Skip to main content
Log in

Second Strain Gradient Finite Element Analysis of Vibratory Nanostructures Based on the Three-Dimensional Elasticity Theory

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

By introducing the \(C^{2}\) continuous hexahedral element, the free vibration finite element analysis of the nanobeam and nanoplate structures is reported based on the second strain gradient (SSG) theory and three-dimensional elasticity model. The SSG elasticity presents the powerful higher-order continuum theory which can be efficiently used to capture the size-effect on the nano-objects. The finite element discretization procedure is performed within Hamilton’s principle where the quadratic matrix version of the strain and kinetic energies are derived on the basis of the three-dimensional SSG elasticity model. In the proposed \(C^{2}\) continuous hexahedral element, the values of the displacement field and the associated higher-order derivatives are considered as the nodal values to satisfy the continuity conditions. As the case studies, the free vibration of the nanobeams and rectangular nanoplates is investigated. Different results are outlined to show the efficiency and convergence of the present model. The influences of the involved parameters on the natural frequencies of nanobeams and plates are also investigated. It is realized that with the increase in the thickness-to-lattice parameter ratio, the difference of the results related to the SSG theory and classical theory decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adeli MM, Hadi A, Hosseini M, Gorgani HH (2017) Torsional vibration of nano-cone based on nonlocal strain gradient elasticity theory. Eur Phys J Plus 132(9):393

    Article  Google Scholar 

  • Akgöz B, Civalek Ö (2012) Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory. Mater Des 42:164–171

    Article  Google Scholar 

  • Altan BS, Aifantis EC (1997) On some aspects in the special theory of gradient elasticity. J Mech Behav Mater 8(3):231–282

    Article  Google Scholar 

  • Amiot F (2013) An Euler-Bernoulli second strain gradient beam theory for cantilever sensors. Philos Mag Lett 93(4):204–212

    Article  MathSciNet  Google Scholar 

  • Ansari R, Torabi J (2016) Numerical study on the free vibration of carbon nanocones resting on elastic foundation using nonlocal shell model. Appl Phys A 122(12):1073

    Article  Google Scholar 

  • Ansari R, Shojaei MF, Shakouri AH, Rouhi H (2016) Nonlinear bending analysis of first-order shear deformable microscale plates using a strain gradient quadrilateral Element. J Comput Nonlinear Dyn 11(5):051014

    Article  Google Scholar 

  • Ansari R, Torabi J, Faghih Shojaei M (2018a) An efficient numerical method for analyzing the thermal effects on the vibration of embedded single-walled carbon nanotubes based on the nonlocal shell model. Mech Adv Mater Struct 25(6):500–511

    Article  Google Scholar 

  • Ansari R, Torabi J, Norouzzadeh A (2018b) Bending analysis of embedded nanoplates based on the integral formulation of Eringen’s nonlocal theory using the finite element method. Phys B 534:90–97

    Article  Google Scholar 

  • Arani AG, Amir S (2013) Electro-thermal vibration of visco-elastically coupled BNNT systems conveying fluid embedded on elastic foundation via strain gradient theory. Phys B 419:1–6

    Article  Google Scholar 

  • Asghari M, Momeni SA, Vatankhah R (2017) The second strain gradient theory-based Timoshenko beam model. J Vib Control 23(13):2155–2166

    Article  MathSciNet  Google Scholar 

  • Balobanov V, Niiranen J (2018) Locking-free variational formulations and isogeometric analysis for the Timoshenko beam models of strain gradient and classical elasticity. Comput Methods Appl Mech Eng 339:137–159

    Article  MathSciNet  MATH  Google Scholar 

  • Balobanov V, Kiendl J, Khakalo S, Niiranen J (2019) Kirchhoff-Love shells within strain gradient elasticity: weak and strong formulations and an H3-conforming isogeometric implementation. Comput Methods Appl Mech Eng 344:837–857

    Article  MATH  Google Scholar 

  • Cordero NM, Forest S, Busso EP (2016) Second strain gradient elasticity of nano-objects. J Mech Phys Solids 97:92–124

    Article  MathSciNet  Google Scholar 

  • Ebrahimi F, Barati MR (2017) A nonlocal strain gradient mass sensor based on vibrating hygro-thermally affected graphene nanosheets. Iran J Sci Technol Trans Mech Eng. https://doi.org/10.1007/s40997-017-0131-z

    Article  Google Scholar 

  • Eringen AC (1972) Nonlocal polar elastic continua. Int J Eng Sci 10(1):1–16

    Article  MathSciNet  MATH  Google Scholar 

  • Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710

    Article  Google Scholar 

  • Ghazavi MR, Molki H (2018) Nonlinear analysis of the micro/nanotube conveying fluid based on second strain gradient theory. Appl Math Model 60:77–93

    Article  MathSciNet  MATH  Google Scholar 

  • Gholami R, Darvizeh A, Ansari R, Pourashraf T (2018) Analytical treatment of the size-dependent nonlinear postbuckling of functionally graded circular cylindrical micro-/nano-shells. Iran J Sci Technol Trans Mech Eng 42(2):85–97

    Article  Google Scholar 

  • Hadi A, Nejad MZ, Hosseini M (2018) Vibrations of three-dimensionally graded nanobeams. Int J Eng Sci 128:12–23

    Article  MathSciNet  MATH  Google Scholar 

  • Hosseini M, Shishesaz M, Tahan KN, Hadi A (2016) Stress analysis of rotating nano-disks of variable thickness made of functionally graded materials. Int J Eng Sci 109:29–53

