \hfill \\ d\left( {u,\overline{A}_{j} \left( \lambda \right)} \right) = \min \left\{ {d\left( {u,v} \right), v \in \overline{A}_{j} \left( \lambda \right)} \right\} \hfill \\ d\left( {v,\overline{A}_{i} \left( \lambda \right)} \right) = \min \left\{ {d\left( {v,u} \right), u \in \overline{A}_{i} \left( \lambda \right)} \right\} \hfill \\ \end{gathered} $$
(I-4)

where \(d\left(v\text{,}u\right)\) is the \({l}_{1}\)-norm between two n-dimensional vectors (\(u\) and \(v\)). Note that the supremum operator (sup) in Eq. (I-3) indicates the longest distance between the fuzzy vector of one specific domain and the fuzzy set of another domain. Eq. (I-3) can be rewritten as Eq. (I-5).

$$\mathcal{D}\left({\overline{A} }_{i}\text{,}{\overline{A} }_{j}\right)=\frac{1}{n}\underset{0}{\overset{1}{\int }}d\left({A}_{i}\text{,}{A}_{j}\right)+\frac{1}{2}\left|d\left(u\text{,}{\overline{A} }_{j}\left(\lambda \right)\right)+d(v\text{,}{\overline{A} }_{i}(\lambda ))\right|\mathrm{d}\lambda $$
(I-5)

The above equation is de-fuzzified regarding Eqs. (I-1) and (I-2) as follows.

$$ \begin{aligned} &{\mathcal{D}}\left( {\overline{A}_{i} ,\overline{A}_{j} } \right) = \frac{1}{n}d\left( {A_{i} ,A_{j} } \right) + \frac{1}{2}\mathop \smallint \limits_{0}^{1} \left| {\left( {1 - \lambda } \right)\rho_{i} - \left( {1 - \lambda } \right)\rho_{j} } \right|{\text{d}}\lambda \\ & = \frac{1}{n}d\left( {A_{i} ,A_{j} } \right) + \frac{1}{2}\rho_{i} - \rho_{j1} \mathop \smallint \limits_{0}^{1} \left( {1 - \lambda } \right){\text{d}}\lambda \\ &= \frac{1}{n}d\left( {A_{i} ,A_{j} } \right) + \frac{1}{4}\rho_{i} - \rho_{j1} \\ \end{aligned} $$
(I-6)

Eq. (I-6) cannot be used directly for computing the fuzzy relation because it does not satisfy two properties of the fuzzy relation, including (1) symmetry, a condition in which \(\mathcal{D}\left({\overline{A} }_{i}\text{,}{\overline{A} }_{j}\right)=\mathcal{D}\left({\overline{A} }_{j}\text{,}{\overline{A} }_{i}\right)\text{, }\forall {\overline{A} }_{i}\text{, }{\overline{A} }_{j}\) and (2) reflexivity, a condition in which \(\mathcal{D}\left({\overline{A} }_{i}\text{,}{\overline{A} }_{j}\right)=1\text{,} \forall {\overline{A} }_{i}\). Thus, the following function is employed.

$${R}_{\mathcal{D}}\left({\overline{A} }_{i}\text{,}{\overline{A} }_{j}\right)={e}^{-\frac{\mathcal{D}\left({\overline{A} }_{i}\text{,}{\overline{A} }_{j}\right)}{2{\sigma }^{2}}}$$
(I-7)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, M., Rahmanimanesh, M. & Shahzadi, A. Learning from streaming data with unsupervised heterogeneous domain adaptation. Int J Data Sci Anal (2023). https://doi.org/10.1007/s41060-023-00463-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41060-023-00463-z

Keywords

Navigation