Skip to main content
Log in

Effect of Cu/Mg Ratio on the Intermetallic Compound and Hot Tearing Susceptibility of Al–Cu–Mg Alloys

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The intermetallic compound and hot tearing sensitivity of Al–4.4Cu–xMg–0.15Zr (x = 1.0–2.5 wt%) alloys with different Cu/Mg ratios are studied by using the multi-channel “cross” hot tearing test device. Based on microstructure evolution, thermal analysis, and shrinkage force curves analyzed by SEM, TEM, EPMA, and JMatPro, the hot tearing mechanism of the alloys is explored. The results show that the type of intermetallic compound and viscosity change with the decrease of Cu/Mg ratio, and the hot tearing tendency can be controlled by regulating the type and quantity of intermetallic compound. The greater the number of Al2CuMg phases between grains of the alloys, the smaller the viscosity, the stronger the feeding ability of liquid phase in the late solidification period, and so the lower the hot tearing tendency of the alloys. Significantly, when the Cu/Mg ratio is 2.6, the amount of Al2CuMg phase is the largest, and the viscosity of the alloy is low, thus improving the tear feeding efficiency in the late solidification stage. Moreover, the cracking susceptibility coefficient value of the alloy is the minimum value, and the hot tearing tendency is the lowest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. K. Bharath, A. Mandal, A. Karmakar et al., Understanding the effect of hot extrusion on the evolution of microstructure and associated mechanical properties in sintered Al–Cu–Mg Alloy. Mater. Charact. 170, 110715 (2020)

    Article  CAS  Google Scholar 

  2. F. D’Elia, C. Ravindran, D. Sediako, Interplay among solidification, microstructure, residual strain and hot tearing in B206 aluminum alloy. Mater. Sci. Eng A 624, 169–180 (2015)

    Article  Google Scholar 

  3. Y. Li, H. Li, L. Katgerman et al., Recent advances in hot tearing during casting of aluminium alloys. Prog. Mater. Sci. 117, 100741 (2021)

    Article  CAS  Google Scholar 

  4. M.R. Nasresfahani, B. Niroumand, Effect of degassing on hot tearing tendency of a206 aluminum cast alloy. Int. Metalcast. 14, 538–546 (2020). https://doi.org/10.1007/s40962-019-00378-1

    Article  CAS  Google Scholar 

  5. S. Li, D. Apelian, K. Sadayappan, Hot tearing in cast Al alloys: mechanisms and process controls. Int. Metalcast. 6, 51–58 (2012). https://doi.org/10.1007/BF03355533

    Article  Google Scholar 

  6. K.S. Pulisheru, A.K. Birru, Effect of pouring temperature on hot tearing susceptibility of Al-Cu cast alloy: casting simulation. Mater. Today Proc. 47, 7086–7090 (2021)

    Article  CAS  Google Scholar 

  7. S.G. Shabestari, M.H. Ghonchen, Investigation on the effect of cooling rate on hot tearing susceptibility of Al2024 alloy using thermal analysis. Metall. Mater. Trans. B 46, 2438–2448 (2015)

    Article  CAS  Google Scholar 

  8. C. Tao, X. Yuan, J. Liu et al., Effect of la on hot cracking susceptibility of Al-Cu-Mg Alloy. Mater. Res. Express 6, 105802 (2019)

    Article  CAS  Google Scholar 

  9. Y. Yoshida, H. Esaka, K. Shinozuka, Effect of Solidified Structure on Hot Tearing in Al-Cu Alloy. IOP Conf. Ser. Mater. Sci. Eng. 84, 012059 (2015)

    Article  Google Scholar 

  10. M.J. Benoit, S. Zhu, T.B. Abbott et al., Evaluation of the effect of rare earth alloying additions on the hot tearing susceptibility of aluminum alloy 7150 during rapid solidification. Metall. Mater. Trans. A 51, 5213–5227 (2020)

    Article  CAS  Google Scholar 

  11. H.K. Kamga, D. Larouche, M. Bournane et al., Hot tearing of aluminum-copper B206 alloys with iron and silicon additions. Mater. Sci. Eng. A 527, 7413–7423 (2010)

    Article  Google Scholar 

  12. M.G. Mousavi, C.E. Cross, O. Grong, The effect of high-temperature eutectic-forming impurities on aluminum 7108 weldability. Weld. J. 88, 104–110 (2009)