    Article  MathSciNet  MATH  Google Scholar 

  • Hosseini M, Gorgani HH, Shishesaz M, Hadi A (2017) Size-dependent stress analysis of single-wall carbon nanotube based on strain gradient theory. Int J Appl Mech 9(06):1750087

    Article  Google Scholar 

  • Hosseini M, Hadi A, Malekshahi A, Shishesaz M (2018) A review of size-dependent elasticity for nanostructures. J Comput Appl Mech 49(1):197–211

    Google Scholar 

  • Jalalahmadi B, Naghdabadi R (2007) Finite element modeling of single-walled carbon nanotubes with introducing a new wall thickness. In: Journal of Physics: Conference Series(vol 61, No 1, p 497). IOP Publishing

  • Jalali MH, Zargar O, Baghani M (2018) Size-dependent vibration analysis of FG microbeams in thermal environment based on modified couple stress theory. Iran J Sci Technol Trans Mech Eng 1:1–3. https://doi.org/10.1007/s40997-018-0193-6

    Article  Google Scholar 

  • Karparvarfard SMH, Asghari M, Vatankhah R (2015) A geometrically nonlinear beam model based on the second strain gradient theory. Int J Eng Sci 91:63–75

    Article  MathSciNet  MATH  Google Scholar 

  • Khakalo S, Niiranen J (2018) Form II of Mindlin’s second strain gradient theory of elasticity with a simplification: for materials and structures from nano-to macro-scales. Eur J Mech-A/Solids 71:292–319

    Article  MathSciNet  MATH  Google Scholar 

  • Koiter WT (1964) Couple stresses in the theory of elasticity. Proc, Koninklijke Nederl. Akaad. van Wetensch, p 67

    MATH  Google Scholar 

  • Kwon YR, Lee BC (2017) A mixed element based on Lagrange multiplier method for modified couple stress theory. Comput Mech 59(1):117–128

    Article  MathSciNet  MATH  Google Scholar 

  • Lam DC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8):1477–1508

    Article  MATH  Google Scholar 

  • Li L, Hu Y, Ling L (2016) Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory. Phys E 75:118–124

    Article  Google Scholar 

  • Lim CW, Zhang G, Reddy JN (2015) A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids 78:298–313

    Article  MathSciNet  MATH  Google Scholar 

  • Ma HM, Gao XL, Reddy JN (2011) A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech 220(1–4):217–235

    Article  MATH  Google Scholar 

  • Makvandi R, Reiher JC, Bertram A, Juhre D (2018) Isogeometric analysis of first and second strain gradient elasticity. Comput Mech 61(3):351–363

    Article  MathSciNet  MATH  Google Scholar 

  • Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16(1):51–78

    Article  MathSciNet  MATH  Google Scholar 

  • Mindlin RD (1965) Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1(4):417–438

    Article  Google Scholar 

  • Mindlin RD, Tiersten HF (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 11(1):415–448

    Article  MathSciNet  MATH  Google Scholar 

  • Mohammadpour E, Awang M (2012) Nonlinear finite-element modeling of graphene and single-and multi-walled carbon nanotubes under axial tension. Appl Phys A 106(3):581–588

    Article  Google Scholar 

  • Momeni SA, Asghari M (2018) The second strain gradient functionally graded beam formulation. Compos Struct 188:15–24

    Article  Google Scholar 

  • Mousavi SM, Paavola J (2014) Analysis of plate in second strain gradient elasticity. Arch Appl Mech 84(8):1135–1143

    Article  MATH  Google Scholar 

  • Movassagh AA, Mahmoodi MJ (2013) A micro-scale modeling of Kirchhoff plate based on modified strain-gradient elasticity theory. Eur J Mech-A/Solids 40:50–59

    Article  MathSciNet  MATH  Google Scholar 

  • Nasdala L, Ernst G (2005) Development of a 4-node finite element for the computation of nano-structured materials. Comput Mater Sci 33(4):443–458

    Article  Google Scholar 

  • Norouzzadeh A, Ansari R, Rouhi H (2018) Nonlinear wave propagation analysis in Timoshenko nano-beams considering nonlocal and strain gradient effects. Meccanica 53(13):3415–3435

    Article  MathSciNet  Google Scholar 

  • Phadikar JK, Pradhan SC (2010) Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates. Comput Mater Sci 49(3):492–499

    Article  Google Scholar 

  • Reddy JN, Romanoff J, Loya JA (2016) Nonlinear finite element analysis of functionally graded circular plates with modified couple stress theory. Eur J Mech-A/Solids 56:92–104

    Article  MathSciNet  MATH  Google Scholar 

  • Salehipour H, Nahvi H, Shahidi A, Mirdamadi HR (2017) 3D elasticity analytical solution for bending of FG micro/nanoplates resting on elastic foundation using modified couple stress theory. Appl Math Model 47:174–188

    Article  MathSciNet  MATH  Google Scholar 

  • Shishesaz M, Hosseini M, Tahan KN, Hadi A (2017) Analysis of functionally graded nanodisks under thermoelastic loading based on the strain gradient theory. Acta Mech 228(12):4141–4168

    Article  MathSciNet  MATH  Google Scholar 

  • Shodja HM, Ahmadpoor F, Tehranchi A (2012) Calculation of the additional constants for fcc materials in second strain gradient elasticity: behavior of a nano-size Bernoulli-Euler beam with surface effects. J Appl Mech 79(2):021008

