Skip to main content
Log in

Investigation of A New Type of Aluminum–Magnesium Alloy with Bismuth Additions Subjected to Thermomechanical Heat Treatment

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In this study, the changes in microstructure, hardness, corrosion and wear properties of Al-Mg with 3% Mg content and new type Al-Mg-Bi alloys with 1.3% Bi addition were investigated with the application of thermomechanical process on the aging heat treatment characteristics. As a result of the applied thermomechanical process, a finer grained structure was obtained and a higher hardness value was achieved compared to the casting alloys. Bright phases in SEM micrographs were detected as (rod-shaped) intermetallic (Al6Mn) particles in TEM analyses. Additionally, it was determined that the independent dark particles in the Al matrix were Mg2Si phases. Both alloys showed evidence of the Al3Mg2 phase. However, corrosion tests have shown that the Al-Mg-Bi1.3 alloys with the addition of bismuth have higher corrosion resistance than the Al-Mg alloys. The Al-Mg-Bi1.3 alloys also exhibited improved wear resistance in dry and corrosive wear tests. While the wear of the investigated alloys in a dry environment is associated with an improvement in hardness, wear resistance in corrosive media is improved by the addition of Bi, which reduces the formation of certain phases.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. H. Che, X. Jiang, N. Qiao et al., Effects of Er/Sr/Cu additions on the microstructure and mechanical properties of Al-Mg alloy during hot extrusion. J. Alloy. Compd. 708, 662–670 (2017). https://doi.org/10.1016/j.jallcom.2017.01.039

    Article  CAS  Google Scholar 

  2. C. Zhang, C. Wang, R. Guo et al., Investigation of dynamic recrystallization and modeling of microstructure evolution of an Al-Mg-Si aluminum alloy during high-temperature deformation. J. Alloy. Compd. 773, 59–70 (2019). https://doi.org/10.1016/j.jallcom.2018.09.263

    Article  CAS  Google Scholar 

  3. A.H.S. Rahiman, D.S.R. Smart, B. Wilson et al., Dry sliding wear analysis OF Al5083/CNT/Ni/MoB hybrid composite using DOE Taguchi method. Wear 460–461, 203471 (2020). https://doi.org/10.1016/j.wear.2020.203471

    Article  CAS  Google Scholar 

  4. N.J. Henry Holroyd, G.M. Scamans, environmental degradation of marine aluminum alloys—past, present, and future. Corrosion 72, 136–143 (2015). https://doi.org/10.5006/1927

    Article  CAS  Google Scholar 

  5. M.A. Wahid, A.N. Siddiquee, Z.A. Khan, Aluminum alloys in marine construction: characteristics, application, and problems from a fabrication viewpoint. Mar. Syst. Ocean Technol. 15, 70–80 (2020). https://doi.org/10.1007/s40868-019-00069-w

    Article  Google Scholar 

  6. S.H. Ha, Y.O. Yoon, B.H. Kim et al., Oxide scale behavior and surface protection of Al-Mg alloys containing a trace of Ca. Int. J. Metalcast. 13, 121–129 (2019). https://doi.org/10.1007/s40962-018-0234-3

    Article  CAS  Google Scholar 

  7. M. Okayasu, S. Takeuchi, Mechanical properties of cast Al-Mg5 alloy produced by heated mold continuous casting. Int. J. Metalcast. 12, 298–306 (2018). https://doi.org/10.1007/s40962-017-0163-6

    Article  CAS  Google Scholar 

  8. J.R. Davis, Aluminum and Aluminum Alloys (ASM International, Almere, 1993)

    Google Scholar 

  9. F.A. Fasoyinu, J.P. Thomson, D. Cousineau, J. Barry, M. Sahoo, Mechanical properties and metallography of Al-Mg alloy 535.0. AFS Trans. 111, 275–287 (2003)

    CAS  Google Scholar 

  10. G. Yi, B. Sun, J.D. Poplawsky et al., Investigation of pre-existing particles in Al 5083 alloys. J. Alloy. Compd. 740, 461–469 (2018). https://doi.org/10.1016/j.jallcom.2017.12.329

    Article  CAS  Google Scholar 

  11. He, G. microstructure evolution and mechanical properties of a heterogeneous structured Al-5083 Alloy. https://www.proquest.com/docview/2188243047/abstract/A8E3A316D75E4F3FPQ/1, (2018)

