Skip to main content
Log in

Several Defects in a Hollow Cylinder Coated by a Functionally Graded Material (FGM) Subjected to Torsional Loading

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

The present paper provides the Saint-Venant torsional analysis of an infinite hollow cylinder coated by a functionally graded material. The hollow cylinder contains multiple cracks and holes with arbitrary patterns. Pure mode III stress intensity factors are studied in this paper. The shear modulus of the through-radius functionally graded coating is supposed to vary according to an exponential function. First, the displacement and stress components of the hollow cylinder with its functionally graded coating weakened by a Volterra-type screw dislocation are found in terms of the dislocation density through Fourier transform. To model multiple arbitrarily shaped defects in the isotropic hollow cylinder, the dislocations are distributed on the boundaries of the defects. The distribution of the dislocations leads to a set of integral equations with a singularity of the Cauchy type. The solution of the integral equations using a numerical procedure leads to computing the stress intensity factors at the crack tips, the tangential hoop stresses around the boundary of the holes, and torsional rigidities of the cracked domain. The numerical results are presented to demonstrate the influences of critical parameters on the fracture behavior of a cracked hollow cylinder with a functionally graded coating. Our results show that the stress intensity factors are dependent on the material properties of the coating, revealing that the use of a suitable functionally graded coating may decrease the stress intensity factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Anssari-Benam A, Horgan CO (2022) Extension and torsion of rubber-like hollow and solid circular cylinders for incompressible isotropic hyperelastic materials with limiting chain extensibility. Eur J Mech A Solids 92:104443

    MathSciNet  MATH  Google Scholar 

  • Ayatollahi M, Monfared M (2012) Anti-plane transient analysis of planes with multiple cracks. Mech Mater 50:36–46

    Google Scholar 

  • Ayatollahi M, Mahmoudi Monfared M, Nourazar M (2017a) Analysis of multiple moving mode-III cracks in a functionally graded magnetoelectroelastic half-plane. J Intell Mater Syst Struct 28:2823–2834

    Google Scholar 

  • Ayatollahi M, Bagheri R, Nourazar M, Monfared MM, Mousavi SM (2017b) Analytic solutions of multiple moving cracks in an orthotropic layer bonded to an orthotropic FGM coating. Appl Math Comput 293:394–403

    MathSciNet  MATH  Google Scholar 

  • Bagheri R (2020) Transient behavior of multiple interface cracks in two non-homogeneous half-layers. Iran J Sci Technol Trans Mech Eng 44:619–629

    Google Scholar 

  • Bagheri R, Mirzaei AM (2019) Fracture analysis in an imperfect FGM orthotropic strip bonded between two magneto-electro-elastic layers. Iran J Sci Technol Trans Mech Eng 43:253–271

    Google Scholar 

  • Bagheri R, Monfared M (2018) Magneto-electro-elastic analysis of a strip containing multiple embedded and edge cracks under transient loading. Acta Mech 229:4895–4913

    MathSciNet  MATH  Google Scholar 

  • Bagheri R, Hassani AR (2019) Crack analysis of circular bars reinforced by a piezoelectric layer under torsional transient loading. Arch Appl Mech. https://doi.org/10.1007/s00419-019-01527-y

    Article  Google Scholar 

  • Barretta R, Faghidian SA, Marotti de Sciarra F, Vaccaro MS (2020) Nonlocal strain gradient torsion of elastic beams: variational formulation and constitutive boundary conditions. Arch Appl Mech 90:691–706

    Google Scholar 

  • Cao Y, Cao D, Huang W (2019) Dynamic modeling and vibration control for a T-shaped bending and torsion structure. Int J Mech Sci 157–158:773–786

    Google Scholar 

  • Chen Y-Z (1980) Solutions of torsion crack problems of a rectangular bar by harmonic function continuation technique. Eng Fract Mech 13:193–212

    Google Scholar 

  • Chen Y-Z (1998) Torsion problem of rectangular cross section bar with inner crack. Comput Methods Appl Mech Eng 162:107–111

    MATH  Google Scholar 

  • Chen Y-Z (1999) Multiple crack problems for torsion thin-walled cylinder. Int J Press Vessels Pip 76:49–53