    Google Scholar 

  13. Y. Li, Z. Zhang, Z. Zhao et al., Effect of main elements (Zn, Mg, and Cu) on hot tearing susceptibility during direct-chill casting of 7xxx aluminum alloys. Metall. Mater. Trans. A. 50, 3603–3616 (2019)

    Article  CAS  Google Scholar 

  14. F. Liu, X. Zhu, S. Ji, Effects of Ni on the microstructure, hot tear and mechanical properties of Al-Zn-Mg-Cu alloys under as-cast condition. J. Alloys Compd. 821, 153458 (2020)

    Article  CAS  Google Scholar 

  15. B. Hu, D. Li, Z. Li et al., Hot tearing behavior in double ternary eutectic alloy system: Al–Mg–Si Alloys. Metall. Mater. Trans. A 52, 789–805 (2021)

    Article  CAS  Google Scholar 

  16. G. Razaz, T. Carlberg, Hot tearing susceptibility of AA3000 aluminum alloy containing Cu, Ti, and Zr. Metall. Mater. Trans. A. 50, 3842–3854 (2019)

    Article  CAS  Google Scholar 

  17. A.M. Nabawy, A.M. Samuel, F.H. Samuel et al., A Review on the Criteria of Hot Tearing Susceptibility of Aluminum Cast Alloys. Int. Metalcast. 15, 1362–1374 (2021). https://doi.org/10.1007/s40962-020-00559-3

    Article  Google Scholar 

  18. B.K. Kang, I. Sohn, Effects of Cu and Si Contents on the fluidity, hot tearing, and mechanical properties of Al–Cu–Si Alloys. Metall. Mater. Trans. A. 49, 5137–5145 (2018)

    Article  CAS  Google Scholar 

  19. A.V. Pozdniakov, V.S. Zolotorevskiy, Determining hot cracking index of Al–Si–Cu–Mg casting alloys calculated using effective solidification range. Int. J. Cast. Metal. Res. 27, 193–198 (2014)

    Article  CAS  Google Scholar 

  20. H.K. Bong, S.S. Majid, N. Ashkan et al., Role of Ca in hot compression behavior and microstructural stability of AlMg5 alloy during homogenization. Trans. Nonferrous Met. Soc. China 30, 571–581 (2020)

    Article  Google Scholar 

  21. P. Tan, Y. Sui, H. Jin et al., Effect of Zn content on the microstructure and mechanical properties of As-Cast Al-Zn-Mg-Cu alloy with medium Zn content. J. Mater. Res. Technol. 18, 2620–2630 (2022)

    Article  CAS  Google Scholar 

  22. J. Yu, X. Li, Modelling of the precipitated phases and properties of Al–Zn–Mg–Cu alloys. J. Phase. Equilib. Diff 32, 350–360 (2011)

    Article  CAS  Google Scholar 

  23. G. Zhao, C. Ding, X. Gu et al., Solidification path calculations of Al–Zn–Mg alloys in Al-rich corner. China Foundry 14, 443–448 (2017)

    Article  Google Scholar 

  24. X. Zhang, D. Li, L. Zeng et al., Effect of Y on the hot tearing susceptibility of 3Y2O3/Al5Cu composite. J. Alloys Compd. 849, 156152 (2020)

    Article  CAS  Google Scholar 

  25. X. Zhu, F. Liu, S. Wang et al., The development of low-temperature heat-treatable high-pressure die-cast Al–Mg–Fe–Mn alloys with Zn. J. Mater. Sci. 56, 11083–11097 (2021)

    Article  CAS  Google Scholar 

  26. A. Bolouri, K. Liu, X.G. Chen, Effects of iron-rich intermetallics and grain structure on semisolid tensile properties of Al-Cu 206 cast alloys near solidus temperature. Metall. Mater. Trans. A 47, 6466–6480 (2016)

    Article  CAS  Google Scholar 

  27. E.F. Chirkov, Laws of fluidity variation for aluminium alloys of Al–Cu–Mg-system. Mater. Sci. Forum 217–222, 265–270 (1996)

    Article  Google Scholar 

  28. E.F. Chirkov, Y.M. Dolzhanski, I.N. Fridlyander, Change of fluidity of aluminum superalloy 1151 (Al–Cu–Mg) during its alloying by transition metals. Mater. Sci. Forum. 331–337, 331–336 (2000)

    Article  Google Scholar 

  29. J. Han, J. Wang, M. Zhang et al., Relationship between amounts of low-melting-point eutectics and hot tearing susceptibility of ternary Al–Cu–Mg alloys during solidification. Trans. Nonferrous Met. Soc. China. 30, 2311–2325 (2020)

