Skip to main content

Advertisement

Log in

Expression of Nuclear Division Cycle 80 Complex Genes in Ovarian Cancer and Correlation with the Clinicopathological Features and Survival Outcomes

  • Original Article
  • Published:
Indian Journal of Gynecologic Oncology Aims and scope Submit manuscript

Abstract

Purpose

Aberrant expression of the nuclear division cycle 80 (NDC80) complex has been implicated in various cancers but remains understudied in ovarian cancer (OC). This study aimed to evaluate the mRNA expression of NDC80 complex genes (NDC80, NUF2, SPC24, and SPC25) in OC and explore possible associations with the clinicopathological features of OC patients.

Methods

NDC80, NUF2, SPC24, and SPC25 mRNA expression levels were evaluated in 40 OC tissue specimens and 40 adjacent non-cancerous ovarian tissue specimens by real-time quantitative PCR. Correlations of the genes’ expression with the patients’ clinicopathological data were reviewed. Effect of the genes’ expression on survival outcomes was assessed using Kaplan–Meier plotter. Logistic regression analysis was used to identify predictors of higher tumor stages among OC patients.

Results

All four genes were significantly overexpressed in OC tissues compared to adjacent non-cancerous ovarian tissues. NDC80, SPC24, and SPC25 demonstrated significant diagnostic values. Combinations of NDC80 + SPC24, NUF2 + SPC24, and SPC24 + SPC25 showed a diagnostic advantage over single-gene analysis. NDC80 and NUF2 were associated with late tumor stages. NUF2 was associated with bilateral ovarian masses. SPC24 was related to negative PR status. The mRNA expression of NDC80, NUF2, and SPC25 was positively correlated. NUF2 overexpression and mutated p53 were significant predictors of higher tumor stages. NDC80, NUF2, and SPC25 predicted poor overall survival. NDC80 and NUF2 predicted poor progression-free survival.

Conclusion

Overexpression of NDC80 complex genes is involved in OC pathogenesis. The genes may serve as potential biomarkers for OC diagnosis and prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AUC:

Area under the ROC curve

BMI:

Body mass index

CA125:

Cancer antigen 125

cDNA:

Complementary DNA

CIN:

Chromosome instability

EOC:

Epithelial ovarian cancer

ER:

Estrogen receptor

FIGO:

International Federation of Gynecology and Obstetrics

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GEO:

Gene Expression Omnibus

HGSC:

High-grade serous carcinoma

KM:

Kaplan–Meier

MAPK:

Mitogen-activated protein kinase

Mdm 2:

Mouse double minute 2

NCBI:

National Center for Biotechnology Information

NDC80:

Nuclear division cycle 80

OC:

Ovarian cancer

OS:

Overall survival

PFS:

Progression-free survival

PI3K-AKT:

Phosphatidylinositol 3-kinase-AKT serine/threonine kinase

PR:

Progesterone receptor

ROC:

Receiver operating characteristic

RT-qPCR:

Real-time quantitative polymerase chain reaction

TCGA:

The Cancer Genome Atlas

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

    Article  CAS  PubMed  Google Scholar 

  2. Goff BA, Mandel L, Muntz HG, Melancon CH. Ovarian carcinoma diagnosis. Cancer. 2000;89(10):2068–75. https://doi.org/10.1002/1097-0142(20001115)89:10%3c2068::AID-CNCR6%3e3.0.CO;2-Z.

    Article  CAS  PubMed  Google Scholar 

  3. Cheeseman IM. The kinetochore. Cold Spring Harb Perspect Biol. 2014;6(7): a015826. https://doi.org/10.1101/cshperspect.a015826.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bharadwaj R, Yu H. The spindle checkpoint, aneuploidy, and cancer. Oncogene. 2004;23:2016–27. https://doi.org/10.1038/sj.onc.1207374.

    Article  CAS  PubMed  Google Scholar 

  5. Ciferri C, De Lucall J, Monzani S, Ferrari KJ, Ristic D, Wyman C, et al. Architecture of the human ndc80-hec1 complex, a critical constituent of the outer kinetochore. J Biol Chem. 2005;280(32):29088–95. https://doi.org/10.1074/jbc.M504070200.

    Article  CAS  PubMed  Google Scholar 

  6. Meng QC, Wang HC, Song ZL, Shan ZZ, Yuan Z, Zheng Q, et al. Overexpression of NDC80 is correlated with prognosis of pancreatic cancer and regulates cell proliferation. Am J Cancer Res. 2015;5(5):1730–40.

    PubMed  PubMed Central  Google Scholar 

  7. Yin H, Meng T, Zhou L, Chen H, Song D. SPC24 is critical for anaplastic thyroid cancer progression. Oncotarget. 2017;8(13):21884–91. https://doi.org/10.18632/oncotarget.15670.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yan X, Huang L, Liu L, Qin H, Song Z. Nuclear division cycle 80 promotes malignant progression and predicts clinical outcome in colorectal cancer. Cancer Med. 2018;7(2):420–32. https://doi.org/10.1002/cam4.1284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen X, Li W, Xiao L, Liu L. Nuclear division cycle 80 complex is associated with malignancy and predicts poor survival of hepatocellular carcinoma. Int J Clin Exp Pathol. 2019;12(4):1233–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Q, Zhu Y, Li Z, Bu Q, Sun T, Wang H, et al. Up-regulation of SPC25 promotes breast cancer. Aging (Albany NY). 2019;11(15):5689–704. https://doi.org/10.18632/aging.102153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun Z-Y, Wang W, Gao H, Chen Q-F. Potential therapeutic targets of the nuclear division cycle 80 (NDC80) complexes genes in lung adeno-carcinoma. J Cancer. 2020;11(10):2921–34. https://doi.org/10.7150/jca.41834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sethi G, Pathak HB, Zhang H, Zhou Y, Einarson MB, Vathipadiekal V, et al. An RNA interference lethality screen of the human druggable genome to identify molecular vulnerabilities in epithelial ovarian cancer. PLoS ONE. 2012;7(10):1–13. https://doi.org/10.1371/journal.pone.0047086.

    Article  CAS  Google Scholar 

  13. Zhou Y, Layton O, Hong L. Identification of genes and pathways involved in ovarian epithelial cancer by bioinformatics analysis. J Cancer. 2018;9(17):3016–22. https://doi.org/10.7150/jca.26133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dong C, Tian X, He F, Zhang J, Cui X, He Q, et al. Integrative analysis of key candidate genes and signaling pathways in ovarian cancer by bioinformatics. J Ovarian Res. 2021;14(1):1–12. https://doi.org/10.1186/s13048-021-00837-6.

    Article  CAS  Google Scholar 

  15. Jiang X, Jiang Y, Luo S, Sekar K, Koh CKT, Deivasigamani A, et al. Correlation of NUF2 overexpression with poorer patient survival in multiple cancers. Cancer Res Treat. 2021;53(4):944–61. https://doi.org/10.4143/crt.2020.466.

    Article  CAS  PubMed  Google Scholar 

  16. Leng R, Meng Y, Sun X, Zhao Y. NUF2 overexpression contributes to epithelial ovarian cancer progression via ERBB3-mediated PI3K-AKT and MAPK signaling axes. Front Oncol. 2022;12:1057198. https://doi.org/10.3389/fonc.2022.1057198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ren M, Zhao H, Gao Y, Chen Q, Zhao X, Yue W. NUF2 promotes tumorigenesis by interacting with HNRNPA2B1 via PI3K/AKT/mTOR pathway in ovarian cancer. J Ovarian Res. 2023;16(1):1–13. https://doi.org/10.1186/s13048-023-01101-9.

    Article  CAS  Google Scholar 

  18. Prat J. Staging classification for cancer of the ovary, fallopian tube, and peritoneum. Int J Gynecol Obstet. 2014;124(1):1–5. https://doi.org/10.1016/j.ijgo.2013.10.001.

    Article  Google Scholar 

  19. Florell SR, Coffin CM, Holden JA, Zimmermann JW, Gerwels JW, Summers BK, et al. Preservation of RNA for functional genomic studies: a multidisciplinary tumor bank protocol. Mod Pathol. 2001;14(2):116–28. https://doi.org/10.1038/modpathol.3880267.

    Article  CAS  PubMed  Google Scholar 

  20. Chomczynski P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques. 1993;15(3):532–4, 536–7.

  21. Chen S, Wang X, Zheng S, Li H, Qin S, Liu J, et al. Increased SPC24 in prostatic diseases and diagnostic value of SPC24 and its interacting partners in prostate cancer. Exp Ther Med. 2021;22(3):1–13. https://doi.org/10.3892/etm.2021.10355.

    Article  CAS  Google Scholar 

  22. Wang W, Zhang W, Hu Y. Identification of keygenes, miRNAs and miRNA-mRNA regulatory pathways for chemotherapy resistance in ovarian cancer. PeerJ. 2021;9: e12353. https://doi.org/10.7717/peerj.12353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tayebi-Khorami M, Chegeni N, Tahmasbi-Birgani M, Danyaei A, Fardid R, Zafari J. Enhancement of cisplatin sensitivity by microwave radiation in ovarian cancer cells. Pharm Sci. 2022;28(2):295–303. https://doi.org/10.34172/PS.2021.51.

    Article  CAS  Google Scholar 

  24. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13:134. https://doi.org/10.1186/1471-2105-13-134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/METH.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  26. Lánczky A, Győrffy B. Web-based survival analysis tool tailored for medical research (KMplot): development and implementation. J Med Internet Res. 2021;23(7): e27633. https://doi.org/10.2196/27633.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Stewart C, Ralyea C, Lockwood S. Ovarian cancer: an integrated review. Semin Oncol Nurs. 2019;35(2):151–6. https://doi.org/10.1016/j.soncn.2019.02.001.

