Skip to main content
Log in

Influence of Indium-Percentage Variation on Dynamical Characteristics of InxGa1-xAs/GaAs(001) Quantum Dot Lasers

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

The influence of indium percentage on dynamical characteristics of InxGa1-xAs/GaAs(001) quantum dot lasers (QDLs) is investigated. Energy levels of self-organized truncated-cone-shape QDs are calculated by means of the eight-band k.p model and their dependence to indium percentage is surveyed. Then, by presenting a four-level model and numerical solution of the resulting rate equations, laser properties are determined. Our results show that inclusion of more indium gives rise in the reduced bandgap and electron–hole recombination energy. Moreover, lasing for both Ground State (GS) and Excited States (ES) sounds to be sensitive to indium percentage. It is shown that rise of indium percentage at fixed injected current results in the increased ES turn-on delay and GS photon number and 3 dB modulation bandwidth, and decreased ES photon number, GS turn-on delay, amplitude of relaxation oscillations, output power, and ES 3 dB modulation bandwidth; but has no effect on threshold current and laser gain. At last, we find an optimized cavity length which was likely to be independent from indium percentage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adachi S (1983) Lattice thermal resistivity of III–V compound alloys. J Appl Phys 54(4):1844–1848

    Article  Google Scholar 

  • Aryanto D, Othaman Z, Ismail AK (2013) The impact of AsH3 overflow time and indium composition on the formation of self-assembled In x Ga1−x As quantum dots studied by atomic force microscopy. J Theor Appl Phys 7(27):1–6

    Google Scholar 

  • Bahder TB (1990) Eight-band k.p model of strained zinc-blende crystals. Phys Rev B 41(17):11992–12001

    Article  Google Scholar 

  • Bimberg D et al (2000) Quantum dot lasers: breakthrough in optoelectronics. Thin Solid Film 367(1–2):235–249

    Article  Google Scholar 

  • Birner S et al (2007) Nextnano: general purpose 3-D simulations. IEEE Trans Electron Devices 54(9):2137–2142

    Article  Google Scholar 

  • Borji MA, Rajaei E (2015) Effect of temperature on In_x Ga_(1-x) As/GaAs quantum dot lasing. arXiv:1511.00996

  • Borji MA, Rajaei E (2016) Energy level engineering in InxGa1-xAs/GaAs quantum dots applicable to quantum dot-lasers by changing the stoichiometric percentage. J Nanoelectron Optoelectron 11(3):315–322

    Article  Google Scholar 

  • Bratkovski A, Kamins TI (2010) Nanowire-based light-emitting diodes and light-detection devices with nanocrystalline outer surface. Google Patents

  • Costantini G et al (2006) Interplay between thermodynamics and kinetics in the capping of InAs/GaAs(001) quantum dots. Phys Rev Lett 96(22):226106

    Article  Google Scholar 

  • Danesh Kaftroudi Z, Rajaei E (2010) Simulation and optimization of optical performance of inp-based longwavelength vertical cavity surface emitting laser with selectively tunnel junction aperture. J Theor Appl Phys (Iran Phys J) 4(2):12–20

    Google Scholar 

  • Danesh Kaftroudi Z, Rajaei E (2011) Thermal simulation of InP-based 1.3 μm vertical cavity surface emitting laser with AsSb-based DBRs, 284th edn. PAYS-BAS: Elsevier, Amsterdam, p 11

    Google Scholar 

  • Dieter B (2005) Quantum dots for lasers, amplifiers and computing. J Phys D Appl Phys 38(13):2055

    Article  Google Scholar 

  • Fali A, Rajaei E, Kaftroudi Z (2014) Effects of the carrier relaxation lifetime and inhomogeneous broadening on the modulation response of InGaAs/GaAs self-assembled quantum-dot lasers. J Korean Phys Soc 64(1):16–22

    Article  Google Scholar 

  • Gioannini M (2006) Analysis of the optical gain characteristics of semiconductor quantum-dash materials including the band structure modifications due to the wetting layer. IEEE J Quantum Electron 42(3):331–340

    Article  Google Scholar 

  • Gioannini M (2012) Ground-state power quenching in two-state lasing quantum dot lasers. J Appl Phys 111(4):043108

