Skip to main content

Advertisement

Log in

Study on the Microstructure and Mechanical Properties of ZrB2/AA6111 Particle-Reinforced Aluminum Matrix Composites by Friction Stir Processing and Heat Treatment

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In this paper, the Al–K2ZrF6–KBF4 reaction system, a melt reaction method, was used to prepare in situ ZrB2/AA6111 particle-reinforced aluminum matrix composite. The modification of friction stir processing (FSP) and T6 heat treatment (HT) was carried out for this composite for the first time. The reinforcing particles in the stirring zone after FSP+HT were refined from 1.7–1.9 to 0.1–0.3 μm. The grain size was refined from 10–50 to 2–5 μm and then slightly coarsened to 3–10 μm. The tensile strength of the FSP stirring zone is 193.40 MPa, the elongation is 29.33%, and the average hardness is 60 HV. The hardness of the stirring zone is not uniform and fluctuates in a large range of 53–80 HV. After the T6 heat treatment, the tensile strength of the stirring zone increased by 63.8% to 316.75 MPa. The tensile strength was 13% higher than that of T6-6061. The elongation remained at 30.12% and did not decrease. The elongation is 10% higher than that of other 6xxx aluminum alloys and composites after T6 heat treatment. The plasticity-reduction of the conventional alloy after T6 heat treatment was solved. The property is more uniform and the average hardness is 120 HV. Calculated by the theoretical model, the yield strengths of the stirring zone of the original composite, FSP, and FSP+HT composites were more than 96% consistent with the experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. J.T. Staley, J. Liu, H.J.H. Warren, Aluminum alloys for aerostructures. Adv. Mater. Process. 152, 10–17 (1997)

    Google Scholar 

  2. Y.X. Feng, J.A. Liu, Development and study orientation for super strong aluminum alloy. Mater. Rep. 18, 196–202 (2004)

    Google Scholar 

  3. D.J. Lloyd, Particle reinforced aluminium and magnesium matrix composites. Int. Mater. Rev. 39, 1–23 (1994)

    Article  CAS  Google Scholar 

  4. L.H. Cui, R.Y. Luo, D.H. Ma, Carbon fiber reinforced Carbon-Al-Cu composite for friction material. Materials 11, 538 (2018)

    Article  Google Scholar 

  5. P. Dong, Z. Wang, W. Wang, Interfacial characteristics and fracture behavior of spark-plasma-sintered TiNi fiber-reinforced 2024Al matrix composites. Mater. Sci. Eng. A 691, 141–149 (2017)

    Article  CAS  Google Scholar 

  6. J. Feng, K.X. Song, S.H.H. Liang, Design and research progress of hybrid reinforced copper matrix composites. Trans. Mater. Heat. Treat. 39, 6–14 (2018). https://doi.org/10.13289/j.issn.1009-6264.2018-0006

    Article  CAS  Google Scholar 

  7. T. Saito, The automotive application of discontinuously reinforced TiB-Ti composites. J. Min. Metal. Mater. Soc. 56, 33–36 (2004)

    Article  CAS  Google Scholar 

  8. C.H.J. Zhang, High-temperature deformation behavior and microstructure and mechanical properties of (TiB+TiC)/Ti compostites, Harbin: Harbin Institute of Technology, (2013). https://doi.org/10.7666/d.D417565

  9. Y.Y. Gao, B.X. Dong, F. Qiu, The superior elevated-temperature mechanical properties of Al-Cu-Mg-Si composites reinforced with in situ hybrid-sized TiCx-TiB2 particles. Mater. Sci. Eng. A 728, 157–164 (2018)

    Article  CAS  Google Scholar 

  10. W.S. Tian, Q.L. Zhao, R. Geng, Improved creep resistance of Al-Cu alloy matrix composite reinforced with bimodal-sized TiCp. Mater. Sci. Eng. A 713, 190–194 (2018)