    Article  CAS  Google Scholar 

  30. X. Du, F. Wang, Z. Wang et al., Effect of Ca/Al ratio on hot tearing susceptibility of Mg–Al–Ca alloy. J. Alloys Compd. 911, 165113 (2022)

    Article  CAS  Google Scholar 

  31. C. Yue, X. Yuan, M. Su et al., Effect of adding Pr on the microstructure and hot tearing sensitivity of As-Cast Al–Cu–Mg alloys. Mater. Charact. 191, 112141 (2022)

    Article  CAS  Google Scholar 

  32. A. Hamadellah, A. Bouayad, C. Gerometta, Hot tear characterization of AlCU5MgTi and Alsi9 casting alloys using an instrumented constrained six rods casting Method. J. Mater. Process. Tech. 244, 282–288 (2017)

    Article  CAS  Google Scholar 

  33. Z. Wei, W. Mu, S. Liu et al., Effects of Gd on hot tearing susceptibility of As-cast Mg9694-Zn1-Y(2–x)–Gdx–Zr0.06 alloys reinforced with LPSO phase. J. Alloys Compd. 926, 166895 (2022)

    Article  CAS  Google Scholar 

  34. C. Tao, H. Huang, X. Yuan et al., Effect of Y element on microstructure and hot tearing sensitivity of As-cast Al-4.4Cu-1.5Mg-01.5Zr alloy. Int. Metalcast. 16, 1010–1019 (2022). https://doi.org/10.1007/s40962-021-00666-9

    Article  CAS  Google Scholar 

  35. Y. Wang, C. Yue, M. Su et al., Effect of Ce on hot tearing sensitivity of as-cast Al–Cu–Mg-Y alloy. J. Mater. Eng. Perform. 31, 6349–6359 (2022)

    Article  CAS  Google Scholar 

  36. H. Zhong, X. Li, B. Wang et al., Hot tearing of 9Cr3Co3W heat-resistant steel during solidification. Metals. 9, 25 (2019)

    Article  CAS  Google Scholar 

  37. Y. Chen, Z. Liu, S. Liu et al., Effect of Cu on the hot tearing susceptibility of Al-6Zn-2.5Mg-xCu alloy. Inter Metalcast 15, 130–140 (2021). https://doi.org/10.1007/s40962-020-00438-x

    Article  CAS  Google Scholar 

  38. T.W. Clyne, G.J. Davies, A quantitative solidification cracking test for castings and an evaluation of cracking in Al–Mg alloys. Br Found. 68, 238–244 (1975)

    Google Scholar 

  39. T.W. Clyne, G.J. Davies, The Influence of composition on solidification cracking susceptibility in binary alloy systems. Br. Found. 4, 65–73 (1981)

    Google Scholar 

  40. G. Vinodh, H.R. Jafari Nodooshan, D. Li et al., Effect of Al Content on Hot-Tearing Susceptibility of Mg–10Zn–xAl Alloys. Metall. Mater. Trans. A. 51, 1897–1910 (2020)

    Article  CAS  Google Scholar 

  41. R. Takai, N. Endo, R. Hirohara et al., Experimental and Numerical Analysis of Grain Refinement Effect on Hot Tearing Susceptibility for Al-Mg alloys. Int. J. Adv. Manuf. Technol. 100, 1867–1880 (2019)

    Article  Google Scholar 

  42. M. Su, X. Yuan, C. Yue et al., Infuence of liquid film Characteristics on hot cracking initiation in Al-Cu Alloys at the end of solidification. Acta Metall. Sin. Engl. Lett. 36, 103–117 (2023)

    Article  CAS  Google Scholar 

  43. K. Puparattanapong, P. Pandee, S. Boontein et al., Fluidity and hot cracking susceptibility of A356 alloys with Sc additions. Trans. Indian Inst. Metals 71, 1583–1593 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51875365) and the Scientific Research Fund of Liaoning Provincial Education Department (Nos. LJKZ0122).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bowen Zheng or Xiaoguang Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, C., Zheng, B., Su, M. et al. Effect of Cu/Mg Ratio on the Intermetallic Compound and Hot Tearing Susceptibility of Al–Cu–Mg Alloys. Inter Metalcast 18, 417–430 (2024). https://doi.org/10.1007/s40962-023-01033-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-023-01033-6

Keywords

Navigation