    Google Scholar 

  • Chen YZ, Lin XY, Chen RS (1997) Solution of torsion crack problem of an orthotropic rectangular bar by using computing compliance method. Commun Numer Methods Eng 13:655–663

    MATH  Google Scholar 

  • Chen JT, Chen KH, Yeih W, Shieh NC (1998) Dual boundary element analysis for cracked bars under torsion. Eng Comput 15:732–749

    MATH  Google Scholar 

  • Cheung YK, Wang YH (1991) The torsion of a bar with arbitrary section containing two edge cracks. Int J Fract 47:307–317

    Google Scholar 

  • Choi S, Kim YY (2021) Higher-order Vlasov torsion theory for thin-walled box beams. Int J Mech Sci 195:106231

    Google Scholar 

  • Chou T-W, Tetelman AS (1971) Elastic cracks and screw dislocation pile-ups crossing a bimaterial interface. Int J FractMech 7:331–338

    Google Scholar 

  • Darılmaz K, Orakdöğen E, Girgin K (2018) Saint-Venant torsion of arbitrarily shaped orthotropic composite or FGM sections by a hybrid finite element approach. Acta Mech 229:1387–1398

    MathSciNet  Google Scholar 

  • Erdogan F, Cook TS (1974) Antiplane shear crack terminating at and going through a bimaterial interface. Int J Fract 10:227–240

    Google Scholar 

  • Erdogan F, Gupta GD, Cook TS (1973) Numerical solution of integral equations. In: Sih GC (ed) Methods of analysis and solution of crack problems. Noordhoff, Holland

    Google Scholar 

  • Faal RT, Hassani AR (2013) Stress analysis of the cracked and uncracked transversely isotropic sectors with different types of boundary conditions. Math Mech Solids 18:773–784

    MathSciNet  MATH  Google Scholar 

  • Faal RT, Fariborz SJ, Daghyani HR (2006) Antiplane deformation of orthotropic strips with multiple defects. J Mech Mater Struct 1:1097–1114

    Google Scholar 

  • Faal R, Fariborz S, Daghyani H (2007) Stress analysis of a finite wedge weakened by cavities. Int J Mech Sci 49:75–85

    MATH  Google Scholar 

  • Faal RT, Hassani AR, Milani AS (2012) Stress analysis of transversely isotropic sectors weakened by multiple defects. Int J Solids Struct 49:3627–3640

    Google Scholar 

  • Foti F, Martinelli L (2016) Mechanical modeling of metallic strands subjected to tension, torsion and bending. Int J Solids Struct 91:1–17

    Google Scholar 

  • Hassani AR, Oskouei AR (2017) Electro-elastic analysis of a piezoelectric circular region containing multiple cracks. ZAMM-J Appl Math Mech/z Angew Math Mech. https://doi.org/10.1002/zamm.201700004

    Article  Google Scholar 

  • Hassani AR, Faal RT, Noda NA (2016) Torsion analysis of finite solid circular cylinders with multiple concentric planar cracks. ZAMM-J Appl Math Mech/z Angew Math Mech. https://doi.org/10.1002/zamm.201600095

    Article  Google Scholar 

  • Hassani AR, Faal RT (2014) Saint-Venant torsion of orthotropic bars with a circular cross-section containing multiple cracks. Math Mech Solids 21:1198–1214

    MathSciNet  MATH  Google Scholar 

  • Hassani AR, Faal RT (2015) Saint-Venant torsion of orthotropic bars with rectangular cross section weakened by cracks. Int J Solids Struct 52:165–179

    Google Scholar 

  • Hassani AR, Faal RT (2016) Torsion analysis of cracked circular bars actuated by a piezoelectric coating. Smart Mater Struct 25:125030

    Google Scholar 

  • Hassani AR, Monfared MM (2017a) Analysis of an orthotropic circular bar weakened by multiple radial cracks under torsional transient loading. Eng Fract Mech 186:300–315

    Google Scholar 

  • Hassani AR, Monfared MM (2017b) Analysis of cracked bars with rectangular cross-section and isotropic coating layer under torsion. Int J Mech Sci 128–129:23–36

    Google Scholar 

  • Hejazi A, Ayatollahi M, Bagheri R, Monfared M (2014) Dislocation technique to obtain the dynamic stress intensity factors for multiple cracks in a half-plane under impact load. Arch Appl Mech 84:95–107

    MATH  Google Scholar 

  • Karimi M, Hassani A, Pourseifi M (2019) Analytical solutions of a circular bar with an orthotropic coating involving mode III cracks and cavities under Saint-Venant torsion. Eng Fract Mech 220:106658

    Google Scholar 

  • Karimi M, Hassani AR (2020) Analytical solutions for multiple mode III cracks in a cylindrical bar with an orthotropic coating under dynamic loading. ZAMM-J Appl Math Mech/z Angew Math Mech 100:e201900139

    MathSciNet  Google Scholar 

  • Malekzadeh Fard K, Monfared M, Norouzipour K (2013) Determination of stress intensity factors in half-plane containing several moving cracks. Appl Math Mech 34:1535–1542

    MathSciNet  Google Scholar 

  • Malits P (2021) Torsion of an elastic half-space with a cylindrical cavity by a punch. Eur J Mech A Solids 89:104308

    MathSciNet  MATH  Google Scholar 

  • Moghaddas AH, Hassani AR (2021) Analytic solutions of multiple Mode III cracks in a circular bar reinforced by a magneto-electro-elastic layer under torsional loading. Theoret Appl Fract Mech 116:103121

    Google Scholar 

  • Monfared MM (2017) Mode III SIFs for interface cracks in an FGM coating-substrate system. Struct Eng Mech Int J 64:71–79

    Google Scholar 

  • Monfared M, Ayatollahi M (2011) Dynamic stress intensity factors of multiple cracks in a functionally graded orthotropic half-plane. Theor Appl Fract Mech 56:49–57

    Google Scholar 

  • Monfared M, Ayatollahi M (2012) Elastodynamic analysis of a cracked orthotropic half-plane. Appl Math Model 36:2350–2359

    MathSciNet  MATH  Google Scholar 

  • Monfared MM, Ayatollahi M (2013) Transient analysis of several cracks in an orthotropic material under impact load. J Mech Sci Technol 27:2305–2313

    Google Scholar 

  • Monfared M, Ayatollahi M (2015) Cracking in orthotropic half-plane with a functionally graded coating under anti-plane loading. Acta Mech Solida Sin 28:210–220

    Google Scholar 

  • Monfared M, Ayatollahi M (2016) Multiple crack problems in nonhomogeneous orthotropic planes under mixed mode loading conditions. Eng Fract Mech 155:1–17

    Google Scholar 

  • Monfared M, Ayatollahi M (2017) Interactions of multiple cracks in a transversely isotropic piezoelectric plane under mixed mode condition. Eng Fract Mech 180:87–104

    Google Scholar 

  • Monfared M, Derili H (2018) Determination of Mode III stress intensity factors for arbitrarily oriented straight and curved cracks in a linearly graded layer. Iran J Sci Technol Trans Mech Eng 42:247–257

    Google Scholar 

  • Monfared M, Ayatollahi M, Bagheri R (2011) Anti-plane elastodynamic analysis of a cracked orthotropic strip. Int J Mech Sci 53:1008–1014

    Google Scholar 

  • Monfared M, Ayatollahi M, Mousavi S (2016a) The mixed-mode analysis of a functionally graded orthotropic half-plane weakened by multiple curved cracks. Arch Appl Mech 86:713–728

    Google Scholar 

  • Monfared M, Ayatollahi M, Bagheri R (2016b) In-plane stress analysis of dissimilar materials with multiple interface cracks. Appl Math Model 40:8464–8474

    MathSciNet  MATH  Google Scholar 

  • Monfared MM, Bagheri R, Yaghoubi R (2018) The mixed mode analysis of arbitrary configuration of cracks in an orthotropic FGM strip using the distributed edge dislocations. Int J Solids Struct 130–131:21–35

    Google Scholar 

  • Monfared M, Pourseifi M, Bagheri R (2019) Computation of mixed mode stress intensity factors for multiple axisymmetric cracks in an FGM medium under transient loading. Int J Solids Struct 158:220–231

    Google Scholar 

  • Mottale H, Monfared M, Bagheri R (2018) The multiple parallel cracks in an orthotropic non-homogeneous infinite plane subjected to transient in-plane loading. Eng Fract Mech 199:220–234

    Google Scholar 

  • Pourseifi M, Rahimi AS (2020) Failure prediction of multi-cracked ductile polymeric specimens under mixed mode I/II loading. Theor Appl Fract Mech 109:102744

    Google Scholar 

  • Qu Y, Jin F, Yang J (2021) Torsion of a flexoelectric semiconductor rod with a rectangular cross section. Arch Appl Mech 91:2027–2038

    Google Scholar 

  • Renji T, Yulan L (1992) Torsion problems for a cylinder with a rectangular hole and a rectangular cylinder with a crack. Acta Mech Sin 8:165–172

    MATH  Google Scholar 

  • Samadi Darafshani M, Abazadeh B, Maleki HR (2021) Torsional analysis of four-sided cross-sections coated by an orthotropic layer weakened by multiple defects. Eng Fract Mech 253:107854

    Google Scholar 

  • Sourki R, Ilyaei S, Bastanfar M, Monfared M (2018a) Multiple cracks analysis in a FG orthotropic layer with FGPM coating under anti-plane loading. J Braz Soc Mech Sci Eng 40:1–12

    Google Scholar 

  • Sourki R, Ayatollahi M, Monfared MM (2018b) Mode III fracture analysis of a non-homogeneous layer bonded to an elastic half-plane weakened by multiple interface cracks. Sci Iran 25:2570–2581

    Google Scholar 

  • Tao FM, Tang RJ (1993) Saint-Venant’s torsion problem for a composite circular cylinder with aninternal edge crack. Appl Math Mech 14:507–516

    MATH  Google Scholar 

  • Tweed J, Rooke DP (1972) The torsion of a circular cylinder containing a symmetric array of edge cracks. Int J Eng Sci 10:801–812

    MATH  Google Scholar 

  • Vasiliev AS, Swain MV, Aizikovich SM, Sadyrin EV (2016) Torsion of a circular punch attached to an elastic half-space with a coating with periodically depth-varying elastic properties. Arch Appl Mech 86:1247–1254

    Google Scholar 

  • Wang Y (1990) Torsion of a thick-walled cylinder with an external crack: boundary collocation method. Theor Appl Fract Mech 14:267–273

    Google Scholar 

  • Wang YB, Lu Z-Z (2005) New boundary element method for torsion problems of cylinder with curvilinear cracks. Appl Math Mech 26:1531–1538

    MATH  Google Scholar 

  • Wang XC, Tang RJ (1988) On the torsion of a cylinder with several cracks. Appl Math Mech (english Edition) 9:745–754

    MATH  Google Scholar 

  • Wang X, Xu Y (2016) Saint-Venant torsion of a circular bar with radial cracks incorporating surface elasticity. Z Angew Math Phys 67:4

    MathSciNet  MATH  Google Scholar 

  • Weertman J, Weertman JR (1964) Elementary dislocation theory. Macmillan, London

    MATH  Google Scholar 

  • Xu Y, Wang X (2016) Saint-Venant torsion of a circular bar with a non-radial crack incorporating surface elasticity. Acta Mech 227:1903–1918

    MathSciNet  MATH  Google Scholar 

  • Zhang X, Li S, Guo X, Wang H, Yu Q, Wu P (2021) Effects of texture and twinning on the torsional behavior of magnesium alloy solid rod: a crystal plasticity approach in comparison with uniaxial tension/compression. Int J Mech Sci 191:106062

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Reza Naghibi.