    Article  Google Scholar 

  • Şimşek M (2014) Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He’s variational method. Compos Struct 112:264–272

    Article  Google Scholar 

  • Torabi J, Ansari R (2018) Thermal buckling of carbon nanocones based on the nonlocal shell model. Iran J Sci Technol Trans Mech Eng. https://doi.org/10.1007/s40997-018-0190-9

    Article  Google Scholar 

  • Torabi J, Ansari R, Darvizeh M (2018a) A C1 continuous hexahedral element for nonlinear vibration analysis of nano-plates with circular cutout based on 3D strain gradient theory. Compos Struct 205:69–85

    Article  Google Scholar 

  • Torabi J, Ansari R, Darvizeh M (2018b) Application of a non-conforming tetrahedral element in the context of the three-dimensional strain gradient elasticity. Comput Methods Appl Mech Eng 344:1124–1143

    Article  MathSciNet  MATH  Google Scholar 

  • Tserpes KI, Papanikos P (2005) Finite element modeling of single-walled carbon nanotubes. Compos B Eng 36(5):468–477

    Article  Google Scholar 

  • Wei G, Shouwen YU, Ganyun H (2006) Finite element characterization of the size-dependent mechanical behaviour in nanosystems. Nanotechnology 17(4):1118

    Article  Google Scholar 

  • Yang FACM, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39(10):2731–2743

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jalal Torabi or Reza Ansari.

Appendices

Appendix 1

The matrices \({\mathbf{C}}, {\mathbf{D}}, {\mathbf{A}}\) and \({\tilde{\mathbf{B}}}\) introduced in Eq. (14) are defined here. The classical material stiffness matrix \({\mathbf{C}}\) is

$${\mathbf{C}} = \left[ {\begin{array}{*{20}c} {{\mathbf{C}}_{1} } & 0 \\ 0 & {{\mathbf{C}}_{2} } \\ \end{array} } \right],\;{\mathbf{C}}_{1} = \left[ {\begin{array}{*{20}c} {\lambda + 2\mu } & \lambda & \lambda \\ \lambda & {\lambda + 2\mu } & \lambda \\ \lambda & \lambda & {\lambda + 2\mu } \\ \end{array} } \right],\;{\mathbf{C}}_{2} = \mu {\mathbf{I}}_{3}$$
(53)

Matrix \({\mathbf{D}}\) is presented as follows:

$${\mathbf{D}} = \left[ {\begin{array}{*{20}c} {{\mathbf{D}}_{1} } & {{\mathbf{D}}_{2} } & {{\mathbf{D}}_{3} } \\ \end{array} } \right]$$
(54)
$${\mathbf{D}}_{1} = \left[ {\begin{array}{*{20}c} {\tilde{d}_{1} } & 0 & 0 & 0 & 0 & {\tilde{d}_{3} } & 0 & {\tilde{d}_{3} } & 0 & 0 \\ {d_{1} } & 0 & 0 & 0 & 0 & {\tilde{d}_{2} } & 0 & {d_{1} } & 0 & 0 \\ {d_{1} } & 0 & 0 & 0 & 0 & {d_{1} } & 0 & {\tilde{d}_{2} } & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\frac{{d_{2} }}{6}} \\ 0 & 0 & {\frac{{d_{3} }}{2}} & 0 & {\tilde{d}_{4} } & 0 & {\frac{{d_{3} }}{2}} & 0 & 0 & 0 \\ 0 & {\frac{{d_{3} }}{2}} & 0 & {\tilde{d}_{4} } & 0 & 0 & 0 & 0 & {\frac{{d_{3} }}{2}} & 0 \\ \end{array} } \right]$$
(55)
$${\mathbf{D}}_{2} = \left[ {\begin{array}{*{20}c} 0 & {d_{1} } & 0 & {\tilde{d}_{2} } & 0 & 0 & 0 & 0 & {d_{1} } & 0 \\ 0 & {\tilde{d}_{1} } & 0 & {\tilde{d}_{3} } & 0 & 0 & 0 & 0 & {\tilde{d}_{3} } & 0 \\ 0 & {d_{1} } & 0 & {d_{1} } & 0 & 0 & 0 & 0 & {\tilde{d}_{2} } & 0 \\ 0 & 0 & {\frac{{d_{3} }}{2}} & 0 & {\frac{{d_{3} }}{2}} & 0 & {\tilde{d}_{4} } & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\frac{{d_{2} }}{6}} \\ {\frac{{d_{3} }}{2}} & 0 & 0 & 0 & 0 & 0 & 0 & {\frac{{d_{3} }}{2}} & 0 & 0 \\ \end{array} } \right]$$
(56)
$${\mathbf{D}}_{3} = \left[ {\begin{array}{*{20}c} 0 & 0 & {d_{1} } & 0 & {\tilde{d}_{2} } & 0 & {d_{1} } & 0 & 0 & 0 \\ 0 & 0 & {d_{1} } & 0 & {d_{1} } & 0 & {\tilde{d}_{2} } & 0 & 0 & 0 \\ 0 & 0 & {\tilde{d}_{1} } & 0 & {\tilde{d}_{3} } & 0 & {\tilde{d}_{3} } & 0 & 0 & 0 \\ 0 & {\frac{{d_{3} }}{2}} & 0 & {\frac{{d_{3} }}{2}} & 0 & 0 & 0 & 0 & {\tilde{d}_{4} } & 0 \\ {\frac{{d_{3} }}{2}} & 0 & 0 & 0 & 0 & {\frac{{d_{3} }}{2}} & 0 & {\tilde{d}_{4} } & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\frac{{d_{2} }}{6}} \\ \end{array} } \right]$$
(57)

where

$$\tilde{d}_{1} = d_{1} + d_{2} + d_{3} , \; \tilde{d}_{2} = \frac{{\left( {d_{1} + d_{2} } \right)}}{3}, \;\tilde{d}_{3} = \frac{{\left( {d_{1} + d_{3} } \right)}}{3}, \;\tilde{d}_{4} = \left( {\frac{{d_{2} }}{3} + \frac{1}{6}d_{3} } \right)$$
(58)

