Skip to main content
Log in

The effect of selected alloying element additions on properties of Mg-based alloy as bioimplants: A literature review

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

This review investigates the current application limitations of Mg and Mg alloys. The key issues hindering the application of biodegradable Mg alloys as implants are their fast degradation rate and biological consideration. We have discussed the effect of some selected alloying element additions on the properties of the Mg-based alloy, especially the nutrient elements in human (Zn, Mn, Ca, Sr). Different grain sizes, phase constituents and distributions consequently influence the mechanical properties of the Mg alloys. Solution strengthening and precipitation strengthening are enhanced by the addition of alloying elements, generally improving the mechanical properties. Besides, the hot working process can also improve the mechanical properties. Combination of different processing steps is suggested to be adopted in the fabrication of Mg-based alloys. Corrosion properties of these Mg-based alloys have been measured in vitro and in vivo. The degradation mechanism is also discussed in terms of corrosion types, rates, byproducts and response of the surrounding tissues. Moreover, the clinical response and requirements of degradable implants are presented, especially for the nutrient elements (Ca, Mn, Zn, Sr). This review provides information related to different Mg alloying elements and presents the promising candidates for an ideal implant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. George A, Ravindran S. Protein templates in hard tissue engineering. Nano Today, 2010, 5(4): 254–266

    Article  CAS  Google Scholar 

  2. Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomaterialia, 2012, 8(11): 3888–3903

    Article  CAS  Google Scholar 

  3. Witte F, Hort N, Vogt C, et al. Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science, 2008, 12(5–6): 63–72

    Article  CAS  Google Scholar 

  4. Witte F, Fischer J, Nellesen J, et al. Microtomography of magnesium implants in bone and their degradation. In: Bonse U, ed. Proceedings SPIE 6318, Developments in X-Ray Tomography V, 2006, 631806, doi: 10.1117/12.679844

    Chapter  Google Scholar 

  5. Sankaranarayanan S, Jayalakshmi S, Gupta M. Effect of individual and combined addition of micro/nano-sized metallic elements on the microstructure and mechanical properties of pure Mg. Materials & Design, 2012, 37: 274–284

    Article  CAS  Google Scholar 

  6. Staiger M P, Pietak A M, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials, 2006, 27(9): 1728–1734

    Article  CAS  Google Scholar 

  7. Kurosu S, Matsumoto H, Chiba A. Grain refinement of biomedical Co-27Cr-5Mo-0.16N alloy by reverse transformation. Materials Letters, 2010, 64(1): 49–52

    Article  CAS  Google Scholar 

  8. Cifuentes S C, Frutos E, González-Carrasco J L, et al. Novel PLLA/magnesium composite for orthopedic applications: A proof of concept. Materials Letters, 2012, 74: 239–242

    Article  CAS  Google Scholar 

  9. Kainer K U, Bala Srinivasan P, Blawert C, et al. Corrosion of magnesium and its alloys. In: Tony J A R, ed. Shreir’s Corrosion. Oxford: Elsevier, 2010, 3: 2011–2041

    Chapter  Google Scholar 

  10. Aghion E, Levy G. The effect of Ca on the in vitro corrosion performance of biodegradable Mg-Nd-Y-Zr alloy. Journal of Materials Science, 2010, 45(11): 3096–3101

    Article  CAS  Google Scholar 

  11. Zhang S, Zhang X, Zhao C, et al. Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomaterialia, 2010, 6(2): 626–640

    Article  CAS  Google Scholar 

  12. Gu X N, Xie X H, Li N, et al. In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomaterialia, 2012, 8(6): 2360–2374

    Article  CAS  Google Scholar 

  13. Peng Q, Huang Y, Zhou L, et al. Preparation and properties of high purity Mg-Y biomaterials. Biomaterials, 2010, 31(3): 398–403

    Article  CAS  Google Scholar 

  14. Kraus T, Fischerauer S F, Hänzi A C, et al. Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. Acta Biomaterialia, 2012, 8(3): 1230–1238

    Article  CAS  Google Scholar 

  15. Sun Y, Zhang B, Wang Y, et al. Preparation and characterization of a new biomedical Mg-Zn-Ca alloy. Materials & Design, 2012, 34: 58–64