Appendices

Appendix 1

$$ \begin{aligned} k_{{ij}} \left( {s,t} \right) & = \frac{{\mu _{0} }}{{2\pi r_{i} \left( s \right)}}\mathop \sum \limits_{{n = 1}}^{\infty } \Psi _{n} \Phi _{n} \left( {\gamma _{n} - 1} \right)\left( {\frac{{r_{i} \left( s \right)}}{{r_{j} \left( t \right)}}} \right)^{n} \left( {\cos \varphi _{i} \left( s \right)\cos \left( {n\left( {\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right)} \right)} \right. \\ & \quad - \left. {\sin \varphi _{i} \sin \left( {n\left( {\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right)} \right)} \right) + \cos \varphi _{i} \left( s \right)\tau _{{\theta z}}^{{{\rm{asy}},n}} \left( {r_{i} \left( s \right),\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right) \\ & \quad - \sin \varphi _{i} \left( s \right)\tau _{{rz}}^{{asy,n}} \left( {r_{i} \left( s \right),\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right) \\ & \quad + \frac{{b_{z} \mu _{0} }}{{4\pi r_{i} \left( s \right)}}\left\{ {\cos \varphi _{i} \left( s \right)\mathop \sum \limits_{{m = 0}}^{\infty } \mathop \sum \limits_{{i = 0}}^{m} \mathop \sum \limits_{{j = 0}}^{\infty } \Pi _{{ij}}^{m} \left[ {U_{{ij}}^{m} \left( {\frac{{r_{i} \left( s \right)r_{j} \left( t \right)\kappa _{{23}} }}{{R_{2}^{2} }},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right)} \right.} \right. \\ & \quad - U_{{ij}}^{m} \left( {\frac{{r_{i} \left( s \right)}}{{r_{j} \left( t \right)}},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right) + U_{{ij}}^{m} \left( {\frac{{r_{j} \left( t \right)\kappa _{{12}} \kappa _{{23}} }}{{r_{i} \left( s \right)}},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right) - U_{{ij}}^{m} \left( {\frac{{R_{1}^{2} }}{{r_{i} \left( s \right)r_{j} \left( t \right)}},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right) \\ & \quad + C_{{{\rm{eq}}}} \left( {U_{{ij}}^{m} \left( {\frac{{r_{i} \left( s \right)r_{j} \left( t \right)}}{{R_{2}^{2} }},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right) - U_{{ij}}^{m} \left( {\frac{{r_{i} \left( s \right)\kappa _{{23}} }}{{r_{j} \left( t \right)}},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right)} \right. \\ & \quad + \left. {U_{{ij}}^{m} \left( {\frac{{r_{j} \left( t \right)\kappa _{{12}} }}{{r_{i} \left( s \right)}},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right) - U_{{ij}}^{m} \left( {\frac{{R_{1}^{2} \kappa _{{23}} }}{{r_{i} \left( s \right)r_{j} \left( t \right)}},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right)} \right) \\ & \quad + \left( {C_{{{\rm{eq}}}} - 1} \right)\left( {U_{{ij}}^{m} \left( {\frac{{R_{1}^{2} \kappa _{{23}} }}{{r_{i} \left( s \right)R_{2} }},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right) - U_{{ij}}^{m} \left( {\frac{{R_{1}^{2} }}{{r_{i} \left( s \right)R_{2} }},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right)} \right. \\ & \quad + \left. {\left. {U_{{ij}}^{m} \left( {\frac{{r_{i} \left( s \right)\kappa _{{23}} }}{{R_{2} }},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right) - U_{{ij}}^{m} \left( {\frac{{r_{i} \left( s \right)}}{{R_{2} }},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right)} \right)} \right] \\ & \quad - \sin \varphi _{i} \left( s \right)\mathop \sum \limits_{{m = 0}}^{\infty } \mathop \sum \limits_{{i = 0}}^{m} \mathop \sum \limits_{{j = 0}}^{\infty } \Pi _{{ij}}^{m} \left[ {P_{{ij}}^{m} \left( {\frac{{r_{i} \left( s \right)}}{{r_{j} \left( t \right)}},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right)} \right. \\ & \quad - P_{{ij}}^{m} \left( {\frac{{r_{i} \left( s \right)r_{j} \left( t \right)\kappa _{{23}} }}{{R_{2}^{2} }},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right) + P_{{ij}}^{m} \left( {\frac{{r_{j} \left( t \right)\kappa _{{12}} \kappa _{{23}} }}{{r_{i} \left( s \right)}},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right) \\ & \quad - P_{{ij}}^{m} \left( {\frac{{R_{1}^{2} }}{{r_{i} \left( s \right)r_{j} \left( t \right)}},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right) + C_{{{\rm{eq}}}} \left( {P_{{ij}}^{m} \left( {\frac{{r_{i} \left( s \right)\kappa _{{23}} }}{{r_{j} \left( t \right)}},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right)} \right. \\ & \quad - P_{{ij}}^{m} \left( {\frac{{r_{i} \left( s \right)r_{j} \left( t \right)}}{{R_{2}^{2} }},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right) + P_{{ij}}^{m} \left( {\frac{{r_{j} \left( t \right)\kappa _{{12}} }}{{r_{i} \left( s \right)}},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right) \\ & \quad - \left. {P_{{ij}}^{m} \left( {\frac{{R_{1}^{2} \kappa _{{23}} }}{{r_{i} \left( s \right)r_{j} \left( t \right)}},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right)} \right) + \left( {C_{{{\rm{eq}}}} - 1} \right)\left( {P_{{ij}}^{m} \left( {\frac{{R_{1}^{2} \kappa _{{23}} }}{{r_{i} \left( s \right)R_{2} }},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right)} \right. \\ & \quad - P_{{ij}}^{m} \left( {\frac{{R_{1}^{2} }}{{r_{i} \left( s \right)R_{2} }},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right) + P_{{ij}}^{m} \left( {\frac{{r_{i} \left( s \right)}}{{R_{2} }},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right) \\ & \quad - \left. {\left. {\left. {P_{{ij}}^{m} \left( {\frac{{R_{1}^{2} \kappa _{{23}} }}{{r_{i} \left( s \right)r_{j} \left( t \right)}},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right)} \right)} \right]} \right\} + r_{i} \left( s \right)\alpha \mu _{0} \cos \varphi _{i} \left( s \right) \\ & \quad + \frac{1}{{2D_{0} }}\mu _{0}^{2} r_{i} \left( s \right)\left( {R_{2}^{2} - r_{j} \left( t \right)^{2} } \right)\cos \left( {\phi _{i} \left( s \right)} \right),\quad 0 < r_{i} \left( s \right) < r_{j} \\ \end{aligned} $$
$$\begin{aligned} k_{{ij}} \left( {s,t} \right) & = \frac{{\mu _{0} }}{{2\pi r_{i} \left( s \right)}}\left[ {\mathop \sum \limits_{{n = 1}}^{\infty } \Psi _{n} \Lambda _{n} \left( {\frac{{r_{i} \left( s \right)}}{{R_{1} }}} \right)^{n} \left( {\cos \varphi _{i} \left( s \right)\cos \left( {n\left( {\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right)} \right)} \right.} \right. \\ & \quad - \left. {\sin \varphi _{i} \left( s \right)\sin \left( {n\left( {\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right)} \right)} \right) - \mathop \sum \limits_{{n = 1}}^{\infty } \left( {\frac{{r_{j} \left( t \right)}}{{r_{i} \left( s \right)}}} \right)^{n} \left( {\cos \varphi _{i} \left( s \right)\cos \left( {n\left( {\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right)} \right)} \right. \\ & \quad - \left. {\sin \varphi _{i} \left( s \right)\sin \left( {n\left( {\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right)} \right)} \right] + \frac{{b_{z} \mu _{0} }}{{4\pi r_{i} \left( s \right)}}\cos \varphi _{i} \left( s \right)\left[ {U_{{00}}^{0} \left( {\frac{{r_{j} \left( t \right)}}{{r_{i} \left( s \right)}},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right) - 1} \right] \\ & \quad + \cos \varphi _{i} \left( s \right)\tau _{{\theta z}}^{{{\rm{asy}},n}} \left( {r_{i} \left( s \right),\left( {\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right)} \right) - \sin \varphi _{i} \left( s \right)\tau _{{rz}}^{{{\rm{asy}},n}} \left( {r_{i} \left( s \right),\left( {\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right)} \right) \\ & \quad + \frac{{b_{z} \mu _{0} }}{{4\pi r_{i} \left( s \right)}}\left[ {\cos \varphi _{i} \left( s \right)\mathop \sum \limits_{{m = 0}}^{\infty } \mathop \sum \limits_{{i = 0}}^{m} \mathop \sum \limits_{{j = 0}}^{\infty } \Pi _{{ij}}^{m} \left[ {U_{{ij}}^{m} \left( {\frac{{r_{i} \left( s \right)r_{j} \left( t \right)\kappa _{{23}} }}{{R_{2}^{2} }},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right)} \right.