Matrix \({\mathbf{A}}\) is also presented as

$${\mathbf{A}} = \left[ {\begin{array}{*{20}c} {{\mathbf{A}}_{1} } & 0 & 0 & 0 \\ 0 & {{\mathbf{A}}_{1} } & 0 & 0 \\ 0 & 0 & {{\mathbf{A}}_{1} } & 0 \\ 0 & 0 & 0 & {{\mathbf{A}}_{4} } \\ \end{array} } \right],$$
(59)
$${\mathbf{A}}_{1} = \left[ {\begin{array}{*{20}c} {\tilde{a}_{1} } & {\tilde{a}_{4} } & {\tilde{a}_{4} } & {\tilde{a}_{5} } & {\tilde{a}_{5} } \\ {} & {\tilde{a}_{2} } & {2a_{3} } & {\tilde{a}_{6} } & {\frac{{a_{2} }}{2}} \\ {} & {} & {\tilde{a}_{2} } & {\frac{{a_{2} }}{2}} & {\tilde{a}_{6} } \\ {} & {} & {} & {\tilde{a}_{3} } & {\frac{{a_{1} }}{2}} \\ {sym.} & {} & {} & {} & {\tilde{a}_{3} } \\ \end{array} } \right],\; {\mathbf{A}}_{4} = \left[ {\begin{array}{*{20}c} {a_{4} } & {\frac{{a_{5} }}{2}} & {\frac{{a_{5} }}{2}} \\ {} & {a_{4} } & {\frac{{a_{5} }}{2}} \\ {{\text{sym}} .} & {} & {a_{4} } \\ \end{array} } \right]$$
(60)

with

$$\begin{aligned} & \tilde{a}_{1} = \mathop \sum \limits_{i = 1}^{5} 2a_{i} , \; \tilde{a}_{2} = 2a_{3} + 2a_{4} ,\;\tilde{a}_{3} = \frac{{a_{1} }}{2} + a_{4} + \frac{{a_{5} }}{2} \\ & \tilde{a}_{4} = a_{2} + 2a_{3} , \;\tilde{a}_{5} = a_{1} + \frac{{a_{2} }}{2} , \;\tilde{a}_{6} = \frac{{a_{2} }}{2} + a_{5} \\ \end{aligned}$$
(61)

In addition, by introducing the following coefficients

$$\begin{aligned} & \tilde{b}_{1} = \mathop \sum \limits_{i = 1}^{7} 2b_{i} , \quad \tilde{b}_{2} = \frac{4}{9}b_{2} + \frac{2}{9}b_{3} + \frac{2}{9}b_{5} + \frac{2}{3}b_{6} + \frac{4}{9}b_{7} , \\ & \tilde{b}_{3} = \frac{2}{9}b_{1} + \frac{2}{9}b_{3} + \frac{4}{9}b_{7} , \quad \tilde{b}_{4} = 2b_{5} + 2b_{6} \\ & \tilde{b}_{5} = \frac{2}{9}b_{5} + \frac{2}{3}b_{6} , \quad \tilde{b}_{6} = \frac{2}{3}b_{1} + \frac{{b_{3} }}{3} + \frac{2}{3}b_{4} + \frac{2}{3}b_{5} , \\ & \tilde{b}_{7} = \frac{{b_{3} }}{3} + \frac{2}{3}b_{5} ,\quad \tilde{b}_{8} = \frac{2}{3}b_{1} + \frac{2}{3}b_{2} + \frac{2}{3}b_{3} + \frac{2}{3}b_{4} + \frac{2}{3}b_{5} , \\ & \tilde{b}_{9} = \frac{2}{9}b_{2} + \frac{2}{3}b_{6} + \frac{2}{9}b_{7} ,\quad \tilde{b}_{10} = \frac{4}{9}b_{2} + \frac{2}{9}b_{3} + \frac{2}{9}b_{4} \\ & \tilde{b}_{11} = \frac{2}{9}b_{1} + \frac{2}{9}b_{4} + \frac{2}{9}b_{5} , \quad \tilde{b}_{12} = \frac{{b_{3} }}{3} + \frac{2}{3}b_{4} + \frac{2}{3}b_{7} \\ & \tilde{b}_{13} = \frac{2}{3}b_{1} + \frac{2}{3}b_{2} + \frac{{b_{3} }}{3}, \quad \tilde{b}_{14} = \frac{2}{9}b_{4} + \frac{2}{9}b_{7} \\ & \tilde{b}_{15} = \frac{4}{18}b_{2} + \frac{1}{18}b_{3} ,\quad \tilde{b}_{16} = \frac{2}{9}b_{1} + \frac{1}{9}b_{3} , \\ & \tilde{b}_{17} = \frac{1}{9}b_{3} + \frac{2}{9}b_{4} , \quad \tilde{b}_{18} = \frac{1}{18}b_{3} + \frac{4}{18}b_{7} , \quad \tilde{b}_{19} = \frac{2}{9}b_{1} + \frac{2}{9}b_{2} \\ \end{aligned}$$
(62)

