Skip to main content
Log in

Cascade Control System Design and Stability Analysis for a DC–DC Boost Converter with Proportional Integral and Sliding Mode Controllers and Using Singular Perturbation Theory

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper deals with the controller design and closed-loop asymptotic stability analysis of a DC–DC boost converter based on the singular perturbation theory. Due to the nature of two-time scales with fast and slow dynamics in this converter, the cascade control structure is used to control it. This control system has two control loops: an outer loop to regulate the output voltage based on a proportional-integral (PI) controller and an inner loop to regulate the inductor current based on a sliding mode controller. These controllers within each of the loops are designed based on the perturbation theory to satisfy the constraints considered for the converter operation and to guarantee the asymptotic stability of the closed-loop system over a wide range of the converter initial state conditions. The numerical results show that with a proper selection of the outer loop PI controller parameters, the asymptotic stability and optimal performance of the closed-loop system are satisfied. Moreover, the robustness of the proposed control method is shown by the numerical experiments under step parameter uncertainties and disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4 
Fig. 5 
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ahmethodzic L, Hadzimejlic N, Ahmethodzic A (2014) Cascade SMC control of Cuk converter for telecommunication systems power supply. In: International symposium on telecommunication (BIHTEL) Sarajevo, Bosnia and Herzegovina

  • Ahmad F, Rasool A, Ozsoy E, Şabanoviç A, Elitaş A (2017) A robust cascaded controller for DC–DC boost and Cuk converters. World J Eng 14(5):459–466

    Article  Google Scholar 

  • Al-Hosani K, Malinin A, Utkin VI (2009) Sliding mode PID control of Buck converters. In: European control conference, Budapest, Hungary, pp 2740–2744

  • Aksenov E. A, Yurkevich V. D (2015) Cascaded control system design for a Cuk converter via singular perturbation approach. In: 16th international conference on micro/nanotechnologies and electron devices EDM, Russia, pp 534–541

  • Aksenov EA, Yurkevich VD (2016) Sliding mode and time-scales in control system design for a Cuk converter. In: 17th international conference on micro/nanotechnologies and electron devices EDM, Russia, pp 401–406

  • Aksenov EA, Yurkevich VD (2016) Control system design based on sliding mode control and singular perturbation technique for a Cuk converter. In: 13th international scientific-technical conference on actual problems of electronics instrument engineering (APEIE), vol 3, pp 77–82

  • Asma C, Zaidi A, Nadia Z (2017) Dual loop control of DC–DC boost converter based cascade sliding mode control. In: Green energy conversion systems (GECS)

  • Çelik E, Gör H (2019) Enhanced speed control of a DC servo system using PI+DF controller tuned by stochastic fractal search technique. J Franklin Inst 356(3):1333–1359

    Article  Google Scholar 

  • Cimatti G (2010) A singular perturbation problem in magneto hydrodynamics. IMA J Appl Math 75(2):240–245

    Article  MathSciNet  Google Scholar 

  • Corripio AB (2001) Tuning of industrial control systems, 2nd edn. International Society of Automation (ISA), Research Triangle Par

    Google Scholar 

  • Chen Z, Gao J, Hu J, Ye X (2011) Closed-loop analysis and cascade control of a non-minimum phase Boost converter. IEEE Trans Power Electron 26(4):1237–1252

    Article  Google Scholar 

  • Chen Z (2012) PI and sliding mode control of a Cuk converter. IEEE Trans Power Electron 27(8):3695–3703

    Article  Google Scholar 

  • Erikson RW, Maksimović D (2004) Fundamentals of power electronics. Kluwer Academic, London

    Google Scholar 

  • Gence N, Uzmus H, Iskender I (2016) Dynamic behavior of DC–DC boost converter controlled with cascade PI-ASC. In: Electronics, computer and artificial intelligence (ECAI) Ploiesti, Romania, pp 1–4

  • Guldemir H (2005) Sliding mode control of DC–DC boost converter. J Appl Sci 5(3):588–592

    Article  Google Scholar 

  • Hejri M (2019) Global hybrid modeling and control of a DC–DC buck-boost converter via mixed logical dynamical systems (in Persian). Iran J Electr Comput Eng 17(1):1–13

    Google Scholar 

  • Hejri M, Mokhtari H (2010) Hybrid predictive control of a DC–DC boost converter in both continuous and discontinuous current modes of operation. Optim Control Appl Meth 32(3):270–284

  • Lin CH, Hsiao FY (2020) Proportional-integral sliding mode control with an application in the balance control of a two-wheel vehicle system. Appl Sci 10(15):1–27