    Article  CAS  Google Scholar 

  11. Y.Y. Gao, F. Qiu, Q.L. Zhao, A new approach for improving the elevated-temperature strength and ductility of Al-Cu-Mg-Si alloys with minor amounts of dual-phased submicron/nanosized TiB2-TiC particles. Mater. Sci. Eng. A 764, 138266 (2019)

    Article  CAS  Google Scholar 

  12. J.Y. Li, J.P. Xie, A.Q. Wang, Research progress of discontinuous phase hybrid reinforced metal matrix composites. Powder Metall. Ind. 26, 55–61 (2016). https://doi.org/10.13228/j.boyuan.issn1006-6543.20150108

    Article  CAS  Google Scholar 

  13. S.C. Tjong, Z.Y. Ma, Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng. R Rep. 29, 49–113 (2000)

    Article  Google Scholar 

  14. A. Azarniya, H.R.M. Hosseini, A new method for fabrication of in situ Al/Al3Ti-Al2O3 nanocomposites based on thermal decomposition of nanostructured tialite. J. Alloys Compd. 643, 64–73 (2015)

    Article  CAS  Google Scholar 

  15. L. Jiao, F. Li, Y.T. Zhao, Microstructure and tribological behavior of in situ ZrB2/A356 composites prepared under magnetic field. Surf. Topogr. Metrol. Prop. 9, 015026 (2021)

    Article  CAS  Google Scholar 

  16. H. Li, P.Y. Xu, L. Jiao, Surface wear behavior and strengthening mechanism of Al3Zr particle reinforced aluminum matrix composites prepared in situ. Surf. Topogr. Metrol. Prop. 7, 045013 (2019)

    Article  Google Scholar 

  17. L. Jiao, F. Li, Y.T. Zhao, Surface friction and wear behavior of in situ AlB2 particle-reinforced A356 composites. J. Mater. Eng. Perform. 31, 5812–5822 (2022)

    Article  CAS  Google Scholar 

  18. H. Wang, J.P. Xie, S.H.M. Hao, Effect of SiC particle size on the microstructures and properties of aluminum matrix composites. Powder Metall. Technol. 31, 265–269 (2013). https://doi.org/10.3969/j.issn.1001-3784.2013.05.005

    Article  Google Scholar 

  19. S.H.M. Hao, J.P. Xie, A.Q. Wang, Strengthening mechanism of micrometer SiC particle reinforced aluminum matrix composites. Trans. Mater. Heat Treat. 37, 1–6 (2016). https://doi.org/10.13289/j.issn.1009-6264.2016.05.001

    Article  Google Scholar 

  20. Q.K. Cai, C.H.L. He, M.J. Zhao, Tensile properties and strengthening mechanism of pure aluminum matrix composite reinforced with sub-micrometric SiC particles. Acta Metall. Sin. 39, 865–869 (2003). https://doi.org/10.3321/j.issn:0412-1961.2003.08.017

    Article  CAS  Google Scholar 

  21. Y.L. Xiao, Y.L. Li, Y. Liang, Nanometre sized SiC particulates reinforced Al base composite material. Acta Metall. Sin. 32, 658–662 (1996)

    CAS  Google Scholar 

  22. H. Li, P.Y. Xu, Y.P. Qiao, Microstructure and mechanical properties of ultrahigh-speed friction-stir-welded joints of in situ Al3Zr particle-reinforced aluminum matrix composite sheets. Adv. Eng. Mater. 23, 2100295 (2021)

    Article  CAS  Google Scholar 

  23. D. Chamoret, N. Lebaal, A. Roman, Thermal aspects in friction stir process of AISI 316L: numerical and experimental investigation. Mech. Adv. Mater. Struct. 27, 74–79 (2020)

    Article  CAS  Google Scholar 

  24. H. Li, Y.P. Qiao, S.B. Lu, Study on microstructure evolution and strengthening and toughening of friction stir processed AA6082-4%Al3Zr in-situ composites. J. Mater. Eng. Perform. 31, 5221–5230 (2022)