the asymmetric matrix \({\tilde{\mathbf{B}}}\) is introduced as

$$\widetilde{{\mathbf{B}}} = \left[ {\begin{array}{*{20}c} {{\mathbf{B}}_{11} } & {{\mathbf{B}}_{12} } & {{\mathbf{B}}_{13} } \\ {{\mathbf{B}}_{21} } & {{\mathbf{B}}_{22} } & {{\mathbf{B}}_{23} } \\ {{\mathbf{B}}_{31} } & {{\mathbf{B}}_{32} } & {{\mathbf{B}}_{33} } \\ \end{array} } \right]$$
(63)
$${\mathbf{B}}_{11} = \left[ {\begin{array}{*{20}l} {\tilde{b}_{1} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{6} } \hfill & 0 \hfill & {\tilde{b}_{6} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & {\tilde{b}_{4} } \hfill & 0 \hfill & {\tilde{b}_{7} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\frac{2}{3}b_{5} } \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\tilde{b}_{4} } \hfill & 0 \hfill & {\tilde{b}_{7} } \hfill & 0 \hfill & {\frac{2}{3}b_{5} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & {\tilde{b}_{7} } \hfill & 0 \hfill & {\tilde{b}_{2} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\frac{{\tilde{b}_{7} }}{3}} \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\tilde{b}_{7} } \hfill & 0 \hfill & {\tilde{b}_{2} } \hfill & 0 \hfill & {\frac{{\tilde{b}_{7} }}{3}} \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ {\tilde{b}_{6} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{11} + \tilde{b}_{9} } \hfill & 0 \hfill & {\tilde{b}_{11} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\frac{2}{3}b_{5} } \hfill & 0 \hfill & {\frac{{\tilde{b}_{7} }}{3}} \hfill & 0 \hfill & {\widetilde{{b_{5} }}} \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ {\tilde{b}_{6} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{11} } \hfill & 0 \hfill & {\tilde{b}_{9} + \tilde{b}_{11} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & {\frac{2}{3}b_{5} } \hfill & 0 \hfill & {\frac{{\tilde{b}_{7} }}{3}} \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\widetilde{{b_{5} }}} \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\frac{{\tilde{b}_{9} }}{2}} \hfill \\ \end{array} } \right]$$
(64)
$${\mathbf{B}}_{22} = \left[ {\begin{array}{*{20}l} {\tilde{b}_{4} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{7} } \hfill & 0 \hfill & {\frac{2}{3}b_{5} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & {\tilde{b}_{1} } \hfill & 0 \hfill & {\frac{{\tilde{b}_{6} }}{3}} \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\frac{{\tilde{b}_{6} }}{3}} \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\tilde{b}_{4} } \hfill & 0 \hfill & {\frac{2}{3}b_{5} } \hfill & 0 \hfill & {\tilde{b}_{7} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & {\tilde{b}_{6} } \hfill & 0 \hfill & {\tilde{b}_{9} + \tilde{b}_{11} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{11} } \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\frac{2}{3}b_{5} } \hfill & 0 \hfill & {\tilde{b}_{5} } \hfill & 0 \hfill & {\frac{{\tilde{b}_{7} }}{3}} \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ {\tilde{b}_{7} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{2} } \hfill & 0 \hfill & {\frac{{\tilde{b}_{7} }}{3}} \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\tilde{b}_{7} } \hfill & 0 \hfill & {\frac{{\tilde{b}_{7} }}{3}} \hfill & 0 \hfill & {\tilde{b}_{2} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ {\frac{2}{3}b_{5} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\frac{{\tilde{b}_{7} }}{3}} \hfill & 0 \hfill & {\tilde{b}_{1} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & {\tilde{b}_{6} } \hfill & 0 \hfill & {\tilde{b}_{11} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{11} + \tilde{b}_{9} } \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\frac{{\tilde{b}_{9} }}{3}} \hfill \\ \end{array} } \right]$$
(65)
$${\mathbf{B}}_{33} = \left[ {\begin{array}{*{20}l} {\tilde{b}_{4} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\frac{2}{3}b_{5} } \hfill & 0 \hfill & {\tilde{b}_{7} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & {\tilde{b}_{4} } \hfill & 0 \hfill & {\frac{2}{3}b_{5} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{7} } \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\tilde{b}_{1} } \hfill & 0 \hfill & {\tilde{b}_{6} } \hfill & 0 \hfill & {\frac{{\tilde{b}_{6} }}{3}} \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & {\frac{2}{3}b_{5} } \hfill & 0 \hfill & {\tilde{b}_{5} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\frac{{\tilde{b}_{7} }}{3}} \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\tilde{b}_{6} } \hfill & 0 \hfill & {\tilde{b}_{9} + \tilde{b}_{11} } \hfill & 0 \hfill & {\tilde{b}_{11} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ {\frac{2}{3}b_{5} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{5} } \hfill & 0 \hfill & {\frac{{\tilde{b}_{7} }}{3}} \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\tilde{b}_{6} } \hfill & 0 \hfill & {\tilde{b}_{11} } \hfill & 0 \hfill & {\tilde{b}_{9} + \tilde{b}_{11} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ {\tilde{b}_{7} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\frac{{\tilde{b}_{7} }}{3}} \hfill & 0 \hfill & {\tilde{b}_{2} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & {\tilde{b}_{7} } \hfill & 0 \hfill & {\frac{{\tilde{b}_{7} }}{3}} \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{2} } \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\frac{{\tilde{b}_{9} }}{3}} \hfill \\ \end{array} } \right]$$
(66)
$${\mathbf{B}}_{12} = \left[ {\begin{array}{*{20}l} 0 \hfill & {2b_{1} } \hfill & 0 \hfill & {\tilde{b}_{13} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\frac{2}{3}b_{1} } \hfill & 0 \hfill \\ {2b_{4} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{12} } \hfill & 0 \hfill & {\frac{2}{3}b_{4} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\frac{{b_{3} }}{6}} \hfill \\ {\tilde{b}_{12} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{10} } \hfill & 0 \hfill & {\tilde{b}_{17} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{15} } \hfill \\ 0 \hfill & {\tilde{b}_{13} } \hfill & 0 \hfill & {\tilde{b}_{3} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{16} } \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{18} } \hfill \\ 0 \hfill & {\frac{2}{3}b_{1} } \hfill & 0 \hfill & {\tilde{b}_{16} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{19} } \hfill & 0 \hfill \\ {\frac{2}{3}b_{4} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{17} } \hfill & 0 \hfill & {\tilde{b}_{14} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\frac{{b_{3} }}{6}} \hfill & 0 \hfill & {\tilde{b}_{18} } \hfill & 0 \hfill & {\tilde{b}_{15} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ \end{array} } \right]$$