    Article  Google Scholar 

  • Goetz KH et al (1983) Optical and crystallographic properties and impurity incorporation of GaxIn1−xAs (0.44 < x< 0.49) grown by liquid phase epitaxy, vapor phase epitaxy, and metal organic chemical vapor deposition. J Appl Phys 54(8):4543–4552

    Article  Google Scholar 

  • Goldberg YuA, Schmidt NM (1999) Handbook series on semiconductor parameters, 2nd edn. World Scientific, London, pp 62–88

    Google Scholar 

  • Hazdra P et al (2008) Optical characterisation of MOVPE grown vertically correlated InAs/GaAs quantum dots. Microelectron J 39(8):1070–1074

    Article  Google Scholar 

  • Horri A, Faez R (2011) Small signal circuit modeling for semiconductor self-assembled quantum dot laser. Opt Eng 50(3):034202–034205

    Article  Google Scholar 

  • Jang YD et al (2003) Comparison of quantum nature in InAs/GaAs quantum dots. J Korean Phys Soc 42(Suppl):111–113

    Google Scholar 

  • Jun Y, Bhattacharya P, Mi Z (2007) High-performance In0.5Ga0.5 As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters. IEEE Trans Electron Devices 54(11):2849–2855

    Article  Google Scholar 

  • Kamath K et al (1997) Small-signal modulation and differential gain of single-mode self-organized In0.4Ga0.6As/GaAs quantum dot lasers. Appl Phys Lett 70(22):2952–2953

    Article  Google Scholar 

  • Korkusinski M, Zielinski M, Hawrylak P (2009) Multiexciton complexes in InAs self-assembled quantum dots. J Appl Phys 105(12):122406

    Article  Google Scholar 

  • Lv S-F et al (2011) Modeling and simulation of InAs/GaAs quantum dot lasers. Optoelectron Lett 7(2):122–125

    Article  Google Scholar 

  • Ma YJ et al (2013) Factors influencing epitaxial growth of three-dimensional Ge quantum dot crystals on pit-patterned Si substrate. Nanotechnology 24(1):015304

    Article  Google Scholar 

  • Maia ADB et al (2012) The influence of different indium-composition profiles on the electronic structure of lens-shaped In x Ga 1−x As quantum dots. J Phys D Appl Phys 45(22):225104

    Article  Google Scholar 

  • Martin H et al (2011) In(Ga)As quantum dot formation on group-III assisted catalyst-free InGaAs nanowires. Nanotechnology 22(19):195601

    Article  Google Scholar 

  • Mortezapour A, Abad MGG, Mahmoudi M (2015) Magneto-optical rotation in a GaAs quantum well waveguide. Journal of the Optical Society of America B 32(7):1338–1345

    Article  Google Scholar 

  • Mortezapour A, Ghaderi Goran Abad M, Borji MA (2016) Magneto-optical rotation in the diamond nitrogen-vacancy center. Laser Phys Lett 13(5):055202

    Article  Google Scholar 

  • Nedzinskas R et al (2012) Polarized photoreflectance and photoluminescence spectroscopy of InGaAs/GaAs quantum rods grown with As(2) and As(4) sources. Nanoscale Res Lett 7(1):609

    Article  Google Scholar 

  • Oskoee EN, Khajehpour MRH, Sahimi M (2004) Numerical simulation of a continuum model of growth of thin composite films. Phys Rev E 69(6):061606

    Article  Google Scholar 

  • Pearsall TP (1982) GaInAsP alloy semiconductors. Wiley, New York

    Google Scholar 

  • Qiu D, Zhang MX (2011) The preferred facet orientation of GaAs pyramids for high-quality InAs and InxGa1−xAs quantum dot growth. Scr Mater 64(7):681–684

    Article  Google Scholar 

  • Qorbani M, et al. (2016) The influence of gain compression factor on dynamical properties of single level InAs/GaAs quantum dot lasers. arXiv:1602.03502 [physics.comp-ph, physics.optics] (unpublished observations), pp 1–5

  • Rajaei E, Borji MA (2015) Impact of dot size on dynamical characteristics of InAs/GaAs quantum dot lasers. arXiv:1511.01000 [physics.comp-ph] (unpublished observations) Accepted to J Nanoelectron Optoelectron

