Skip to main content
Log in

Numerical Solutions of the KdV Equation Using B-Spline Functions

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

A numerical technique based on the finite difference and collocation methods is presented for the solution of Korteweg–de Vries (KdV) equation. The integration relations between any two families of B-spline functions are presented and are utilized to reduce the solution of KdV equation to the solution of linear algebraic equations. Numerical simulations for three test examples have been demonstrated to validate the technique proposed in the current paper. It is found that the simulating results are in good agreement with the exact solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aksan EN, Özer A (2006) Numerical solution of Korteweg–de Vries equation by Galerkin B-spline finite element method. Appl Math Comput 175:1256–1265

    MathSciNet  MATH  Google Scholar 

  • Alexander ME, Morries J Li (1979) Galerkin methods for some model equations for nonlinear dispersive waves. J Comput Phys 30:428–451

    Article  MathSciNet  Google Scholar 

  • Bhatta DD, Bhatti MI (2006) Numerical solution of KdV equation using modified Bernstein polynomials. Appl Math Comput 174(2):1255–1268

    MathSciNet  MATH  Google Scholar 

  • Bhrawy AH (2014) An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system. Appl Math Comput 247:30–46

    MathSciNet  MATH  Google Scholar 

  • Bhrawy AH, Al-shomrani M (2012) A Jacobi Dual-Petrov Galerkin-Jacobi collocation method for solving Korteweg–de Vries equations. Abstr Appl Anal, Article ID 418943

  • Bhrawy AH, Zaky MA (2015) A method based on the Jacobi tau approximation for solving multi-term time–space fractional partial differential equations. J Comput Phys 281:876–895

    Article  MathSciNet  MATH  Google Scholar 

  • Canuto C, Hussaini MY, Quarteroni A, Zang TA (1988) Spectral method in fluid dynamics. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  • Chui CK (1992) An Introduction to Wavelets. Academic Press, San Diego, Calif

    MATH  Google Scholar 

  • De Boor C (1978) A practical guide to spline. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  • Dehghan M (2005) On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation. Numer Meth Part D E 21:24–40

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghan M (2006) Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math Comput Simulat 71:16–30

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghan M (2007) The one-dimensional heat equation subject to a boundary integral specification. Chaos Soliton Fract 32:661–675

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghan M, Shokri A (2007) A numerical method for KdV equation using collocation and radial basis functions. Nonlinear Dynam 50(2007):111–120

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghan M, Saray BN, Lakestani M (2012) Three methods based on the interpolation scaling functions and the mixed collocation finite difference schemes for the numerical solution of the nonlinear generalized Burgers–Huxley equation. Math Comput Model 55(3–4):1129–1142

    Article  MathSciNet  MATH  Google Scholar 

  • Fornberg B, Whitham GB (1978) A numerical and theoretical study of certain nonlinear wave phenomena. Philos Trans Roy Soc 289:373–404

    Article  MathSciNet  MATH  Google Scholar 

  • Gardner LRT, Ali AHA (1988) A numerical solution for the Korteweg–de Vries equation using Galerkins method with hermite polynomial shape functions. Proc Int Conf Model Simul 1:81–93

    Google Scholar 

  • Gardner LRT, Gardner GA, Ali AHA (1991) Simulation of solitons using quadratic spline finite elements. Comput Meth Appl Mechan Eng 92(1991):231–243

    Article  MathSciNet  MATH  Google Scholar 

  • Goda K (1975) On stability of some finite difference schemes for the Korteweg–de Vries equation. J Phys Soc Jpn 39:229–236

    Article  MathSciNet  MATH  Google Scholar 

  • Goswami JC, Chan AK (1999) Fundamentals of wavelets: theory, algorithms, and applications. Wiley, Hoboken

    MATH  Google Scholar 

  • Inc M (2007) Numerical simulation of KdV and mKdV equations with initial conditions by the variational iteration method. Chaos Soliton Fract 34(4):1075–1081

    Article  MathSciNet  MATH  Google Scholar 

  • Kutluay S, Bahadír AR, Özedes A (2000) A small time solutions for the Korteweg–de Vries equation. Appl Math Comput 107:203–210