(67)
$${\mathbf{B}}_{13} = \left[ {\begin{array}{*{20}l} 0 \hfill & 0 \hfill & {2b_{1} } \hfill & 0 \hfill & {\tilde{b}_{13} } \hfill & 0 \hfill & {\frac{2}{3}b_{1} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\frac{{b_{3} }}{6}} \hfill \\ {2b_{4} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\frac{2}{3}b_{4} } \hfill & 0 \hfill & {\tilde{b}_{12} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{15} } \hfill \\ {\tilde{b}_{12} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{17} } \hfill & 0 \hfill & {\tilde{b}_{10} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\frac{2}{3}b_{1} } \hfill & 0 \hfill & {\tilde{b}_{16} } \hfill & 0 \hfill & {\tilde{b}_{19} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ {\frac{2}{3}b_{4} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{14} } \hfill & 0 \hfill & {\tilde{b}_{17} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\tilde{b}_{13} } \hfill & 0 \hfill & {\tilde{b}_{3} } \hfill & 0 \hfill & {\tilde{b}_{16} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{18} } \hfill \\ 0 \hfill & {\frac{1}{6}b_{3} } \hfill & 0 \hfill & {\tilde{b}_{18} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{15} } \hfill & 0 \hfill \\ \end{array} } \right]$$
(68)
$${\mathbf{B}}_{23} = \left[ {\begin{array}{*{20}l} 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\frac{{b_{3} }}{6}} \hfill \\ 0 \hfill & 0 \hfill & {2b_{1} } \hfill & 0 \hfill & {\frac{2}{3}b_{1} } \hfill & 0 \hfill & {\tilde{b}_{13} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & {2b_{4} } \hfill & 0 \hfill & {\frac{2}{3}b_{4} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{12} } \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\frac{4}{3}b_{1} } \hfill & 0 \hfill & {\tilde{b}_{19} } \hfill & 0 \hfill & {\tilde{b}_{16} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & {\frac{2}{3}b_{4} } \hfill & 0 \hfill & {\tilde{b}_{14} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{17} } \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{15} } \hfill \\ 0 \hfill & {\tilde{b}_{12} } \hfill & 0 \hfill & {\tilde{b}_{17} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{10} } \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{18} } \hfill \\ 0 \hfill & 0 \hfill & {\tilde{b}_{13} } \hfill & 0 \hfill & {\tilde{b}_{16} } \hfill & 0 \hfill & {\tilde{b}_{3} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ {\frac{1}{6}b_{3} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{18} } \hfill & 0 \hfill & {\tilde{b}_{15} } \hfill & 0 \hfill & 0 \hfill \\ \end{array} } \right]$$
(69)
$${\mathbf{B}}_{21} = \left[ {\begin{array}{*{20}l} 0 \hfill & {2b_{4} } \hfill & 0 \hfill & {\tilde{b}_{12} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\frac{2}{3}b_{4} } \hfill & 0 \hfill \\ {2b_{1} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{13} } \hfill & 0 \hfill & {\frac{2}{3}b_{1} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\frac{{b_{3} }}{6}} \hfill \\ {\tilde{b}_{13} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{3} } \hfill & 0 \hfill & {\tilde{b}_{16} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{18} } \hfill \\ 0 \hfill & {\tilde{b}_{12} } \hfill & 0 \hfill & {\tilde{b}_{10} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{17} } \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{15} } \hfill \\ 0 \hfill & {\frac{2}{3}b_{4} } \hfill & 0 \hfill & {\tilde{b}_{17} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{14} } \hfill & 0 \hfill \\ {\frac{2}{3}b_{1} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{16} } \hfill & 0 \hfill & {\tilde{b}_{19} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\frac{1}{6}b_{3} } \hfill & 0 \hfill & {\tilde{b}_{15} } \hfill & 0 \hfill & {\tilde{b}_{18} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ \end{array} } \right]$$
(70)
$${\mathbf{B}}_{31} = \left[ {\begin{array}{*{20}l} 0 \hfill & 0 \hfill & {2b_{4} } \hfill & 0 \hfill & {\tilde{b}_{12} } \hfill & 0 \hfill & {\frac{2}{3}b_{4} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\frac{{b_{3} }}{3}} \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ {2b_{1} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\frac{2}{3}b_{1} } \hfill & 0 \hfill & {\tilde{b}_{13} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{18} } \hfill \\ {\tilde{b}_{13} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{16} } \hfill & 0 \hfill & {\widetilde{{b_{3} }}} \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\frac{2}{3}b_{4} } \hfill & 0 \hfill & {\tilde{b}_{17} } \hfill & 0 \hfill & {\tilde{b}_{14} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ {\frac{2}{3}b_{1} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{19} } \hfill & 0 \hfill & {\tilde{b}_{16} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\tilde{b}_{12} } \hfill & 0 \hfill & {\tilde{b}_{10} } \hfill & 0 \hfill & {\tilde{b}_{17} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{15} } \hfill \\ 0 \hfill & {\frac{1}{6}b_{3} } \hfill & 0 \hfill & {\tilde{b}_{15} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{18} } \hfill & 0 \hfill \\ \end{array} } \right]$$
(71)
$${\mathbf{B}}_{32} = \left[ {\begin{array}{*{20}l} 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\frac{{b_{3} }}{3}} \hfill \\ 0 \hfill & 0 \hfill & {2b_{4} } \hfill & 0 \hfill & {\frac{2}{3}b_{4} } \hfill & 0 \hfill & {\tilde{b}_{12} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & {2b_{1} } \hfill & 0 \hfill & {\frac{2}{3}b_{1} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{12} } \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\frac{2}{3}b_{4} } \hfill & 0 \hfill & {\tilde{b}_{14} } \hfill & 0 \hfill & {\tilde{b}_{17} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & {\frac{2}{3}b_{1} } \hfill & 0 \hfill & {\tilde{b}_{19} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{16} } \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{18} } \hfill \\ 0 \hfill & {\tilde{b}_{13} } \hfill & 0 \hfill & {\tilde{b}_{16} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{3} } \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{15} } \hfill \\ 0 \hfill & 0 \hfill & {\tilde{b}_{12} } \hfill & 0 \hfill & {\tilde{b}_{17} } \hfill & 0 \hfill & {\tilde{b}_{10} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ {\frac{1}{6}b_{3} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\tilde{b}_{15} } \hfill & 0 \hfill & {\tilde{b}_{18} } \hfill & 0 \hfill & 0 \hfill \\ \end{array} } \right]$$
(72)

