Skip to main content
Log in

Frequency Domain Analysis of Nano-Objects Subject to Periodic External Excitation

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this study, we investigate radial forced vibration of nano-objects with spherical or elongated morphologies on the basis of nonlocal elasticity theory. A new explicit formula is proposed for the frequency response function (FRF) of the nano-objects with consideration of the small-scale effect and loading frequency. The parametric study is thoroughly performed to elucidate the small-scale effect, the effect of radius of nano-objects and the effect of elastic moduli ratio. The present model indicates that the elastic response of both spherical and elongated nano-objects can be predicted only by a single formulation and the FRF of the nano-objects is mathematically simple and its physical interpretation is unambiguous. The present results show that it is necessary to include the effect of the small-scale effect on the elastic response of the nano-objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adhikari S, Murmu T, McCarthy MA (2014) Frequency domain analysis of nonlocal rods embedded in an elastic medium. Phys E 59:33–40

    Article  Google Scholar 

  • Ansari R, Rouhi H, Arash B (2013) Vibrational analysis of double-walled carbon nanotubes based on the nonlocal Donnell shell theory via a new numerical approach. Iran J Sci Technol Trans Mech Eng 37:91–105

    Google Scholar 

  • Askes H, Aifantis EC (2011) Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int J Solids Struct 48:1962–1990

    Article  Google Scholar 

  • Combe N, Huntzinger JR, Mlayah A (2007) Vibrations of quantum dots and light scattering properties: atomistic versus continuous models. Phys Rev B 76:205425

    Article  Google Scholar 

  • Crut A, Maioli P, Del Fatti N, Vallée F (2015) Time-domain investigation of the acoustic vibrations of metal nanoparticles: size and encapsulation effects. Ultrasonics 56:98–108

    Article  Google Scholar 

  • Dastjerdi S, Jabbarzadeh M, Aliabadi S (2016) Nonlinear static analysis of single layer annular/circular graphene sheets embedded in Winkler–Pasternak elastic matrix based on non-local theory of Eringen. Ain Shams Eng J 7:873–884

    Article  Google Scholar 

  • Dinçkal Ç (2016) Free vibration analysis of carbon nanotubes by using finite element method. Iran J Sci Technol Trans Mech Eng 40:243–264

    Article  Google Scholar 

  • Ebrahimi F, Barati MR (2016) Nonlocal thermal buckling analysis of embedded magneto-electro-thermo-elastic nonhomogeneous nanoplates. Iran J Sci Technol Trans Mech Eng 40:243–264

    Article  Google Scholar 

  • Eringen AC (1972) Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci 10:425–435

    Article  MATH  Google Scholar 

  • Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710

    Article  Google Scholar 

  • Eringen AC (2002) Nonlocal continuum field theories. Springer, NewYork

    MATH  Google Scholar 

  • Fazelzadeh SA, Ghavanloo E (2013) Radial vibration characteristics of spherical nanoparticles immersed in fluid medium. Mod Phys Lett B 27:1350186

    Article  Google Scholar 

  • Ghavanloo E, Fazelzadeh SA (2013) Radial vibration of free anisotropic nanoparticles based on nonlocal continuum mechanics. Nanotechnology 24:075702

    Article  Google Scholar 

  • Ghavanloo E, Fazelzadeh SA (2015) Nonlocal shell model for predicting axisymmetric vibration of spherical shell-like nanostructures. Mech Adv Mater Struct 22:597–603

    Article  Google Scholar 

  • Ghavanloo E, Fazelzadeh SA, Rafii-Tabar H (2014) Nonlocal continuum-based modeling of breathing mode of nanowires including surface stress and surface inertia effects. Phys B 440:43–47

    Article  Google Scholar 

  • Ghavanloo E, Fazelzadeh SA, Murmu T, Adhikari S (2015) Radial breathing-mode frequency of elastically confined spherical nanoparticles subjected to circumferential magnetic field. Phys E 66:228–233

    Article  Google Scholar 

  • Hu M, Wang X, Hartland GV, Mulvaney P, Juste JP, Sader JE (2003) Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis. J Am Chem Soc 125:14925–14933

    Article  Google Scholar 

  • Kiani K (2012) Magneto-elasto-dynamic analysis of an elastically confined conducting nanowire due to an axial magnetic shock. Phys Lett A 376:1679–1685

    Article  Google Scholar 

  • Kiani K (2014) Forced vibrations of a current-carrying nanowire in a longitudinal magnetic field accounting for both surface energy and size effects. Phys E 63:27–35

    Article  Google Scholar 

  • Kirakosyan AS, Shahbazyan TV (2008) Vibrational modes of metal nanoshells and bimetallic core–shell nanoparticles. J Chem Phys 129:034708