    MathSciNet  MATH  Google Scholar 

  • Lakestani M, Dehghan M (2009) Numerical solution of Fokker–Planck equation using the cubic B-spline scaling functions. Numer Meth Part D E 25(2):418–429

    Article  MathSciNet  MATH  Google Scholar 

  • Lakestani M, Dehghan M (2010a) Collocation and finite difference-collocation methods for the solution of nonlinear Klein–Gordon equation. Comput Phys Commun 181(8):1392–1401

    Article  MathSciNet  MATH  Google Scholar 

  • Lakestani M, Dehghan M (2010b) The use of Chebyshev cardinal functions for the solution of a partial differential equation with an unknown time-dependent coefficient subject to an extra measurement. J Comput Appl Math 235:669–678

    Article  MathSciNet  MATH  Google Scholar 

  • Lakestani M, Dehghan M (2012) Numerical solutions of the generalized Kuramoto–Sivashinsky equation using B-spline functions. Appl Math Model 36:605–617

    Article  MathSciNet  MATH  Google Scholar 

  • Lakestani M, Dehghan M, Irandoust-pakchin S (2012) The construction of operational matrix of fractional derivatives using B-spline functions. Commun Nonlinear Sci Numer Simul 17(3):1149–1162

    Article  MathSciNet  MATH  Google Scholar 

  • Lu D, Hong B, Tian L (2009) New Solitary wave and periodic wave solutions for general types of KdV and KdV-Burgers’ equations. Commun Nonlinear Sci Numer Simulat 14(1):77–84

    Article  MathSciNet  MATH  Google Scholar 

  • Özer A, Kutluay S (2005) An analytical-numerical method for solving the Korteweg–de Vries equation. Appl Math Comput 164:789–797

    MathSciNet  MATH  Google Scholar 

  • Rathish Kumar BV, Mehra M (2005) A wavelet Taylor Galerkin method for parabolic and hyperbolic partial differential equations. Int J Comput Method 2(1):75–97

    Article  MATH  Google Scholar 

  • Rubin SG, Graves RA (1975) A cubic spline approximation for problems in fluid mechanics. NASA TR R-436, Washington, DC

  • Siraj-ul-Islam, Khattak AJ, Tirmizi IA (2008) A meshfree method for numerical solution of KdV equation. Eng Anal Bound Elem 32:849–855

    Article  MATH  Google Scholar 

  • Soliman AA (2004) Collocation solution of the Korteweg–de Vries equation using septic splines. Int J Comp Math 81:325–331

    Article  MathSciNet  MATH  Google Scholar 

  • Soliman AA (2006) Numerical simulation and explicit solutions of KdV-Burgers’ and Lax’s seventh-order KdV equations. Chaos Soliton Fract 29(2):294–302

    Article  MathSciNet  MATH  Google Scholar 

  • Soliman AA, Abdou MA (2007) Exact travelling wave solutions of nonlinear partial differential equations. Chaos Soliton Fract 32(2):808–815

    Article  MathSciNet  MATH  Google Scholar 

  • Vliengenthart AC (1971) On finite difference methods for Korteweg–de Vries equation. J Eng Math 5:137–155

    Article  MathSciNet  Google Scholar 

  • Wazwaz AM (2006) Two reliable methods for solving variants of the KdV equation with compact and noncompact structures. Chaos Soliton Fract 28:457–462

    MathSciNet  MATH  Google Scholar 

  • Wazwaz AM (2008) New sets of solitary wave solutions to the KdV, mKdV, and the generalized KdV equations. Commun Nonlinear Sci Numer Simulat 13(2):331–339

    Article  MathSciNet  MATH  Google Scholar 

  • Zabusky NJ (1976) A synergetic approach to problem of nonlinear dispersive wave propagation and interaction. In: Ames W (ed) Proceeding of Symposium. Non-linear Partial Differential Equations. Academic Press, New York, pp 223–258

    Google Scholar 

Download references

Acknowledgements

The research on which this paper is based was supported by the research fund of the University of Tabriz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Lakestani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakestani, M. Numerical Solutions of the KdV Equation Using B-Spline Functions. Iran J Sci Technol Trans Sci 41, 409–417 (2017). https://doi.org/10.1007/s40995-017-0260-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-017-0260-7

Keywords

Navigation