Appendix 2

The formulation for the finite element vibration analysis of SSG Timoshenko beam theory is presented in this section. On the basis of Timoshenko beam theory, the displacement field is introduced as

$${\mathbf{U}} = \left[ {\begin{array}{*{20}c} {u_{1} \left( {x_{1} ,x_{2} ,x_{3} } \right)} \\ {u_{3} \left( {x_{1} ,x_{2} } \right)} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {u\left( {x_{1} ,x_{2} } \right) + x_{3} \psi \left( {x_{1} ,x_{2} } \right)} \\ {w\left( {x_{1} ,x_{2} } \right)} \\ \end{array} } \right] = {\mathbf{P}}_{0} \left( {x_{3} } \right){\mathbf{q}}\left( {x_{1} ,x_{2} } \right),$$
(73)
$${\mathbf{P}}_{0} \left( {x_{3} } \right) = \left[ {\begin{array}{*{20}c} 1 & 0 & {x_{3} } \\ 0 & 1 & 0 \\ \end{array} } \right], {\mathbf{q}}\left( {x_{1} ,x_{2} } \right) = \left[ {\begin{array}{*{20}c} u \\ w \\ \psi \\ \end{array} } \right],$$
(74)

The strain vector and vectors of second- and third-order derivatives of displacement field are defined as

