Skip to main content
Log in

Correlation Between Unsteady-State Solidification and Electrochemical Corrosion Parameters of an AlSiMg Alloy

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Electrochemical corrosion tests were performed on samples of horizontally solidified Al7Si0.3Mg (wt%) alloy. The investigated solidification and corrosion parameters were growth and cooling rates (VL and TR, respectively), secondary dendritic spacing (λ2), corrosion potential, and corrosion current (ECORR and iCORR, respectively). Optical and scanning electron microscopy analysis were carried out on the samples, and typical solidification microstructure was characterized by primary and eutectic phases (Alα and Alα-eutectic+ Si+ π-Al8Mg3FeSi6+θ-Mg2Si, respectively). The results depicted a higher corrosion resistance in as-cast samples with finer dendritic microstructure, that is, for higher and lower VL/TR and λ2 values, respectively. A mathematical expression characterized the iCORR variation with VL, TR, and λ2. SEM/EDS element maps and point microanalysis showed a strong decreased of Mg and Fe elements within the interdendritic regions due to the corrosion of π and θ intermetallic phases. It was allowed to conclude that Si particles exhibit cathodic behavior in relation to the matrix as well as π and θ intermetallic compounds. A comparative analysis with the literature was also conducted.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10.

Similar content being viewed by others

References

  1. C.R. Barbosa, J.O. Lima, G.M.H. de Machado, H.A.M. de Azevedo, F.S. Rocha, A.S. Barros, O.F.L. Rocha, Mater. Res. (2019). https://doi.org/10.1590/1980-5373-mr-2018-0365

    Article  Google Scholar 

  2. C.R. Barbosa, G.H. Machado, H.M. Azevedo, F.S. Rocha, J.C. Filho, A.A. Pereira, O. Rocha, Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00334-y

    Article  Google Scholar 

  3. R. Chen, Q. Xu, H. Guo, Z. Xia, Q. Wu, B. Liu, Mater. Sci. Eng. A (2017). https://doi.org/10.1016/j.msea.2016.12.051

    Article  Google Scholar 

  4. R. Chen, Y. Shi, Q. Xu, B. Liu, Trans. Nonferrous Met. Soc. China (2014). https://doi.org/10.1016/S1003-6326(14)63236-2

    Article  Google Scholar 

  5. N. Birbilis, R.G. Buchheit, J Electrochem Soc (2005). https://doi.org/10.1149/1.1869984

    Article  Google Scholar 

  6. J. Li, J. Dang, Metals (2017). https://doi.org/10.3390/met7030084

    Article  Google Scholar 

  7. A. Kordijazi, D. Weiss, S. Das, S. Behera, H.M. Roshan, P. Rohatgi, Inter Metalcast (2020). https://doi.org/10.1007/s40962-020-00457-8

    Article  Google Scholar 

  8. G.K. Sigworth, Inter. Metalcast (2020). https://doi.org/10.1007/s40962-020-00475-6~

    Article  Google Scholar 

  9. J. Scepanovic, V. Asanovic, D. Vuksanovic, D. Radonjic, S. Herenda, F. Korac, Inter. Metalcast (2019). https://doi.org/10.1007/s40962-019-00315-2

    Article  Google Scholar 

  10. P.S. Kumar, V.M. Krishna, V. Kavimani, K.S. Prakash, G.S. Kumar, Inter Metalcast (2019). https://doi.org/10.1007/s40962-019-00330-3

    Article  Google Scholar 

  11. S. El-Hadad, M.E. Moussa, M. Waly, Inter. Metalcast. (2020). https://doi.org/10.1007/s40962-020-00483-6

    Article  Google Scholar 

  12. A. Barros, C. Cruz, A.P. Silva, N. Cheung, A. Garcia, O. Rocha, A. Moreira, Acta Metall. Sin-Engl. (2019). https://doi.org/10.1007/s40195-018-0852-z

    Article  Google Scholar 

  13. A. Barros, C. Cruz, A.P. Silva, N. Cheung, A. Garcia, O. Rocha, A. Moreira, J. Corros. Eng. Sci. Techcol. (2020). https://doi.org/10.1080/1478422X.2020.1742410

