Skip to main content

Non-singular Terminal Sliding Mode Control Algorithm for DC/DC Boost Converter System Based on a Finite-Time Convergent Observer

  • Conference paper
  • First Online:
Conference Proceedings of 2021 International Joint Conference on Energy, Electrical and Power Engineering

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 899))

Abstract

This brief proposes a control strategy to regulate the DC/DC Boost converter system affected by line and load uncertainties. The objective of regulating the output voltage in the presence of uncertainties in input voltage and load is met by proposing a non-singular terminal sliding mode control (NTSMC) method combined with a finite-time convergent observer (FCO). The stability of the controller in tracking the reference voltage and regulation of the output voltage is analyzed. Extensive simulations comparison results are implemented to verify the effectiveness of the proposed control method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Park HH, Cho G-H (2014) A DC–DC converter for a fully integrated PID compensator with a single capacitor. IEEE Trans Circuits Syst II, Exp Briefs 61(8):629–633, Aug

    Google Scholar 

  2. Freitas A, Tofoli FL, J´unior EMS, et al (2015) High-voltage gain dc–dc Boost converter with coupled inductors for photovoltaic systems. IET Power Electron 8(10):1885–1892

    Google Scholar 

  3. Trevino BAM, Aroudi AE, Vidal-Idiarte E, et al (2018) Sliding-mode Control of a boost converter under constant power loading conditions. IET Power Electronics 12(3)

    Google Scholar 

  4. Wang Q, An Z, Zheng Y et al (2013) Parameter extraction of conducted electromagnetic interference prediction model and optimisation design for a DC– DC converter system. IET Power Electron. 6(7):1449–1461

    Article  Google Scholar 

  5. He J, Li YW, Munir MS (2012) A flexible harmonic control approach through voltage-controlled DG-grid interfacing converters. IEEE Trans Ind Electron 59(1):444–455

    Google Scholar 

  6. Zerroug N, Harmas MN, Benaggoune S, et al (2018) DSP-based implementation of fast terminal synergetic 1 control for a DC–DC Buck converter. J Franklin Institute 355(5):2329–2343

    Google Scholar 

  7. Cetin E, Omer D, Huseyin S (2009) Adaptive fuzzy logic controller for DC–DC converters. Expert Syst Appl 36(2):1540–1548

    Google Scholar 

  8. Zhou G, Xu J, Jin Y (2011) Improved digital peak current predictive control for switching DC–DC converters. IET Power Electron. 4(2):227–234

    Article  Google Scholar 

  9. Tan SC, Lai YM, Tse CK (2011) Sliding mode control of switching power converters. Techniques and Implementation. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  10. Wang Y, Cao Y, Liu T, et al (2016) Terminal sliding mode control of Boost converter using an energy storage function model. IECON 2016–42 Annual Conference of the IEEE Industrial Electronics Society. IEEE

    Google Scholar 

  11. Komurcugil H (2012) Adaptive terminal sliding-mode control strategy for DC-DC buck converters. ISA Trans 51(6):673–681

    Article  Google Scholar 

  12. Komurcugil H (2013) Nonsingular terminal sliding mode control of DC–DC buck converters. Control Eng Pract 21:321–332

    Article  Google Scholar 

  13. Vidal Idiarte E, Marcos-Pastor A, Garcia G, et al (2015) Discrete-time sliding mode-based digital pulse width modulation control of a Boost converter. IET Power Electron 8(5):708–714

    Google Scholar 

  14. Wang JX, Li SH, Yang J et al (2015) Extended state observer-based sliding mode control for PWM-based DC–DC buck power converter systems with mismatched disturbances. IET Control Theory Appl 9(4):579–586

    Article  MathSciNet  Google Scholar 

  15. Li H, Liu XX, Lu JW (2019) Research on linear active disturbance rejection control in DC/DC boost converter. Electronics 8(11):1249

    Google Scholar 

  16. Du H, Qian C, Yang S, Li S (2013) Recursive design of finite-time convergent observers for a class of time-varying nonlinear system. Automatica 49(2):601–609

    Article  MathSciNet  MATH  Google Scholar 

  17. Khalil HK (1996) Nonlinear systems, 2nd edn. Prentice-Hall, Upper Saddle River, NJ, USA

    Google Scholar 

Download references

Acknowledgements

This research was supported by The University Synergy Innovation Program of Anhui Province (GXXT-2019-019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shicheng Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qi, M., Shu, Y., Wan, C., Lang, J., Zheng, S. (2022). Non-singular Terminal Sliding Mode Control Algorithm for DC/DC Boost Converter System Based on a Finite-Time Convergent Observer. In: Hu, C., Cao, W., Zhang, P., Zhang, Z., Tang, X. (eds) Conference Proceedings of 2021 International Joint Conference on Energy, Electrical and Power Engineering. Lecture Notes in Electrical Engineering, vol 899. Springer, Singapore. https://doi.org/10.1007/978-981-19-1922-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1922-0_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1921-3

  • Online ISBN: 978-981-19-1922-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics