Skip to main content

Advertisement

Log in

Photovoltaic Cells Parameter Estimation Using an Enhanced Teaching–Learning-Based Optimization Algorithm

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

Solar cell is one of the important renewable energy resources, and it is considered a promising source for energy challenges in the future. The identification of solar cell model parameters is very important due to the control and the simulation of PV systems. In this paper, an enhanced teaching–learning-based optimization (ETLBO) algorithm is proposed and applied to estimate the photovoltaic cells parameter. The ETLBO is proposed to improve the performance of conventional TLBO and reduce its search space by adjusting the parameters which control the explorative and exploitative phases to achieve the suitable balancing. The proposed algorithm is validated using real dataset of photovoltaic single-diode and double-diode models. In addition, the proposed algorithm is tested on the dataset of two real PV panels (polycrystalline and monocrystalline). The results obtained by the proposed algorithm are compared with those obtained by other well-known optimization algorithms. All results prove the effectiveness and superiority of proposed algorithm compared with other optimization techniques.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

I ph :

Photogenerated current source

R S :

Series resistance

R sh :

Shunt resistance

I t :

PV module output current

q :

1.602 × 10−19 (C) Coulombs

I d1 :

First diode current

n 1 :

Diffusion diode ideality factor

I tm :

Real dataset current

T F :

Teaching factor

I sd :

Diode rectifier current

I sh :

Shunt resistance current

V t :

Terminal voltage

T (K°):

Photocell temperature (kelvin)

K :

1.380 × 10−23 (J/K°) Boltzmann constant

I d2 :

Second diode current

n 2 :

Recombination diode ideality factor

I te :

Estimated current

x :

Population matrix

rand:

Uniformly distributed random values within range (0, 1)

PGJAYA:

Performance-guided JAYA algorithm

BFO:

Bacterial foraging optimization

TLABC:

Teaching–learning-based artificial bee colony

ELPSO:

Enhanced leader particle swarm optimization

TVACPSO:

Time-varying acceleration coefficients particle swarm optimization

TLBO:

Teaching–learning-based optimization

SCA:

Sine–cosine algorithm

ETLBO:

Enhanced TLBO using SCA

RMSE:

Root-mean-square error

GOTLBO:

Generalized oppositional teaching–learning-based optimization

BHCS:

Biogeography-based heterogeneous cuckoo search

SATLBO:

Self-adaptive TLBO

WDO:

Wind-driven optimization

GSA:

Gravitational search algorithm with linearly decreasing gravitational constant

SD:

Single diode

DD:

Double diode

PV:

Photovoltaic

References

  • Alam DF, Yousri DA, Eteiba MB (2015) Flower pollination algorithm based solar PV parameter estimation. Energy Convers Manag 101:410–422

    Article  Google Scholar 

  • Allam D, Yousri DA, Eteiba MB (2016) Parameters extraction of the three diode model for the multi-crystalline solar cell/module using moth-flame optimization algorithm. Energy Convers Manag 123:535–548

    Article  Google Scholar 

  • Askarzadeh A, Rezazadeh A (2012) Parameter identification for solar cell models using harmony search-based algorithms. Sol Energy 86:3241–3249

    Article  Google Scholar 

  • Ayala-Mato F, Seuret-Jimenez D, Escobedo-Alatorre JJ, Vigil-Galan O, Coure M (2017) A hybrid method for solar cell parameter estimation. J Renew Sustain Energy 9:063504

    Article  Google Scholar 

  • Chen X, Yu K (2019) Hybridizing cuckoo search algorithm with biogeography-based optimization for estimating photovoltaic model parameters. Sol Energy 180:192–206

    Article  Google Scholar 

  • Chen X, Yu K, Du W, Zhao W, Liu G (2016) Parameters identification of solar cell models using generalized oppositional teaching learning based optimization. Energy 99:170–180

    Article  Google Scholar 

  • Chen X, Xu B, Mei C, Ding Y, Li K (2018) Teaching–learning-based artificial bee colony for solar photovoltaic parameter estimation. Appl Energy 212:1578–1588

    Article  Google Scholar 

  • Črepinšek M, Liu S-H, Mernik M (2013) Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput Surv (CSUR) 45:35

    Article  Google Scholar 

  • Guo L, Meng Z, Sun Y, Wang L (2016) Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm. Energy Convers Manag 108:520–528

    Article  Google Scholar 

  • Jamadi M, Bayat FM, Bigdeli M (2016) Very accurate parameter estimation of single- and double-diode solar cell models using a modified artificial bee colony algorithm. Int J Energy Environ Eng 7:13–25

    Article  Google Scholar 

  • Jervase JA, Bourdoucen H, Al-Lawati A (2001) “Solar cell parameter extraction using genetic algorithms. Meas Sci Technol 12:1922–1925

    Article  Google Scholar 

  • Jiang LL, Maskell DL, Patra JC (2013) Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm. Appl Energy 112:185–193

    Article  Google Scholar 

  • Jordehi AR (2016) Time varying acceleration coefficients particle swarm optimization (TVACPSO): a new optimization algorithm for estimating parameters of PV cells and modules. Energy Convers Manag 129:262–274

    Article  Google Scholar 

  • Jordehi AR (2017) Gravitational search algorithm with linearly decreasing gravitational constant for parameter estimation of photovoltaic cells. In: 2017 IEEE congress on evolutionary computation (CEC). IEEE

  • Jordehi AR (2018) Enhanced leader particle swarm optimisation (ELPSO): an efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules. Sol Energy 159:78–87