  12. F.A. Fasoyinu, J.P. Thomson, D. Cousineau, J. Barry, M. Sahoo, Characterization of microstructures and mechanical properties of aluminum alloys 206.0 and 535.0 poured in metal molds. AFS Trans. 116, 265–280 (2008)

    CAS  Google Scholar 

  13. S. Lin, Z. Nie, H. Huang et al., Annealing behavior of a modified 5083 aluminum alloy. Mater. Des. 31, 1607–1612 (2010). https://doi.org/10.1016/j.matdes.2009.09.004

    Article  CAS  Google Scholar 

  14. H. Zhang, B. Zhang, Effects of Ag on the Microstructures and Mechanical Properties of Al-Mg Alloys, in Light Metals 2019. ed. by C. Chesonis (Springer International Publishing, Cham, 2019), pp.493–497

    Chapter  Google Scholar 

  15. X. She, X. Jiang, P. Wang et al., Relationship between microstructure and mechanical properties of 5083 aluminum alloy thick plate. Trans. Nonferrous Met. Soc China 30, 1780–1789 (2020). https://doi.org/10.1016/S1003-6326(20)65338-9

    Article  CAS  Google Scholar 

  16. A. Rudra, M. Ashiq, J.K. Tiwari et al., Study of processing map and effect of hot rolling on mechanical properties of aluminum 5083 alloy. Trans. Indian Inst. Met. 73, 1809–1826 (2020). https://doi.org/10.1007/s12666-020-02003-w

    Article  CAS  Google Scholar 

  17. T. Radetić, M. Popović, E. Romhanji, Microstructure evolution of a modified AA5083 aluminum alloy during a multistage homogenization treatment. Mater. Charact. 65, 16–27 (2012). https://doi.org/10.1016/j.matchar.2011.12.006

    Article  CAS  Google Scholar 

  18. O. Engler, Z. Liu, K. Kuhnke, Impact of homogenization on particles in the Al–Mg–Mn alloy AA 5454 – experiment and simulation. J. Alloys Compd. 560, 111–122 (2013). https://doi.org/10.1016/j.jallcom.2013.01.163

    Article  CAS  Google Scholar 

  19. R.M. Cleveland, A.K. Ghosh, J.R. Bradley, Comparison of superplastic behavior in two 5083 aluminum alloys. Mater. Sci. Eng., A 1–2, 228–236 (2003). https://doi.org/10.1016/S0921-5093(02)00848-1

    Article  CAS  Google Scholar 

  20. R.A. Sielski, Research needs in aluminum structure. Ships Offshore Struct. 3, 57–65 (2008). https://doi.org/10.1080/17445300701797111

    Article  Google Scholar 

  21. T. Tokarski, Thermo-mechanical processing of rapidly solidified 5083 aluminium alloy - structure and mechanical properties. Arch. Metall. Mater. (2015). https://doi.org/10.1515/amm-2015-0028

    Article  Google Scholar 

  22. R. Verma, P.A. Friedman, A.K. Ghosh et al., Characterization of superplastic deformation behavior of a fine grain 5083 Al alloy sheet. Metall. Mater. Trans. A. 27, 1889–1898 (1996). https://doi.org/10.1007/BF02651938

    Article  Google Scholar 

  23. S.S. Mirjavadi, M. Alipour, S. Emamian et al., Influence of TiO2 nanoparticles incorporation to friction stir welded 5083 aluminum alloy on the microstructure, mechanical properties and wear resistance. J. Alloy. Compd. 712, 795–803 (2017). https://doi.org/10.1016/j.jallcom.2017.04.114

    Article  CAS  Google Scholar 

  24. G. Phanikumar, P. Dutta, R. Galun et al., Microstructural evolution during remelting of laser surface alloyed hyper-monotectic Al-Bi alloy. Mater. Sci. Eng., A 1–2, 91–102 (2004). https://doi.org/10.1016/j.msea.2003.09.071

    Article  CAS  Google Scholar 

  25. A.P. Silva, J.E. Spinelli, N. Mangelinck Noël et al., Microstructural development during transient directional solidification of hypermonotectic Al-Bi alloys. Mater. Des. 31, 4584–4591 (2010). https://doi.org/10.1016/j.matdes.2010.05.046

    Article  CAS  Google Scholar 

  26. L. Ratke, J. Ågren, A. Ludwig et al., Lead-free bearing alloys for engine applications results of theESA-MAP project MONOPHAS. Trans. Indian Inst. Met. 60, 103–111 (2007)

    CAS  Google Scholar 

  27. S. Li, D. Apelian, Hot tearing of aluminum alloys. Inter Metalcast. 5, 23–40 (2011). https://doi.org/10.1007/BF03355505