    Article  Google Scholar 

  14. C. Brito, T. Vida, E. Freitas, N. Cheung, J. Spinelli, A. Garcia, J. Alloy Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.02.161

    Article  Google Scholar 

  15. W.R. Osório, C.M. Freire, A. Garcia, J. Alloy Compd. (2005). https://doi.org/10.1016/j.jallcom.2005.01.035

    Article  Google Scholar 

  16. W.R. Osório, D.J. Moutinho, L.C. Peixoto, I.L. Ferreira, A. Garcia, Electrochim. Acta (2011). https://doi.org/10.1016/j.electacta.2011.07.028

    Article  Google Scholar 

  17. W.R. Osório, L.C. Peixoto, D.J. Moutinho, L.G. Gomes, I.L. Ferreira, A. Garcia, Mater. Des. (2011). https://doi.org/10.1016/j.matdes.2011.03.013

    Article  Google Scholar 

  18. W.R. Osório, C.A. Siqueira, C.A. Santos, A. Garcia, Int. J. Electrochem. Sci. 6, 6275–6289 (2011)

    Google Scholar 

  19. W.R. Osório, J.E. Spinelli, A.P. Boeira, C.M. Freire, A. Garcia, Microsc. Res. Tech. (2007). https://doi.org/10.1002/jemt.20496

    Article  Google Scholar 

  20. W.R. Osório, C.M. Freire, R. Caram, A. Garcia, Electrochim. Acta (2012). https://doi.org/10.1016/j.electacta.2012.05.106

    Article  Google Scholar 

  21. W.R. Osório, L.C. Peixoto, M.V. Canté, A. Garcia, Electrochim. Acta (2010). https://doi.org/10.1016/j.electacta.2010.02.029

    Article  Google Scholar 

  22. W.R. Osório, C.A. Santos, J.M.V. Quaresma, A. Garcia, J. Mater. Process Technol. (2003). https://doi.org/10.1016/S0924-0136(03)00355-8

    Article  Google Scholar 

  23. D.C.B.L. Soares, A.S. Barros, M. Dias, A.L.S. Moreira, J.C. Cardoso, A.P. Silva, O.L. Rocha, Int. J. Elec. Sci. (n.d.). https://doi.org/10.20964/2017.01.63

    Article  Google Scholar 

  24. H.M. Azevedo, G.H. Machado, C.R. Barbosa, F.S. Rocha, R.B. Costa, T.A. Costa, O.L. Rocha, Metall. Mater. Trans. A (2018). https://doi.org/10.1007/s11661-018-4747-4

    Article  Google Scholar 

  25. E.C. Araújo, A.S. Barros, R.H. Kikuchi, A.P. Silva, F.A. Gonçalves, A.L. Moreira, O.L. Rocha, Metall Mater. Trans. A (2017). https://doi.org/10.1007/s11661-016-3942-4

    Article  Google Scholar 

  26. A. Barros, I. Magno, F. Souza, C. Mota, A. Moreira, M. Silva, O. Rocha, Met. Mater. Int. (2015). https://doi.org/10.1007/s12540-015-4499-2

    Article  Google Scholar 

  27. T.A. Costa, A.L. Moreira, D.J. Moutinho, M. Dias, I.L. Ferreira, J. Spinelli, O.L. Rocha, A. Garcia, Mater. Sci. Tech. (2015). https://doi.org/10.1179/1743284714Y.0000000678

    Article  Google Scholar 

  28. A.V. Rodrigues, T.S. Lima, T.A. Vida, C. Brito, A. Garcia, N. Cheung, Met. Mater. Int. (2018). https://doi.org/10.1007/s12540-018-0116-5

    Article  Google Scholar 

  29. A.E. Ares, L.M. Gassa, C.E. Schvezov, M.R. Rosenberger, Mater. Chem. Phys. (2012). https://doi.org/10.1016/j.matchemphys.2012.06.065

    Article  Google Scholar 

  30. J.O. Lima, C.R. Barbosa, I.A.B. Magno, J.M. Nascimento, A.S. Barros, M.C. Oliveira, F.A. Souza, O.L. Rocha, Trans. Nonferrous Met. Soc. China (2018). https://doi.org/10.1016/S1003-6326(18)64751-X