    Article  Google Scholar 

  • Kalage AA, Ghawghawe ND (2016) Optimum coordination of directional overcurrent relays using modified adaptive teaching learning based optimization algorithm. Intell Ind Syst 2:55–71

    Article  Google Scholar 

  • Korashy A, Kamel S, Youssef A-R, Jurado F (2019) Modified water cycle algorithm for optimal direction overcurrent relays coordination. Appl Soft Comput J 74:10–25

    Article  Google Scholar 

  • Li Y, Huang W, Huang H, Hewitt C, Chen Y, Fang G, Carroll DL (2013) Evaluation of methods to extract parameters from current–voltage characteristics of solar cells. Sol Energy 90:51–57

    Article  Google Scholar 

  • Mathew D, Rani C, Kumar MR, Wang Y, Binns R, Busawon K (2018) Wind-driven optimization technique for estimation of solar photovoltaic parameters. IEEE J Photovolt 8(1):248–256

    Article  Google Scholar 

  • Merchaoui M, Sakly A, Mimouni MF (2018) Particle swarm optimization with adaptive mutation strategy for photovoltaic solar cell/module parameter extraction. Energy Convers Manag 175:151–163

    Article  Google Scholar 

  • Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133

    Article  Google Scholar 

  • Nune HGG, Pombo JAN, Mariano SJPS, Calado MRA, Felippe de Souza JAM (2018) A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization. Appl Energy 211:774–791

    Article  Google Scholar 

  • Oliva D, Cuevas E, Pajares G (2014) Parameter identification of solar cells using artificial bee colony optimization. Energy 72:93–102

    Article  Google Scholar 

  • Oliva D, Abd El Aziz M, Hassanien A (2017a) Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm. Appl Energy 200:141–154

    Article  Google Scholar 

  • Oliva D, Ewees AA, Abd El Aziz M, Hassanien AE, Cisneros MP (2017b) A chaotic improved artificial bee colony for parameter estimation of photovoltaic cells. Energies 10:865

    Article  Google Scholar 

  • Ram JP, Babu TS, Dragicevic T, Rajasekar N (2017) A new hybrid bee pollinator flower pollination algorithm for solar PV parameter estimation. Energy Convers Manag 135:463–476

    Article  Google Scholar 

  • Rao RV, Savsani VJ, Vakharia D (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43:303–315

    Article  Google Scholar 

  • Rao RV, Savsani VJ, Vakharia D (2012) Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf Sci 183:1–15

    Article  MathSciNet  Google Scholar 

  • Shi Y, Eberhart RC (1998) Comparison between genetic algorithms and particle swarm optimization. In: 1998 annual conference on evolutionary programming, San Diego

  • Shi Y, Eberhart RC (1999) Empirical study of particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406). IEEE

  • Singh M, Panigrahi B, Abhyankar A (2013) Optimal coordination of directional over-current relays using teaching learning-based optimization (TLBO) algorithm. Int J Electr Power Energy Syst 50:33–41

    Article  Google Scholar 

  • Soon JJ, Low K-S (2012) Photovoltaic model identification using particle swarm optimization with inverse barrier constraint. IEEE Trans Power Electron 27(9):3975–3983

    Article  Google Scholar 

  • Subudhi B, Pradhan R (2018) Bacterial foraging optimization approach to parameter extraction of a photovoltaic module. IEEE Trans Sustain Energy 9(1):381–389

    Article  Google Scholar 

  • Tong NT, Pora W (2016) A parameter extraction technique exploiting intrinsic properties of solar cells. Appl Energy 176:104–115

    Article  Google Scholar 

  • Venkata Rao R, Patel V (2013) An improved teaching–learning-based optimization algorithm for solving unconstrained optimization problems. Sci Iran 20:710–720

    Google Scholar 

  • Xiao W, Lind MGJ, Dunford WG, Capel A (2006) Real-time identification of optimal operating points in photovoltaic power systems. IEEE Trans Ind Electron 53(4):1017–1026

    Article  Google Scholar 

  • Xu S, Wang Y (2017) Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm. Energy Convers Manag 144:53–68

    Article  Google Scholar 

  • Ye M, Wang X, Xu Y (2009) Parameter extraction of solar cells using particle swarm optimization. J Appl Phys 105:094502

    Article  Google Scholar 

  • Yu K, Liang JJ, Qu BY, Chen Xu, Wang H (2017a) Parameters identification of photovoltaic models using an improved JAYA optimization algorithm. Energy Convers Manag 150:742–753

    Article  Google Scholar 

  • Yu K, Chen X, Wang X, Wang Z (2017b) Parameters identification of photovoltaic models using self-adaptive teaching–learning-based optimization. Energy Convers Manag 145:233–246

    Article  Google Scholar 

  • Yu K, Qu B, Yue C, Ge S, Chen X, Liang J (2019) A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module. Appl Energy 237:241–257

    Article  Google Scholar 

  • Zagrouba M, Sellami A, Bouaıcha M, Ksouri M (2010) Identification of PV solar cells and modules parameters using the genetic algorithms: application to maximum power extraction. Sol Energy 84:860–866

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the contribution of the NSFC (China)-ASRT (Egypt) Joint Research Fund, Project No. 51861145406 for providing partial research funding to the work reported in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salah Kamel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramadan, A., Kamel, S., Korashy, A. et al. Photovoltaic Cells Parameter Estimation Using an Enhanced Teaching–Learning-Based Optimization Algorithm. Iran J Sci Technol Trans Electr Eng 44, 767–779 (2020). https://doi.org/10.1007/s40998-019-00257-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-019-00257-9

Keywords

Navigation