    Article  Google Scholar 

  16. Remennik S, Bartsch I, Willbold E, et al. New, fast corroding high ductility Mg-Bi-Ca and Mg-Bi-Si alloys, with no clinically observable gas formation in bone implants. Materials Science and Engineering B, 2011, 176(20): 1653–1659

    Article  CAS  Google Scholar 

  17. Xin Y, Hu T, Chu P K. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Acta Biomaterialia, 2011, 7(4): 1452–1459

    Article  CAS  Google Scholar 

  18. Song G, Atrens A. Understanding magnesium corrosion — a framework for improved alloy performance. Advanced Engineering Materials, 2003, 5(12): 837–858

    Article  CAS  Google Scholar 

  19. Altun H, Sen S. Studies on the influence of chloride ion concentration and pH on the corrosion and electrochemical behaviour of AZ63 magnesium alloy. Materials & Design, 2004, 25(7): 637–643

    Article  CAS  Google Scholar 

  20. Bakhsheshi-Rad H R, Abdul-Kadir M R, Idris M H, et al. Relationship between the corrosion behavior and the thermal characteristics and microstructure of Mg-0.5Ca-xZn alloys. Corrosion Science, 2012, 64: 184–197

    Article  CAS  Google Scholar 

  21. Hartwig A. Role of magnesium in genomic stability. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2001, 475(1–2): 113–121

    Article  CAS  Google Scholar 

  22. Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 2005, 26(17): 3557–3563

    Article  CAS  Google Scholar 

  23. Wu G, Fan Y, Gao H, et al. The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D. Materials Science and Engineering A, 2005, 408(1–2): 255–263

    Article  Google Scholar 

  24. Brar H S, Wong J, Manuel M V. Investigation of the mechanical and degradation properties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implant materials. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 7: 87–95

    Article  Google Scholar 

  25. Li Y, Wen C, Mushahary D, et al. Mg-Zr-Sr alloys as biodegradable implant materials. Acta Biomaterialia, 2012, 8(8): 3177–3188

    Article  CAS  Google Scholar 

  26. Zhang E, Yin D, Xu L, et al. Microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Mn alloys for biomedical application. Materials Science and Engineering C, 2009, 29(3): 987–993

    Article  CAS  Google Scholar 

  27. Zhang E, Yang L. Microstructure, mechanical properties and biocorrosion properties of Mg-Zn-Mn-Ca alloy for biomedical application. Materials Science and Engineering A, 2008, 497(1–2): 111–118

    Google Scholar 

  28. Du H, Wei Z, Liu X, et al. Effects of Zn on the microstructure, mechanical property and bio-corrosion property of Mg-3Ca alloys for biomedical application. Materials Chemistry and Physics, 2011, 125(3): 568–575

    Article  CAS  Google Scholar 

  29. Salahshoor M, Guo Y B. Biodegradable orthopedic magnesium-calcium (MgCa) alloys, processing, and corrosion performance. Materials, 2012, 5(1): 135–155

    Article  CAS  Google Scholar 

  30. Zhou P, Gong H R. Phase stability, mechanical property, and electronic structure of an Mg-Ca system. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 8: 154–164

    Article  CAS  Google Scholar 

  31. Li Z, Gu X, Lou S, et al. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials, 2008, 29(10): 1329–1344

    Article  CAS  Google Scholar 

  32. Wan Y, Xiong G, Luo H, et al. Preparation and characterization of a new biomedical magnesium-calcium alloy. Materials & Design, 2008, 29(10): 2034–2037

    Article  CAS  Google Scholar 

  33. Bakhsheshi-Rad H R, Idris M H, Abdul-Kadir M R, et al. Microstructure analysis and corrosion behavior of biodegradable Mg-Ca implant alloys. Materials & Design, 2012, 33: 88–97

    Article  Google Scholar 

  34. Xu S W, Kamado S, Honma T. Recrystallization mechanism and the relationship between grain size and Zener-Hollomon parameter of Mg-Al-Zn-Ca alloys during hot compression. Scripta Materialia, 2010, 63(3): 293–296

    Article  CAS  Google Scholar 

  35. StJohn D H, Qian M, Easton M A, et al. Grain refinement of magnesium alloys. Metallurgical and Materials Transactions A, 2005, 36(7): 1669–1679