  • Rajaei E, Borji MA (2015) Substrate index dependence of energy levels in In_(0.4) Ga_(0.6) As/GaAs quantum dots applicable to QD-lasers (a six-band k.p approximation). arXiv:1511.00997 [physics.comp-ph] (unpublished observations)

  • Rajaei E, Borji MA (2016) Energy levels of InGaAs/GaAs quantum dot lasers with different sizes. Int J Nanosci Nanotechnol 12(1):45–53

    Google Scholar 

  • Rajaei E, Kia YY (2016) The effect of homogenous and inhomogeneous broadening and gain compression factor on dynamical characteristics and modulation of tunneling injection InGaAs/GaAs quantum dot lasers. J Nanoelectron Optoelectron 11(4):489–496

    Article  Google Scholar 

  • Razm-Pa M, Emami F (2015) Effect of parameter variations on the static and dynamic behaviour of a self-assembled quantum-dot laser using circuit-level modelling. Quantum Electron 45(1):15

    Article  Google Scholar 

  • Shafieenezhad A, Rajaei E, Yazdani S (2014) The effect of inhomogeneous broadening on characteristics of three-state lasing InGaAs/GaAs quantum dot lasers. Int J Sci Eng Technol 3(3):297–301

    Google Scholar 

  • Shahraki M, Esmaili E (2012) Computer simulation of quantum dot formation during heteroepitaxial growth of thin films. J Theor Appl Phys 6(1):1–5

    Article  Google Scholar 

  • Shi Z et al (2011) Influence of V/III ratio on QD size distribution. Front Optoelectron China 4(4):364–368

    Article  MathSciNet  Google Scholar 

  • Shrestha SK et al (2004) Accurate stoichiometric analysis of polycrystalline indium nitride films with elastic recoil detection. Curr Appl Phys 4(2–4):237–240

    Article  Google Scholar 

  • Singh J (1993) Physics of semiconductors and their heterostructures. McGraw-Hill, New York

    Google Scholar 

  • Stracke G et al (2014) Indirect and direct optical transitions in In0.5Ga0.5As/GaP quantum dots. Appl Phys Lett 104(12):123107

    Article  Google Scholar 

  • Sugawara M (1999) Self-assembled InGaAs/GaAs quantum dots. Academic Press, London

    Google Scholar 

  • Vafafard A et al (2013) Phase-dependent optical bistability in the quantum dot nanostructure molecules via inter-dot tunneling. J Lumin 134:900–905

    Article  Google Scholar 

  • Xu P-F et al (2010) Temperature-dependent modulation characteristics for 1.3 μm InAs/GaAs quantum dot lasers. J Appl Phys 107(1):013102

    Article  Google Scholar 

  • Yazdani S, Rajaei E, Shafieenezhad A (2014) Optimizing InAs/InP (113) B quantum dot lasers with considering mutual effects of coverage factor and cavity length on two-state lasing. Int J Eng Res 3(3):172–176

    Article  Google Scholar 

  • Yekta Kiya Y, Rajaei E, Fali A (2012) Study of response function of excited and ground state lasing in InGaAs/GaAs quantum dot laser. J Theor Phys 1:246–256

    Google Scholar 

  • Yu C (2010) Fundamentals of Semiconductors. Springer, Berlin

    Book  Google Scholar 

  • Yu LK et al (2005) The effect of In content on high-density InxGa1−xAs quantum dots. J Cryst Growth 282(1–2):173–178

    Article  Google Scholar 

  • Zieliński M, Korkusiński M, Hawrylak P (2010) Atomistic tight-binding theory of multiexciton complexes in a self-assembled InAs quantum dot. Phys Rev B 81(8):085301

    Article  Google Scholar 

Download references

Acknowledgments

The authors give the sincere appreciation to Dr. S. Birner for providing the advanced 3D Nextnano++ simulation program (Birner et al. 2007) and his instructive guides. We also thank Prof. S. Farjami Shayesteh for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esfandiar Rajaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borji, M.A., Rajaei, E. Influence of Indium-Percentage Variation on Dynamical Characteristics of InxGa1-xAs/GaAs(001) Quantum Dot Lasers. Iran J Sci Technol Trans Sci 42, 173–180 (2018). https://doi.org/10.1007/s40995-016-0103-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-016-0103-y

Keywords

Navigation