$${\varvec{\upvarepsilon}}_{1} = \left[ {\begin{array}{*{20}c} {\varepsilon_{11} } \\ {2\varepsilon_{13} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {u_{,1} + x_{3} \psi_{,1} } \\ {w_{,1} + \psi } \\ \end{array} } \right] = {\mathbf{P}}_{1} {\mathbf{E}}_{1} {\mathbf{q}},$$
(75)
$${\mathbf{P}}_{1} \left( {x_{3} } \right) = \left[ {\begin{array}{*{20}c} 1 & {x_{3} } & 0 \\ 0 & 0 & 1 \\ \end{array} } \right], {\mathbf{E}}_{1} = \left[ {\begin{array}{*{20}c} {\partial_{1} } & 0 & 0 \\ 0 & 0 & {\partial_{1} } \\ 0 & {\partial_{1} } & 1 \\ \end{array} } \right],$$
(76)
$${\varvec{\upvarepsilon}}_{2} = \left[ {\begin{array}{*{20}c} {\varepsilon_{111} } \\ {\varepsilon_{113} } \\ {2\varepsilon_{311} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {u_{,11} + x_{3} \psi_{,11} } \\ {w_{,11} } \\ {2\psi_{,1} } \\ \end{array} } \right] = {\mathbf{P}}_{2} {\mathbf{E}}_{2} {\mathbf{q}},$$
(77)
$${\mathbf{P}}_{2} = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 & {x_{3} } \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \end{array} } \right], {\mathbf{E}}_{2} = \left[ {\begin{array}{*{20}c} {\partial_{,11} } & 0 & 0 \\ 0 & {\partial_{,11} } & 0 \\ 0 & 0 & {2\partial_{,1} } \\ 0 & 0 & {\partial_{,11} } \\ \end{array} } \right],$$
(78)
$${\varvec{\upvarepsilon}}_{3} = \left[ {\begin{array}{*{20}c} {\varepsilon_{1111} } \\ {3\varepsilon_{1131} } \\ {\varepsilon_{1113} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {u_{,111} + x_{3} \psi_{,111} } \\ {3\psi_{,11} } \\ {w_{,111} } \\ \end{array} } \right] = {\mathbf{P}}_{3} {\mathbf{E}}_{3} {\mathbf{q}}$$
(79)
$${\mathbf{P}}_{3} = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 & {x_{3} } \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \end{array} } \right], {\mathbf{E}}_{3} = \left[ {\begin{array}{*{20}c} {\partial_{,111} } & 0 & 0 \\ 0 & 0 & {3\partial_{,11} } \\ 0 & {\partial_{,111} } & 0 \\ 0 & 0 & {\partial_{,111} } \\ \end{array} } \right]$$
(80)

The associated stress vectors are

$${\varvec{\uptau}}_{1} = \left[ {\begin{array}{*{20}c} {\tau_{11} } \\ {\tau_{13} } \\ \end{array} } \right], {\varvec{\uptau}}_{2} = \left[ {\begin{array}{*{20}c} {\tau_{111} } \\ {\tau_{113} } \\ {\tau_{311} } \\ \end{array} } \right], {\varvec{\uptau}}_{3} = \left[ {\begin{array}{*{20}c} {\tau_{1111} } \\ {\tau_{1131} } \\ {\tau_{1113} } \\ \end{array} } \right],$$
(81)

The material stiffness matrices are

$$\begin{aligned} & {\mathbf{C}} = \left[ {\begin{array}{*{20}c} E & 0 \\ 0 & {k_{s} G} \\ \end{array} } \right] \\ & {\mathbf{A}} = \left[ {\begin{array}{*{20}c} {\mathop \sum \limits_{i = 1}^{5} 2a_{i} } & 0 & 0 \\ {} & {2a_{3} + 2a_{4} } & {\frac{{a_{2} }}{2} + a_{5} } \\ {{\text{sym}} .} & {} & {\frac{{a_{1} }}{2} + a_{4} + \frac{{a_{5} }}{2}} \\ \end{array} } \right], \\ & \widetilde{{\mathbf{B}}} = \left[ {\begin{array}{*{20}c} {\widetilde{{b_{1} }}} & 0 & 0 \\ 0 & {\widetilde{{b_{2} }}} & {\widetilde{{b_{12} }}} \\ 0 & {\widetilde{{b_{12} }}} & {\widetilde{{b_{4} }}} \\ \end{array} } \right], {\mathbf{D}} = \left[ {\begin{array}{*{20}c} {\widetilde{{d_{1} }}} & {\widetilde{{d_{3} }}} & 0 \\ 0 & {\widetilde{{d_{4} }}} & {\frac{{d_{3} }}{2}} \\ \end{array} } \right] \\ \end{aligned}$$
(82)

where the total strain energy can be further presented as

$${\mathcal{U}} = \mathop \int \limits_{V} {\tilde{\mathcal{U}}}{\text{d}}V = \mathop \int \limits_{V} \frac{1}{2}\left( {{\varvec{\upvarepsilon}}_{1}^{\text{T}} {\mathbf{C\varepsilon }}_{1} + {\varvec{\upvarepsilon}}_{2}^{\text{T}} {\mathbf{A\varepsilon }}_{2} + {\varvec{\upvarepsilon}}_{3}^{\text{T}} {\mathbf{B\varepsilon }}_{3} +\, {\varvec{\upvarepsilon}}_{3}^{\text{T}} {\mathbf{D}}^{\text{T}} {\varvec{\upvarepsilon}}_{1} + {\varvec{\upvarepsilon}}_{1}^{\text{T}} {\mathbf{D\varepsilon }}_{3} } \right){\text{d}}V,$$
(83)

Also, the kinetic energy is defined as

$$T = \frac{1}{2}\mathop \int \limits_{\text{V}} {\dot{\mathbf{U}}}^{\text{T}} \rho {\dot{\mathbf{U}}}{\text{d}}V = \frac{1}{2}\mathop \int \limits_{\text{V}} {\dot{\mathbf{q}}}^{\text{T}} {\mathbf{P}}_{0}^{\text{T}} \rho {\mathbf{P}}_{0} {\dot{\mathbf{q}}}{\text{d}}V.$$
(84)

Now, considering the defined shape functions of one-dimensional element in Eq. (49) and following the same procedure explained in Sect. 4, the finite element governing equations can be obtained as follows:

(85)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torabi, J., Ansari, R., Bazdid-Vahdati, M. et al. Second Strain Gradient Finite Element Analysis of Vibratory Nanostructures Based on the Three-Dimensional Elasticity Theory. Iran J Sci Technol Trans Mech Eng 44, 631–645 (2020). https://doi.org/10.1007/s40997-019-00298-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-019-00298-9

Keywords

Navigation