    Article  Google Scholar 

  36. Berglund I S, Brar H S, Dolgova N, et al. Synthesis and characterization of Mg-Ca-Sr alloys for biodegradable orthopedic implant applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2012, 100B(6): 1524–1534

    Article  CAS  Google Scholar 

  37. Gu X, Zheng Y, Cheng Y, et al. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials, 2009, 30(4): 484–498

    Article  CAS  Google Scholar 

  38. Khan S A, Miyashita Y, Mutoh Y, et al. Influence of Mn content on mechanical properties and fatigue behavior of extruded Mg alloys. Materials Science and Engineering A, 2006, 420(1–2): 315–321

    Article  Google Scholar 

  39. Zainal Abidin N I, Atrens A D, Martin D, et al. Corrosion of high purity Mg, Mg2Zn0.2Mn, ZE41 and AZ91 in Hank’s solution at 37°C. Corrosion Science, 2011, 53(11): 3542–3556

    Article  Google Scholar 

  40. Xiao W, Jia S, Wang L, et al. The microstructures and mechanical properties of cast Mg-Zn-Al-RE alloys. Journal of Alloys and Compounds, 2009, 480(2): L33–L36

    Article  CAS  Google Scholar 

  41. Kim H K, Kim W J. Microstructural instability and strength of an AZ31 Mg alloy after severe plastic deformation. Materials Science and Engineering A, 2004, 385(1–2): 300–308

    Google Scholar 

  42. Li Y C, Wong C S, Wen C, et al. Biodegradable Mg-Zr-Ca alloys for bone implant materials. Materials Technology: Advanced Performance Materials, 2012, 27(1): 49–51

    Article  CAS  Google Scholar 

  43. Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials, 2006, 27(7): 1013–1018

    Article  CAS  Google Scholar 

  44. Gu X N, Zhou WR, Zheng Y F, et al. Corrosion fatigue behaviors of two biomedical Mg alloys — AZ91D and WE43 — in simulated body fluid. Acta Biomaterialia, 2010, 6(12): 4605–4613

    Article  CAS  Google Scholar 

  45. Yang L, Huang Y D, Feyerabend F, et al. Influence of ageing treatment on microstructure, mechanical and bio-corrosion properties of Mg-Dy alloys. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 13: 36–44

    Article  CAS  Google Scholar 

  46. Chang J-W, Guo X-W, Fu P-H, et al. Effect of heat treatment on corrosion and electrochemical behaviour of Mg-3Nd-0.2Zn-0.4Zr (wt.%) alloy. Electrochimica Acta, 2007, 52(9): 3160–3167

    Article  CAS  Google Scholar 

  47. Liang S, Guan D, Tan X. The relation between heat treatment and corrosion behavior of Mg-Gd-Y-Zr alloy. Materials & Design, 2011, 32(3): 1194–1199

    Article  CAS  Google Scholar 

  48. Peng LM, Chang JW, Guo XW, et al. Influence of heat treatment and microstructure on the corrosion of magnesium alloy Mg-10Gd-3Y-0.4Zr. Journal of Applied Electrochemistry, 2009, 39(6): 913–920

    Article  CAS  Google Scholar 

  49. Xu L P, Yu G N, Zhang E, et al. In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. Journal of Biomedical Materials Research Part A, 2007, 83A(3): 703–711

    Article  CAS  Google Scholar 

  50. Aghion E, Levy G, Ovadia S. In vivo behavior of biodegradable Mg-Nd-Y-Zr-Ca alloy. Journal of Materials Science: Materials in Medicine, 2012, 23(3): 805–812

    Article  CAS  Google Scholar 

  51. Erdmann N, Angrisani N, Reifenrath J, et al. Biomechanical testing and degradation analysis of MgCa0.8 alloy screws: A comparative in vivo study in rabbits. Acta Biomaterialia, 2011, 7(3): 1421–1428

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Shang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, LN., Hou, ZT., Ye, X. et al. The effect of selected alloying element additions on properties of Mg-based alloy as bioimplants: A literature review. Front. Mater. Sci. 7, 227–236 (2013). https://doi.org/10.1007/s11706-013-0210-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-013-0210-z

Keywords

Navigation