    Article  Google Scholar 

  31. C. Kamal, M.G. Sethuraman, Arab. J. Chem. (2012). https://doi.org/10.1016/j.arabjc.2010.08.006

    Article  Google Scholar 

  32. M.S. Al-Otaibi, A.M. Al-Mayouf, M. Khan, A.A. Mousa, S.A. Al-Mazroa, H.Z. Alkhathlan, Arab. J. Chem. (2014). https://doi.org/10.1016/j.arabjc.2012.01.015

    Article  Google Scholar 

  33. M.H. Hussin, M.J. Kassim, N.N. Razali, N.H. Dahon, D. Nasshorudin, Arab. J. Chem. (2016). https://doi.org/10.1016/j.arabjc.2011.07.002

    Article  Google Scholar 

  34. P.P. Kumari, P. Shetty, S.A. Rao, Arab J. Chem. (2017). https://doi.org/10.1016/j.arabjc.2014.09.005

    Article  Google Scholar 

  35. N. Chaubey, V.K. Singh, M.A. Quraishi, Ain Shams Eng. J. (2018). https://doi.org/10.1016/j.asej.2016.04.010

    Article  Google Scholar 

  36. R.T. Loto, Results Phys. (2018). https://doi.org/10.1016/j.rinp.2017.12.003

    Article  Google Scholar 

  37. M.T. Saeed, M. Saleem, S. Usmani, I.A. Malik, F.A. Al-Shammari, K.M. Deen, J. King Saud Univ. Sci. (2019). https://doi.org/10.1016/j.jksus.2019.01.013

    Article  Google Scholar 

  38. A. Reza, A. Kemal, P.E. Markey, Process Sa.f Prog. (2002). https://doi.org/10.1002/prs.680210312

    Article  Google Scholar 

  39. S.S.A. Rehim, H.H. Hassan, M.A. Amin, Corros Sci. (2004). https://doi.org/10.1016/S0010-938X(03)00133-1

    Article  Google Scholar 

  40. P.A. Schweitzer, Fundamentals of Metallic Corrosion: Atmospheric and Media Corrosion of Metals, vol. 2 (CRCPress Taylor & Francis Group, Boca Raton, 2007), pp. 2–35

    Google Scholar 

  41. M. Amin, S.S.A. Rehim, A.S. El-Lithy, Electrochim. Acta (2010). https://doi.org/10.1016/j.electacta.2010.05.055

    Article  Google Scholar 

  42. P.M. Natishan, W.E. O’Grady, J. Electrochem. Soc. (2014). https://doi.org/10.1149/2.1011409jes

    Article  Google Scholar 

  43. A.S. Román, C.M. Méndez, C.A. Gervasi, R.B. Rebak, A.E. Ares, J. Mater. Eng. Perform. (2020). https://doi.org/10.1007/s11665-020-05344-1

    Article  Google Scholar 

  44. A.E. Ares, L.M. Gassa, S.F. Gueijman, C.E. Schvezov, J. Cryst. Growth. (2008). https://doi.org/10.1016/j.jcrysgro.2007.11.169

    Article  Google Scholar 

  45. X. Wu, H. Zhang, Z. Ma, T. Tao, J. Gui, W. Song, B. Yang, H. Zhang, J. Alloy Compd. (2019). https://doi.org/10.1016/j.jallcom.2019.01.352

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful the IFPA—Federal Institute of Education, Science and Technology of Pará, UFPA—Federal University of Pará, and the financial support provided by CNPq—National Council for Scientific and Technological Development—National Council for Scientific and Technological Development (Grants 302846/2017-4 and 400634/2016-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otávio L. Rocha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbosa, C.R., Silva, T.C., Azevedo, H.M. et al. Correlation Between Unsteady-State Solidification and Electrochemical Corrosion Parameters of an AlSiMg Alloy. Inter Metalcast 16, 191–203 (2022). https://doi.org/10.1007/s40962-021-00571-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00571-1

Keywords

Navigation