    Article  Google Scholar 

  • Major TA, Lo SS, Yu K, Hartland GV (2014) Time-resolved studies of the acoustic vibrational modes of metal and semiconductor nano-objects. J Phys Chem Lett 5:866–874

    Article  Google Scholar 

  • Mankad V, Mishra KK, Gupta SK, Ravindran TR, Jha PK (2012) Low frequency Raman scattering from confined acoustic phonons in freestanding silver nanoparticles. Vib Spectrosc 61:183–187

    Article  Google Scholar 

  • Mankad V, Jha PK, Ravindran TR (2013) Probing confined acoustic phonons in free standing small gold nanoparticles. J Appl Phys 113:074303

    Article  Google Scholar 

  • Murray DB, Saviot L (2005) Acoustic vibrations of embedded spherical nanoparticles. Phys E 26:417–421

    Article  Google Scholar 

  • Nami M, Janghorban M (2015) Free vibration of functionally graded size dependent nanoplates based on second order shear deformation theory using nonlocal elasticity theory. Iran J Sci Technol Trans Mech Eng 39:15–28

    Google Scholar 

  • Nelet A, Crut A, Arbouet A, Del Fattia N, Vallée F, Portales H, Saviot L, Duval E (2004) Acoustic vibrations of metal nanoparticles: high order radial mode detection. Appl Surf Sci 226:209–215

    Article  Google Scholar 

  • Pokatilov EP, Nika DL, Balandin AA (2005) Acoustic phonon engineering in coated cylindrical nanowires. Superlattice Microstruct 38:168–183

    Article  Google Scholar 

  • Portales H, Saviot L, Duval E, Fujii M, Hayashi S, Del Fatti N, Vallee F (2001) Resonant Raman scattering by breathing modes of metal nanoparticles. J Chem Phys 115:3444–3447

    Article  Google Scholar 

  • Povstenko YZ (2001) Point defect in a nonlocal elastic medium. J Math Sci 104:1501–1505

    Article  Google Scholar 

  • Povstenko YZ, Matkovskii OA (1999) Boundary dislocation in a nonlocally-elastic medium with moment stresses. J Math Sci 96:2883–2886

    Article  Google Scholar 

  • Rafii-Tabar H, Ghavanloo E, Fazelzadeh SA (2016) Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures. Phys Rep 638:1–97

    Article  MathSciNet  Google Scholar 

  • Sadd MH (2009) Elasticity: theory, applications and numerics. Elsevier, New York

    Google Scholar 

  • Sauceda HE, Mongin D, Maioli P, Crut A, Pellarin M, Del Fatti N, Vallée F, Garzón IL (2012) Vibrational properties of metal nanoparticles: atomistic simulation and comparison with time-resolved investigation. J Phys Chem C 116:25147–25156

    Article  Google Scholar 

  • Saviot L, Murray DB (2009) Acoustic vibrations of anisotropic nanoparticles. Phys Rev B 79:214101

    Article  Google Scholar 

  • Saviot L, Murray DB, Marco de Lucas MC (2004) Vibrations of free and embedded anisotropic elastic spheres: application to low-frequency Raman scattering of silicon nanoparticles in silica. Phys Rev B 69:113402

    Article  Google Scholar 

  • Schreiber E, Anderson OL, Soga N (1973) Elastic constants and their measurement. McGraw-Hill, New York

    Google Scholar 

  • Toupin RA (1964) Theories of elasticity with couple stress. Arch Ration Mech Anal 17:85–112

    Article  MathSciNet  MATH  Google Scholar 

  • Trejo A, Vazquez-Medina R, Duchen GI, Cruz-Irisson M (2013) Anisotropic effects on the radial breathing mode of silicon nanowires: an ab initio study. Phys E 51:10–14

    Article  Google Scholar 

  • Trejo A, López-Palacios L, Vázquez-Medina R, Cruz-Irisson M (2014) Theoretical approach to the phonon modes and specific heat of germanium nanowires. Phys B 453:14–18

    Article  Google Scholar 

  • Voisin C, Del Fatti N, Christofilos D, Vallée F (2000) Time-resolved investigation of the vibrational dynamics of metal nanoparticles. Appl Surf Sci 164:131–139

    Article  Google Scholar 

  • Xu XJ, Deng ZC, Zhang K, Xu W (2016) Observations of the softening phenomena in the nonlocal cantilever beams. Compos Struct 145:43–57

    Article  Google Scholar 

  • Zaera R, Fernández-Sáez J, Loya JA (2013) Axisymmetric free vibration of closed thin spherical nano-shell. Compos Struct 104:154–161

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ghavanloo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghavanloo, E., Abbasszadehrad, A. Frequency Domain Analysis of Nano-Objects Subject to Periodic External Excitation. Iran J Sci Technol Trans Mech Eng 43 (Suppl 1), 559–565 (2019). https://doi.org/10.1007/s40997-018-0178-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-018-0178-5

Keywords

Navigation