} \right. \\ & \quad - U_{{ij}}^{m} \left( {\frac{{r_{i} \left( s \right)\kappa _{{12}} \kappa _{{23}} }}{{r_{j} \left( t \right)}},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right) + U_{{ij}}^{m} \left( {\frac{{r_{j} \left( t \right)\kappa _{{12}} \kappa _{{23}} }}{{r_{i} \left( s \right)}},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right) \\ & \quad - U_{{ij}}^{m} \left( {\frac{{R_{1}^{2} }}{{r_{i} \left( s \right)r_{j} \left( t \right)}},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right) + C_{{{\rm{eq}}}} \left( {U_{{ij}}^{m} \left( {\frac{{r_{i} \left( s \right)r_{j} \left( t \right)}}{{R_{2}^{2} }},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right)} \right. \\ & \quad - U_{{ij}}^{m} \left( {\frac{{r_{i} \left( s \right)\kappa _{{12}} }}{{r_{j} \left( t \right)}},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right) + U_{{ij}}^{m} \left( {\frac{{r_{j} \left( t \right)\kappa _{{12}} }}{{r_{i} \left( s \right)}},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right) \\ & \quad - \left. {U_{{ij}}^{m} \left( {\frac{{R_{1}^{2} \kappa _{{23}} }}{{r_{i} \left( s \right)r_{j} \left( t \right)}},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right)} \right) + \left( {C_{{{\rm{eq}}}} - 1} \right)\left( {U_{{ij}}^{m} \left( {\frac{{R_{1}^{2} \kappa _{{23}} }}{{r_{i} \left( s \right)R_{2} }},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right)} \right. \\ & \quad - \left. {\left. {U_{{ij}}^{m} \left( {\frac{{R_{1}^{2} }}{{r_{i} \left( s \right)R_{2} }},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right) + U_{{ij}}^{m} \left( {\frac{{r_{i} \left( s \right)\kappa _{{23}} }}{{R_{2} }},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right) - U_{{ij}}^{m} \left( {\frac{{r_{i} \left( s \right)}}{{R_{2} }},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right)} \right)} \right] \\ & \quad - \sin \varphi _{i} \left( s \right)\mathop \sum \limits_{{m = 0}}^{\infty } \mathop \sum \limits_{{i = 0}}^{m} \mathop \sum \limits_{{j = 0}}^{\infty } \Pi _{{ij}}^{m} \left[ {P_{{ij}}^{m} \left( {\frac{{r_{i} \left( s \right)\kappa _{{12}} \kappa _{{23}} }}{{r_{j} \left( t \right)}},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right) - P_{{ij}}^{m} \left( {\frac{{r_{i} \left( s \right)r_{j} \left( t \right)\kappa _{{23}} }}{{R_{2}^{2} }},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right)} \right. \\ & \quad + P_{{ij}}^{m} \left( {\frac{{r_{j} \left( t \right)\kappa _{{12}} \kappa _{{23}} }}{{r_{i} \left( s \right)}},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right) - P_{{ij}}^{m} \left( {\frac{{R_{1}^{2} }}{{r_{i} \left( s \right)r_{j} \left( t \right)}},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right) + C_{{{\rm{eq}}}} \left( {P_{{ij}}^{m} \left( {\frac{{r_{i} \left( s \right)\kappa _{{12}} }}{{r_{j} \left( t \right)}},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right)} \right. \\ & \quad - P_{{ij}}^{m} \left( {\frac{{r_{i} \left( s \right)r_{j} \left( t \right)}}{{R_{2}^{2} }},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right) + P_{{ij}}^{m} \left( {\frac{{r_{j} \left( t \right)\kappa _{{12}} }}{{r_{i} \left( s \right)}},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right) - P_{{ij}}^{m} \left( {\frac{{R_{1}^{2} \kappa _{{23}} }}{{r_{i} \left( s \right)r_{j} \left( t \right)}},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right) \\ & \quad + \left( {C_{{{\rm{eq}}}} - 1} \right)\left( {P_{{ij}}^{m} \left( {\frac{{R_{1}^{2} \kappa _{{23}} }}{{r_{i} \left( s \right)R_{2} }},\theta _{i} \left( s \right) - \theta _{j} } \right) - P_{{ij}}^{m} \left( {\frac{{R_{1}^{2} }}{{r_{i} \left( s \right)R_{2} }},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right) + P_{{ij}}^{m} \left( {\frac{{r_{i} \left( s \right)}}{{R_{2} }},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right)} \right. \\ & \quad - \left. {\left. {\left. {P_{{ij}}^{m} \left( {\frac{{r_{i} \left( s \right)\kappa _{{23}} }}{{R_{2} }},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right)} \right)} \right]} \right] + r_{i} \left( s \right)\alpha \mu _{0} \cos \varphi _{i} \left( s \right) + \frac{{b_{z} \mu _{0} }}{{4\pi r_{i} \left( s \right)}}P_{{00}}^{0} \left( {\frac{{r_{j} \left( t \right)}}{{r_{i} \left( s \right)}},\theta _{i} \left( s \right) - \theta _{j} \left( t \right)} \right)\sin \varphi _{i} \left( s \right) \\ & \quad + \frac{1}{{2D_{0} }}\mu _{0}^{2} r_{i} \left( s \right)\left( {R_{2}^{2} - r_{j} \left( t \right)^{2} } \right)\cos \left( {\phi _{i} \left( s \right)} \right),\quad r_{j} \left( t \right) < r_{i} \left( s \right) < R_{2} \\ \end{aligned} $$
$$ Q_{i} \left( s \right) = - \frac{T}{{D_{0} }}\mu_{0} r_{i} \cos \varphi_{i} $$