    Google Scholar 

  • Liu J, Zhou F, Zhao C, Wang Z (2019) A PI-type sliding mode controller design for PMSG-based wind turbine. In: Complexity, Hindawi, no. 1, pp 1–12

  • Khalil HK (2002) Nonlinear systems. Prentice Hall, London

    MATH  Google Scholar 

  • Kokotović P, Khalil HK, O’Reilly J (1999) Singular perturbation methods in control: analysis and design. SIAM, Philadelphia

    Book  Google Scholar 

  • Kianioshtorjani M, Mikkola A, Jalali P (2019) Numerical treatment of singularity in hydraulic circuits using singular perturbation theory. IEEE/ASME Trans Mechatron 24(1):144–153

    Article  Google Scholar 

  • Kamenski M, Nistri P, Quincampoix M (2002) Sliding mode control of uncertain systems: a singular perturbation approach. IMA J Math Control Inf 19(4):377–398

    Article  MathSciNet  Google Scholar 

  • Khosravi MA, Thaghirad HD (2014) Dynamic modeling and control of parallel robots with elastic cables: singular perturbation approach. IEEE Trans Robotic 30(3):694–704

    Article  Google Scholar 

  • Li H, Ye X (2010) Sliding-mode PID control of DC–DC converter. In: 5th IEEE conference on industrial electronics and applications, pp 730–734

  • Luo FL, Ye H (2017) Advanced DC/DC converters. CRC Press, London

    Book  Google Scholar 

  • Mishra J, Wang L, Zhu Y, Yu X, Jalili M (2019) A novel mixed cascade finite-time switching control design for induction motor. IEEE Trans Ind Electron 66(2):1–10

    Article  Google Scholar 

  • Mohan RN, Undeland TM, William P (1995) Power electronics: converters, applications, and design, 2nd edn. Wiley, New York

    Google Scholar 

  • Rashid MH, Kumar M, Kulkarni AR (2014) Power electronics circuits, devices and applications. Pearson, London

    Google Scholar 

  • Rabiaa O, Mouna B. H, Lassaad S, Aymen F, Aicha A (2018) Cascade control loop of DC–DC boost converter using PI controller. In: International symposium on advanced electrical and communication technologies (ISAECT) Rabat, Morocco

  • Raviraj VSC, Sen PC (1997) Comparative study of proportional-integral, sliding mode, and fuzzy logic controllers for power converters. IEEE Trans Industry App 33(2):518–524

    Article  Google Scholar 

  • Slotine JJE, Li W (1991) Applied nonlinear control. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Tsang KM, Chen WL (2005) Cascade controller for DC/DC buck converter. IEE Proc Electr Power Appl 152(4):827–831

    Article  Google Scholar 

  • Thirumeni M, Thangavelusamy D (2019) Design and analysis of hybrid PSO–GSA tuned PI and SMC controller for DC–DC Cuk converter. IET Circuits Devices Syst 13(3):374–384

    Article  Google Scholar 

  • Utkin V, Guldner J, Shi J (2009) Sliding mode control in electro-mechanical systems. CRC Press, London

    Book  Google Scholar 

  • Wang H, Chen X, Zhao X, Dan H, Su M, Sun Y, Zhang F; Rivera M, Wheeler P (2021) A cascade PI-SMC method for matrix converter-fed BDFIM drives. IEEE Trans Transp Electrification. https://doi.org/10.1109/TTE.2021.3061742

  • Wu Z, Zhao J, Zhang J (2006) Cascaded PID control of buck-boost-type DC/DC power converter. In: 6th world congress on intelligent control and automation. Dalian, China, pp 8467–8471

  • Yurkevich VD (2011) PWM controller design based on singular perturbation technique: a case study of buck-boost converter. IFAC world congress, Milano-Italy, pp 9739–9744

  • Zhao X, Wang H, Dan H, Di Z, Sun Y, Su M, Rivera M, wheeler P (2020) A cascade PI-SMC method for brushless doubly-fed induction machine with matrix converter. In: 2020 IEEE applied power electronics conference and exposition (APEC). New Orleans, LA, USA

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hejri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azarastemal, S., Hejri, M. Cascade Control System Design and Stability Analysis for a DC–DC Boost Converter with Proportional Integral and Sliding Mode Controllers and Using Singular Perturbation Theory. Iran J Sci Technol Trans Electr Eng 45, 1445–1462 (2021). https://doi.org/10.1007/s40998-021-00444-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-021-00444-7

Keywords

Navigation