    Article  CAS  Google Scholar 

  25. L. Jiao, B.W. Wang, Y.T. Zhao, Microstructure and plastic instability of (ZrB2+Al3Zr)/AA6016 composites prepared by melt reaction method. J. Mater. Eng. Perform. 32, 2509 (2022)

    Article  Google Scholar 

  26. N. Sun, D. Apelian, Friction stir processing of aluminum alloy a206: part I-microstructure evolution. Int. J. Metalcast. 13, 234–243 (2019). https://doi.org/10.1007/s40962-018-0263-y

    Article  CAS  Google Scholar 

  27. N. Sun, W.J. Jones, D. Apelian, Friction stir processing of aluminum alloy A206: part II-tensile and fatigue properties. Int. J. Metalcast. 13, 244–254 (2019). https://doi.org/10.1007/s40962-018-0268-6

    Article  CAS  Google Scholar 

  28. L. Jiao, Zh.W. Wang, Influence of electromagnetic ultrasound dual field coupling in situ synthesis of (ZrB2+Al3Zr)/AA6016 composites on the structure and properties. Int. J. Metalcast. (2022). https://doi.org/10.1007/s40962-022-00893-8

    Article  Google Scholar 

  29. C.H. Guan, Y.T. Zhao, G. Chen, Synergistic strengthening and toughening of copper coated graphene nanoplates and in situ nanoparticles reinforced AA6111 composites. Mater. Sci. Eng. A 822, 141661 (2021)

    Article  CAS  Google Scholar 

  30. M. Saessi, A. Alizadeh, A. Abdollahi, Wear behavior and dry sliding tribological properties of ultra-fine grained Al5083 alloy and boron carbide-reinforced Al5083-based composite at room and elevated temperatures. Trans. Nonferrous Met. Soc. China 31, 74–91 (2021)

    Article  CAS  Google Scholar 

  31. E.B. Moustafa, A.O. Mosleh, Effect of (Ti-B) modifier elements and FSP on 5052 aluminum alloy. J. Alloys Compd. 823, 153745 (2020)

    Article  CAS  Google Scholar 

  32. M. Balakrishnan, I. Dinaharan, K. Kalaiselvan, R. Palanivel, Friction stir processing of Al3Ni intermetallic particulate reinforced cast aluminum matrix composites: microstructure and tensile properties. J. Mater. Res. Technol. 9, 4356–4367 (2020)

    Article  CAS  Google Scholar 

  33. L. Trueba, G. Heredia, D. Rybicki, L.B. Johannes, Effect of tool shoulder features on defects and tensile properties of friction stir welded aluminum 6061-T6. J. Mater. Process. Technol. 219, 271–277 (2015)

    Article  CAS  Google Scholar 

  34. W. Woo, H. Choo, Softening behaviour of friction stir welded Al 6061-T6 and Mg AZ31B alloys. Sci. Technol. Weld. Join. 16, 267–272 (2011)

    Article  CAS  Google Scholar 

  35. X.L. Feng, H.J. Liu, J.C. Lippold, Microstructure characterization of the stir zone of submerged friction stir processed aluminum alloy 2219. Mater. Charact. 82, 97–102 (2013)

    Article  CAS  Google Scholar 

  36. A. Devaraju, A. Kumar, A. Kumaraswamy, B. Kotiveerachari, Influence of reinforcements (SiC and Al2O3) and rotational speed on wear and mechanical properties of aluminum alloy 6061-T6 based surface hybrid composites produced via friction stir processing. Mater. Des. 51, 331–341 (2013)

    Article  CAS  Google Scholar 

  37. H.A. Deore, A. Bhardwaj, A.G. Rao, Consequence of reinforced SiC particles and post process artificial ageing on microstructure and mechanical properties of friction stir processed AA7075. Def. Technol. 16, 1039–1050 (2020)