    Article  Google Scholar 

  28. L. Bichler, A. Elsayed, K. Lee et al., Influence of mold and pouring temperatures on hot tearing susceptibility of AZ91D magnesium alloy. Int. J. Metalcast. 2, 43–54 (2008). https://doi.org/10.1007/BF03355421

    Article  CAS  Google Scholar 

  29. ASTM G59-97: Standard test method for conducting potentiodynamic polarization resistance measurements, https://www.astm.org/g0059-97r20.html

  30. ASTM G31-21: Standard guide for laboratory immersion corrosion testing of metals, https://www.astm.org/g0031-21.html

  31. ASTM G190-15: Standard guide for developing and selecting wear tests (Withdrawn 2021), https://www.astm.org/g0190-15.html

  32. V. Vikram Das, C. Prasad Mohanty, Tribological studies on aluminum alloys (2011)

  33. R. Lal, R. Singh, R. Singari et al. Investigation of wear behavior of aluminium alloy and comparison with pure aluminium. in: Proceedings of International Conference of Advance Research and Innovation (2015)

  34. A.J. Wittebrood, S. Kirkham, A. Bürger et al. Process for producing an extruded aluminum alloy tube product, https://patents.google.com/patent/DK2699382T3/en, (2017)

  35. H. Wang, C. Li, J. Li et al., Effect of deformation and aging on properties of Al-4.1%Cu-1.4%Mg aluminum alloy. Int. Sch. Res. Not. 2013, e902970 (2013). https://doi.org/10.1155/2013/902970

    Article  CAS  Google Scholar 

  36. G.A. Andreev, T.S. Orlova, B.I. Smirnov, A difference between tension and compression in the density change of strained LiF crystals. Phys. Status Solidi (a) 69, 419–423 (1982). https://doi.org/10.1002/pssa.2210690143

    Article  CAS  Google Scholar 

  37. Y. Zhu, D.A. Cullen, S. Kar et al., Evaluation of Al3Mg2 precipitates and Mn-rich phase in aluminum-magnesium alloy based on scanning transmission electron microscopy imaging. Metall. Mater. Trans. A. 43, 4933–4939 (2012). https://doi.org/10.1007/s11661-012-1354-7

    Article  CAS  Google Scholar 

  38. R. Goswami, R.L. Holtz, transmission electron microscopic investigations of grain boundary beta phase precipitation in Al 5083 Aged at 373 K (100 °C). Metall. Mater. Trans. A. 44, 1279–1289 (2013). https://doi.org/10.1007/s11661-012-1166-9

    Article  CAS  Google Scholar 

  39. Y.J. Li, W.Z. Zhang, K. Marthinsen, Precipitation crystallography of plate-shaped Al6(Mn, Fe) dispersoids in AA5182 alloy. Acta Mater. 17, 5963–5974 (2012). https://doi.org/10.1016/j.actamat.2012.06.022

    Article  CAS  Google Scholar 

  40. J.I. Lee, J.S. Shin, W.Y. Jung et al., Porcine islet adaptation to metabolic need of the monkeys in pig to monkey intraportal islet xenotransplantation: 1477. Transplantation 94, 100 (2012)

    Article  Google Scholar 

  41. D. Singh, P.N. Rao, R. Jayaganthan, Effect of deformation temperature on mechanical properties of ultrafine grained Al-Mg alloys processed by rolling. Mater. Des. 50, 646–655 (2013). https://doi.org/10.1016/j.matdes.2013.02.068

    Article  CAS  Google Scholar 

  42. M. Warmuzek, G. Mrówka, J. Sieniawski, Influence of the heat treatment on the precipitation of the intermetallic phases in commercial AlMn1FeSi alloy. J. Mater. Process. Technol. 157–158, 624–632 (2004). https://doi.org/10.1016/j.jmatprotec.2004.07.125

    Article  CAS  Google Scholar 

  43. B. Mazurkiewicz, The electrochemical behaviour of the Al8Mg5 intermetallic compound. Corros. Sci. 23, 687–696 (1983). https://doi.org/10.1016/0010-938X(83)90033-1

    Article  CAS  Google Scholar 

  44. K. Medine, Effect of thermomechanic heat treatment on mechanical properties of 5083 quality alloy. Karabuk University, M. Sc. Thesis, (2021)

