Skip to main content
Log in

Corrosion behavior of as-cast Mg–8Li–3Al+xCe alloy in 3.5wt% NaCl solution

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Mg–8Li–3Al+xCe alloys (x = 0.5wt%, 1.0wt%, and 1.5wt%) were prepared through a casting route in an electric resistance furnace under a controlled atmosphere. The cast alloys were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The corrosion behavior of the as-cast Mg–8Li–3Al+xCe alloys were studied under salt spray tests in 3.5wt% NaCl solution at 35°C, in accordance with standard ASTM B–117, in conjunction with potentiodynamic polarization (PDP) tests. The results show that the addition of Ce to Mg–8Li–3Al (LA83) alloy results in the formation of Al2Ce intermetallic phase, refines both the α-Mg phase and the Mg17Al12 intermetallic phase, and then increases the microhardness of the alloys. The results of PDP and salt spray tests reveal that an increase in Ce content to 1.5wt% decreases the corrosion rate. The best corrosion resistance is observed for the LA83 alloy sample with 1.0wt% Ce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Wang, M.L. Zhang, and R.Z. Wu, Microstructure and properties of Mg–8Li–1Al–1Ce alloy, Mater. Lett., 62(2008), No. 12-13, p. 1846.

    Article  Google Scholar 

  2. P. Crawford, R. Barrosa, J. Mendez, J. Foyos, and O.S. Es-Said, On the transformation characteristics of LA141A (Mg–Li–Al) alloy, J. Mater. Process. Technol., 56(1996), No. 1-4, p. 108.

    Article  Google Scholar 

  3. H. Haferkamp, M. Niemeyer, R. Boehm, U. Holzkamp, C. Jaschik, and V. Kaese, Development, processing and applications range of magnesium lithium alloys, Mater. Sci. Forum, 350-351(2000), No. 7, p. 31.

    Article  Google Scholar 

  4. T. Wang, M.L. Zhang, Z.Y. Niu, and B. Liu, Influence of rare earth elements on microstructure and mechanical properties of Mg−Li alloys, J. Rare Earths, 24(2006), No. 6, p. 797.

    Article  Google Scholar 

  5. J.A. Jensen and L.S. Chumbley, Processing and mechanical properties of magnesium−lithium composites containing steel fibers, Metall. Mater. Trans. A, 29(1998), p. 863.

    Article  Google Scholar 

  6. H. Takuda, S. Kikuchi, T. Tsukada, K. Kubota, and N. Hatta, Effect of strain rate on deformation behaviour of a Mg–8.5Li–1Zn alloy sheet at room temperature, Mater. Sci. Eng. A, 271(1999), No. 1-2, p. 251.

    Article  Google Scholar 

  7. H. Takuda, T. Enami, K. Kubota, and N. Hatta, The formability of a thin sheet of Mg–8.5Li–1Zn alloy, J. Mater. Process. Technol., 101(2000), No. 1-3, p. 281.

    Article  Google Scholar 

  8. N. Hara, Y. Kobayashi, D. Kagaya, and N. Akao, Formation and breakdown of surface films on magnesium and its alloys in aqueous solutions, Corros. Sci., 49(2007), No. 1, p. 166.

    Article  Google Scholar 

  9. J.H. Nordlien, K. Nisancioglu, S. Ono, and N. Masuko, Morphology and structure of water-formed oxides on ternary MgAl alloys, J. Electrochem. Soc., 144(1997), No. 2, p. 461.

    Article  Google Scholar 

  10. J.L. Wang, R.L. Liao, L.D. Wang, Y.M. Wu, Z.Y. Cao, and L.M. Wang, Investigations of the properties of Mg−5Al−0.3Mn−xCe (x=0−3,wt.%) alloys, J. Alloys Compd., 477(2009), No. 1, p. 341.

    Google Scholar 

  11. M.L. Zhang, R.Z. Wu, and T. Wang, Microstructure and mechanical properties of Mg−8Li−(0−3)Ce alloys, J. Mater. Sci., 44(2009), No. 5, p. 1237.

    Article  Google Scholar 

  12. H. Yan, R.S. Chen, and E.H. Han, Microstructures and mechanical properties of cold rolled Mg−8Li and Mg−8Li−2Al−2RE alloys, Trans. Nonferrous Met. Soc. China, 20(2010), Suppl. 2, p. s550.

    Article  Google Scholar 

  13. B. Liu, M.L. Zhang, and R.Z. Wu, Influence of Ce on microstructure and mechanical properties of LA141 alloys, Trans. Nonferrous Met. Soc. China, 17(2007), Suppl. 1, p. s376.

    Google Scholar 

  14. Z.K. Qu, L.B. Wu, R.Z. Wu, J.H. Zhang, M.L. Zhang, and B. Liu, Microstructures and tensile properties of hot extruded Mg–5Li–3Al–2Zn–xRE (rare earths) alloys, Mater. Des., 54(2014), p. 792.

    Article  Google Scholar 

  15. Y.W. Song, D.Y. Shan, R.S. Chen, and E. Han, Corrosion characterization of Mg–8Li alloy in NaCl solution, Corros. Sci., 51(2009), No. 5, p. 1087.

    Article  Google Scholar 

  16. L.B. Wu, X.H. Liu, R.Z. Wu, C.L. Cui, J.H. Zhang, and M.L. Zhang, Microstructure and tensile properties of Mg−Li−Al− Zn based alloys with Ce addition, Trans. Nonferrous Met. Soc. China, 22(2012), No. 4, p. 779.

    Article  Google Scholar 

  17. ASTM B117–11, Standard Practice for Operating Salt Spray (Fog) Apparatus, ASTM International, West Conshohocken, 2011.

    Google Scholar 

  18. ASTM G31–72, Standard Practices for Laboratory Immersion Corrosion Testing of Metals, ASTM International, West Conshohocken, 2004.

    Google Scholar 

  19. L.B. Wu, C.L. Cui, R.Z. Wu, J.Q. Li, H.B. Zhan, M.L. Zhang, Effects of Ce-rich RE additions and heat treatment on the microstructure and tensile properties of Mg–Li–Al–Zn-based alloy, Mater. Sci. Eng. A, 528(2011), No. 4-5, p. 2174.

    Article  Google Scholar 

  20. M. Easton and D. StJohn, Grain refinement of aluminum alloys: Part II. Confirmation of, and a mechanism for, the solute paradigm, Metall. Mater. Trans. A, 30(1999), No. 6, p. 1625.

    Article  Google Scholar 

  21. H.H. Uhlig and R.W. Revie, Corrosion and Corrosion Control, 3rd Ed., John Wiley and Sons, New York, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Manivannan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manivannan, S., Dinesh, P., Mahemaa, R. et al. Corrosion behavior of as-cast Mg–8Li–3Al+xCe alloy in 3.5wt% NaCl solution. Int J Miner Metall Mater 23, 1196–1203 (2016). https://doi.org/10.1007/s12613-016-1339-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1339-4

Keywords

Navigation