Skip to main content
Log in

Microstructure, High-temperature Tensile and Tribological Behavior of Zn/Cr Composites

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

To enhance the high-temperature strength and wear resistance of pure zinc, Zn-matrix composites containing 5, 10, and 20 vol% Cr particles were fabricated through melt stirring followed by high pressure die casting (HPDC). Theoretical calculations for Cr particle engulfment during solidification were confirmed by microstructural analysis. Cr particles could effectively refine the grains of pure zinc. As a result, the room temperature (RT) strength increased by adding up to 10 vol% Cr into the zinc matrix. The strengthening effect of Cr particles at 110 °C was even higher than that at RT. It was found that ductile dimple fracture with ripples on the dimple walls was responsible for increased ductility of the zinc and Zn/Cr composite at high temperatures. Results of wear tests for pure zinc showed that increasing the test temperature from RT to 110 °C led to severely fluctuant friction due to the enhanced adhesion. Cr particles stabilized the friction trace of zinc and reduced the mean coefficient of friction, leading to improved wear resistance, especially at high temperatures. At 110 °C, the lowest wear damage was observed for the Zn/20Cr composite, while severe delamination resulted in an excessive mass loss in pure zinc samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. R.J. Barnhurst, SAE Trans. 97, 164 (1988)

    Google Scholar 

  2. D. Yousefi, R. Taghiabadi, M.H. Shaeri, P. Abedinzadeh, Inter Metalcast 15, 206 (2021). https://doi.org/10.1007/s40962-020-00447-w

    Article  CAS  Google Scholar 

  3. ASM Handbook, Vol. 18, Friction, lubrication, and wear technology, (ASM International, USA, 1992), pp. 1797-1850.

  4. B.K. Prasad, A.K. Patwardhan, A.H. Yegneswaran, J. Mater. Eng. Perform. 7, 130 (1998)

    Article  CAS  Google Scholar 

  5. J. Gutiérrez-Menchaca, D. Torres-Torres, A.M. Garay-Tapia, J. Alloys Compd. 829, 154511 (2020)

    Article  Google Scholar 

  6. A. Pola, M. Tocci, F. Goodwin, Metals 10, 1 (2020)

    Article  Google Scholar 

  7. A. Türk, M. Durman, E.S. Kayali, J. Mater. Sci. 42, 8298 (2007)

    Article  Google Scholar 

  8. N. Chawla, K.K. Chawla, in Metal Matrix Composites. ed. by N. Chawla, K.K. Chawla (Springer, New York, 2013), p. 1

    Chapter  Google Scholar 

  9. B. Miroslav, S. Mitrović, F. Zivic, I. Bobić, Tribol. Lett. 38, 337 (2010)

    Article  CAS  Google Scholar 

  10. M. Almomani, M.T. Hayajneh, M. Draidi, Particul. Sci. Technol. 34, 317 (2016)

    Article  CAS  Google Scholar 

  11. O.P. Modi, S. Rathod, B.K. Prasad, A.K. Jha, G. Dixit, Tribol. Int. 40, 1137 (2007)

    Article  CAS  Google Scholar 

  12. B.N. Anjan, G.V. Preetham Kumar, Transactions of the Indian Institute of Metals 72, 1621 (2019).

  13. S. Sahu, M.D. Goel, D.P. Mondal, S. Das, Mater. Sci. Eng., A 607, 162 (2014).

  14. S.C. Sharma, B.M. Girish, R. Kamath, B.M. Satish, Wear 219, 162 (1998)

    Article  CAS  Google Scholar 

  15. M.A. Almomani, M.T. Hayajneh, S.M. Alelaumi, Int. J. Cast Met. Res. 32, 229 (2019)

    Article  CAS  Google Scholar 

  16. R. Dalmis, H. Cuvalci, A. Canakci, O. Guler, Journal of Wuhan University of Technology-Mater. Sci. Ed. 32, 747 (2017)

    CAS  Google Scholar 

  17. A. Vencl, V. Šljivić, M. Pokusová et al., Production, Microstructure and Tribological Properties of Zn-Al/Ti Metal-Metal Composites Reinforced with Alumina Nanoparticles. Inter Metalcast (2021). https://doi.org/10.1007/s40962-020-00565-5

    Article  Google Scholar 

  18. S.H.J. Lo, S. Dionne, F.E. Goodwin, in Overview on the Development of Zinc-Based Metal Matrix Composites, pp. 607, Australasian Institute of Mining & Metallurgy, Hobart, Australia (1993).

  19. S. Dionne, M. Popescu, S.H.J. Lo, F.E. Goodwin, in Tensile properties of cold chamber die cast ceramic particulate-reinforced ZA-8 composites, Quebec, Canada (1993).

  20. H. Okamoto, J. Phase Equilib. Diffus. 33, 246 (2012)

    Article  CAS  Google Scholar 

  21. V.J. Michaud, in Fundamentals of Metal-Matrix Composites. ed. by S. Suresh, A. Mortensen, A. Needleman (Butterworth-Heinemann, Boston, 1993), p. 3

    Chapter  Google Scholar 

  22. J.B. Ferguson, G. Kaptay, B.F. Schultz, P.K. Rohatgi, K. Cho, C.-S. Kim, Metal.l Mater. Trans. A 45, 4635 (2014).

  23. P.K. Rohatgi, P. Ajay Kumar, N.M. Chelliah, T.P.D. Rajan, JOM 72, 2912 (2020).

  24. D.J. Lloyd, Compos. Sci. Technol. 35, 159 (1989)

    Article  CAS  Google Scholar 

  25. J.F. Shackelford, W. Alexander, CRC Materials Science and Engineering Handbook, 3rd edn. (CRC Press, Boca Raton, 2000)

    Book  Google Scholar 

  26. J. Pelleg, in Mechanical Properties of Materials. ed. by J. Pelleg (Springer, Netherlands, Dordrecht, 2013), p. 147

    Chapter  Google Scholar 

  27. F. Tang, I.E. Anderson, T. Gnaupel-Herold, H. Prask, Mater. Sci. Eng., A 383, 362 (2004).

  28. F. Ghasemi, M. Moazami-Goudarzi, H. Najafi, Rare Met. 40, 2584 (2021)

    Article  CAS  Google Scholar 

  29. N. Shi, R.J. Arsenault, Annu. Rev. Mater. Sci. 24, 321 (1994)

    Article  CAS  Google Scholar 

  30. J.J. Jonas, M.J. Luton, in Advances in Deformation Processing. ed. by J.J. Burke, V. Weiss (Springer, US, Boston, MA, 1978), p. 215

    Chapter  Google Scholar 

  31. M. Moazami-Goudarzi, F. Akhlaghi, Tribol. Int. 102, 28 (2016)

    Article  CAS  Google Scholar 

  32. Richard W. Hertzberg, Richard P. Vinci, J.L. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, Fifth edn. (John Wiley & Sons, Hoboken, 2013).

  33. M. Rouhi, M. Moazami-Goudarzi, M. Ardestani, T. Nonferr, Metal. Soc. 29, 1169 (2019)

    CAS  Google Scholar 

  34. B. Bhushan, Principles and Applications of Tribology, 2nd edn. (John Wiley & Sons, New York, 2013)

    Book  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Moazami-Goudarzi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shariati, M., Moazami-Goudarzi, M. & Abbasi, A. Microstructure, High-temperature Tensile and Tribological Behavior of Zn/Cr Composites. Inter Metalcast 16, 1595–1605 (2022). https://doi.org/10.1007/s40962-021-00708-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00708-2

Keywords

Navigation