    Article  Google Scholar 

  38. V. Sharma, S. Kumar, Y. Dewang, Post-processing of stir casted Al-SI12Cu metal matrix composite by friction stir processing. Int. J. Metalcast. 16, 1985–1994 (2022). https://doi.org/10.1007/s40962-021-00737-x

    Article  CAS  Google Scholar 

  39. J. Mohamadigangaraj, S. Nourouzi, H.J. Aval, The effect of heat treatment and cooling conditions on friction stir processing of A390–10wt%SiC aluminium matrix composite. Mater. Chem. Phys. 263, 124423 (2021)

    Article  CAS  Google Scholar 

  40. H. Azimi, S. Nourouzi, R. Jamaati, Effects of Ti particles and T6 heat treatment on the microstructure and mechanical properties of A356 alloy fabricated by compocasting. Mater. Sci. Eng. A 818, 141443 (2021). https://doi.org/10.1016/j.msea.2021.141443

    Article  CAS  Google Scholar 

  41. Z. Zhang, Y. Zhao, C. Wang, High cycle fatigue behavior of in-situ ZrB2/AA6111 composites. Mater. Sci. Eng. A. 788, 139590 (2020). https://doi.org/10.1016/j.msea.2020.139590

    Article  CAS  Google Scholar 

  42. A. Lervik, C.D. Marioara, M. Kadanik, Precipitation in an extruded AA7003 aluminium alloy: observations of 6xxx-type hardening phases. Mater. Des. 186, 108204 (2020)

    Article  CAS  Google Scholar 

  43. A. Abúndez, I. Pereyra, B. Campillo, Improvement of ultimate tensile strength by artificial ageing and retrogression treatment of aluminium alloy 6061. Mater. Sci. Eng. A 668, 201–207 (2016). https://doi.org/10.1016/j.msea.2016.05.062

    Article  CAS  Google Scholar 

  44. M. Eriksson, S. Jacobson, Tribological surfaces of organic brake pads. Tribol. Int. 33, 817–827 (2000)

    Article  CAS  Google Scholar 

  45. H.B.M. Rajan, S. Ramabalan, I. Dinaharan, S.J. Vijay, Synthesis and characterization of in situ formed titanium diboride particulate reinforced AA7075 aluminum alloy cast composites. Mater. Des. 44, 438–445 (2013)

    Article  Google Scholar 

  46. Y.Z.H. Yuan, Preparation, reaction mechanism and properties of Al-ZrO2 and Al-ZrO2-C aluminum matrix composites, Nanjing: Nanjing University of Science and Technology, (2007). https://doi.org/10.7666/d.y1154681

  47. H. Dieringa, Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: a review. J. Mater. Sci. 46, 289–306 (2011)

    Article  CAS  Google Scholar 

  48. M.L. Wang, D. Chen, Z.H. Chen, Mechanical properties of in-situ TiB2/A356 composites. Mater. Sci. Eng. A 590, 246–254 (2014)

    Article  CAS  Google Scholar 

  49. B. Venkataraman, G. Sundararajan, Correlation between the characteristics of the mechanically mixed layer and wear behaviour of aluminium, Al-7075 alloy and Al-MMCs. Wear 245, 22–38 (2000)

    Article  CAS  Google Scholar 

Download references

Funding

(1) The Ministry of Science and Technology high-end foreign experts introduction plan project, G2022014043. (2) National Natural Science Foundation of China, No. 51605206. (3) Postgraduate Research and Practice Innovation Program of Jiangsu Province, No. SJCX21_1769. (4) Postgraduate Research and Practice Innovation Program of Jiangsu Province, No. SJCX22_1941.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Hui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caizhi, S., Hui, L., Feng, W. et al. Study on the Microstructure and Mechanical Properties of ZrB2/AA6111 Particle-Reinforced Aluminum Matrix Composites by Friction Stir Processing and Heat Treatment. Inter Metalcast 18, 457–469 (2024). https://doi.org/10.1007/s40962-023-01029-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-023-01029-2

Keywords

Navigation