Appendix 2

Proof of Square-Root Singularity in Dislocation Approach

The kernel of Eq. (35) can be separated into the singular part and the regular part. The integral equation of the problem can be rewritten as:

$$ Q_{i} \left( {r_{i} \left( s \right),\theta_{i} \left( s \right)} \right) = \mathop \sum \limits_{j = 1}^{N} \mathop \int \limits_{ - 1}^{1} \left( {\frac{F\left( t \right)}{{s - t}} + F_{{{\rm{ns}}}} \left( t \right)} \right)b_{{{\rm{zj}}}} \left( t \right)dt. $$

The singular part of the above equation is defined as:

$$ I = \mathop \int \limits_{ - 1}^{1} b_{z} \left( t \right)\frac{F\left( t \right)}{{s - t}}dt $$

By expanding \(F\left( t \right)\) in the form of Chebyshev polynomials, we have:

$$ F\left( t \right) = \mathop \sum \limits_{n = 0}^{\infty } B_{n} T_{n} \left( t \right) $$

Use the properties of Chebyshev polynomials as:

$$ \frac{1}{\pi }\mathop \int \limits_{ - 1}^{1} \frac{{T_{n} \left( t \right)dt}}{{\left( {t - s} \right)\sqrt {1 - t^{2} } }} = \left\{ {\begin{array}{*{20}c} 0 & {n = 0} & { - 1 < s < 1} \\ {U_{n - 1} \left( s \right) } & {n = 1,2, \ldots } & { - 1 < s < 1 } \\ { - \frac{\left| s \right|}{{s\sqrt {s^{2} - 1} }}\left[ {s - \frac{{\left| s \right|\sqrt {s^{2} - 1} }}{s}} \right]^{n} } & {n = 0,1,2, \ldots } & {\left| s \right| > 1 } \\ \end{array} } \right. $$

It should be mentioned that the singularity around the crack tips is evaluated for \(\left| s \right| > 1\). By making use of Eq. (36a) and the above equation, we obtain:

$$ I = \mathop \sum \limits_{n = 0}^{\infty } B_{n} \mathop \int \limits_{ - 1}^{1} \frac{{g_{z} \left( t \right)T_{n} \left( t \right)}}{{\left( {s - t} \right)\sqrt {1 - t^{2} } }}dt = \pi \frac{\left| s \right|}{{s\sqrt {s^{2} - 1} }}\mathop \sum \limits_{n = 0}^{\infty } B_{n} \left[ {s - \frac{{\left| s \right|\sqrt {s^{2} - 1} }}{s}} \right]^{n} $$

It can be realized that the stress field around the embedded cracks shows square-root singularity for \(s \to \pm 1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naghibi, S.R., Wang, W., Ghavi, M.R. et al. Several Defects in a Hollow Cylinder Coated by a Functionally Graded Material (FGM) Subjected to Torsional Loading. Iran J Sci Technol Trans Mech Eng 47, 109–131 (2023). https://doi.org/10.1007/s40997-022-00492-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-022-00492-2

Keywords

Navigation