  45. G. Meyer Rodenbeck, T. Hurd, A. Ball, On the abrasive-corrosive wear of aluminium alloys. Wear 154, 305–317 (1992). https://doi.org/10.1016/0043-1648(92)90161-Z

    Article  CAS  Google Scholar 

  46. Z. Szklarska Smialowska, Pitting corrosion of aluminum. Corros. Sci. 41, 1743–1767 (1999). https://doi.org/10.1016/S0010-938X(99)00012-8

    Article  CAS  Google Scholar 

  47. M. Trueba, S.P. Trasatti, Study of Al alloy corrosion in neutral NaCl by the pitting scan technique. Mater. Chem. Phys. 121, 523–533 (2010). https://doi.org/10.1016/j.matchemphys.2010.02.022

    Article  CAS  Google Scholar 

  48. S. Chen, G.M. Li, W.S. Chang et al., The research of electrochemical behavior of alloy AA5083 in 3.5% NaCl solution. Adv. Mater. Res. 676, 80–84 (2013). https://doi.org/10.4028/www.scientific.net/AMR.676.80

    Article  CAS  Google Scholar 

  49. R.H. Jones, D.R. Baer, M.J. Danielson et al., Role of Mg in the stress corrosion cracking of an Al–Mg alloy. Metall. Mater. Trans. A. 32, 1699–1711 (2001). https://doi.org/10.1007/s11661-001-0148-0

    Article  Google Scholar 

  50. A. Aballe, M. Bethencourt, F.J. Botana et al., Localized alkaline corrosion of alloy AA5083 in neutral 3.5% NaCl solution. Corros. Sci. 43, 1657–1674 (2001). https://doi.org/10.1016/S0010-938X(00)00166-9

    Article  CAS  Google Scholar 

  51. N. Zazi, J.P. Chopart, A. Bouabdallah, Thermomechanical treatments effect on corrosion behaviour of aluminium–magnesium alloy AA5083-H321. Prot Met Phys Chem Surf. 51, 267–274 (2015). https://doi.org/10.1134/S2070205115020148

    Article  CAS  Google Scholar 

  52. S.C. Kurnaz, H. Sevik, S. Açıkgöz et al., Influence of titanium and chromium addition on the microstructure and mechanical properties of squeeze cast Mg–6Al alloy. J. Alloy. Compd. 509, 3190–3196 (2011). https://doi.org/10.1016/j.jallcom.2010.12.055

    Article  CAS  Google Scholar 

  53. M.S. Kaiser, S.H. Sabbir, M.S. Kabir et al., Study of mechanical and wear behaviour of hyper-eutectic Al–Si automotive alloy through Fe Ni and Cr addition. Mater. Res. (2018). https://doi.org/10.1590/1980-5373-MR-2017-1096

    Article  Google Scholar 

  54. M. Elmadagli, T. Perry, A.T. Alpas, A parametric study of the relationship between microstructure and wear resistance of Al–Si alloys. Wear 262, 79–92 (2007). https://doi.org/10.1016/j.wear.2006.03.043

    Article  CAS  Google Scholar 

  55. C.N. Panagopoulos, E.P. Georgiou, Wear behaviour of 5083 wrought aluminium alloy under free corrosion conditions. Tribol. – Mater., Surf. Interfaces 1, 161–164 (2007). https://doi.org/10.1179/175158408X276259

    Article  CAS  Google Scholar 

  56. E. McCafferty, The electrode kinetics of pit initiation on aluminum. Corros. Sci. 37, 481–492 (1995). https://doi.org/10.1016/0010-938X(94)00150-5

    Article  CAS  Google Scholar 

  57. E. McCafferty, Sequence of steps in the pitting of aluminum by chloride ions. Corros. Sci. 45, 1421–1438 (2003). https://doi.org/10.1016/S0010-938X(02)00231-7

    Article  CAS  Google Scholar 

  58. M.M. Khrushchev, M.A. Babichev, Resistance to Abrasive Wear and the Hardness of Metals (US Atomic Energy Commission, Technical Information Service, Oak ridge, 1953)

    Google Scholar 

Download references

Acknowledgment

This study was supported by the Scientific Research Projects Coordination Unit of Karabuk University with the project code FLY-2020-2261.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levent Elen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kılınç, M., Elen, L., Ahlatcı, H. et al. Investigation of A New Type of Aluminum–Magnesium Alloy with Bismuth Additions Subjected to Thermomechanical Heat Treatment. Inter Metalcast 18, 649–666 (2024). https://doi.org/10.1007/s40962-023-01059-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-023-01059-w

Keywords

Navigation