    Article  PubMed  Google Scholar 

  28. Yang X, Zhu S, Li L, Zhang L, Xian S, Wang Y, et al. Identification of differentially expressed genes and signaling pathways in ovarian cancer by integrated bioinformatics analysis. Onco Targets Ther. 2018;11:1457–74. https://doi.org/10.2147/OTT.S152238.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Modugno F, Laskey R, Smith AL, Andersen CL, Haluska P, Oesterreich S. Hormone response in ovarian cancer: time to reconsider as a clinical target? Endocr Relat Cancer. 2012;19(6):R255–79. https://doi.org/10.1530/ERC-12-0175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sieh W, Köbel M, Longacre TA, Bowtell DD, DeFazio A, Goodman MT, et al. Hormone-receptor expression and ovarian cancer survival: an Ovarian Tumor Tissue Analysis consortium study. Lancet Oncol. 2013;14(9):853–62. https://doi.org/10.1016/S1470-2045(13)70253-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Luo H, Li S, Zhao M, Sheng B, Zhu H, Zhu X. Prognostic value of progesterone receptor expression in ovarian cancer: a meta-analysis. Oncotarget. 2017;8(22):36845–56. https://doi.org/10.18632/oncotarget.15982.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tan J, Song C, Wang D, Hu Y, Liu D, Ma D, et al. Expression of hormone receptors predicts survival and platinum sensitivity of high-grade serous ovarian cancer. Biosci Rep. 2021;41(5):BSR20210478. https://doi.org/10.1042/BSR20210478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou J, Yu Y, Pei Y, Cao C, Ding C, Wang D, et al. A potential prognostic biomarker SPC24 promotes tumorigenesis and metastasis in lung cancer. Oncotarget. 2017;8(39):65469–80. https://doi.org/10.18632/oncotarget.18971.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang J, Chen X, Wang J, Zhang P, Han X, Zhang Y, et al. Bioinformatics analysis of prognostic value of SPC24 in ccRCC and Pan-cancer. Int J Gen Med. 2022;15:817–36. https://doi.org/10.2147/IJGM.S348859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kaneko N, Miura K, Gu Z, Karasawa H, Ohnuma S, Sasaki H, et al. siRNA-mediated knockdown against CDCA1 and KNTC2, both frequently overexpressed in colorectal and gastric cancers, suppresses cell proliferation and induces apoptosis. Biochem Biophys Res Commun. 2009;390(4):1235–40. https://doi.org/10.1016/j.bbrc.2009.10.127.

    Article  CAS  PubMed  Google Scholar 

  36. Jayson GC, Kohn EC, Kitchener HC, Ledermann JA. Ovarian cancer. Lancet. 2014;384(9951):1376–88. https://doi.org/10.1016/S0140-6736(13)62146-7.

    Article  PubMed  Google Scholar 

  37. Brachova P, Mueting SR, Carlson MJ, Goodheart MJ, Button AM, Mott SL, et al. TP53 oncomorphic mutations predict resistance to platinum- and taxane-based standard chemotherapy in patients diagnosed with advanced serous ovarian carcinoma. Int J Oncol. 2015;46(2):607–18. https://doi.org/10.3892/ijo.2014.2747.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang Y, Cao L, Nguyen D, Lu H. TP53 mutations in epithelial ovarian cancer. Transl Cancer Res. 2016;5(6):650–63. https://doi.org/10.21037/TCR.2016.08.40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

The authors declare that no funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

HAN, MN, HMA, and BR contributed to the study conception and design. BR and MAA contributed to specimen and data collection. MAN performed the experiments. HAN, MN, HMA, BR, and MAN analyzed the experiment results. MAN wrote the first draft of the manuscript. HAN, MN, HMA, and BR revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mai A. Nasser.

Ethics declarations

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Data Availability

All data analyzed during this study are included in this article and its supplementary information files.

Ethics Approval

This case–control study was performed in line with the Declaration of Helsinki. The study’s protocol gained approval from the “Institutional Review Board (IRB)” of the Faculty of Medicine, Mansoura University, Egypt (code number: MDP.20.11.48).

Consent to Participate

Written informed consent was obtained from all participants.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

40944_2024_853_MOESM1_ESM.docx

Supplementary file1 (DOCX 14 KB) Supplementary Table 1 ROC curve analysis of NDC80, NUF2, SPC24, and SPC25 in ovarian cancer diagnosis.

40944_2024_853_MOESM2_ESM.docx

Supplementary file2 (DOCX 14 KB) Supplementary Table 2 ROC curve analysis of NDC80 complex genes (two-gene combinations) in ovarian cancer diagnosis.

40944_2024_853_MOESM3_ESM.docx

Supplementary file3 (DOCX 21 KB) Supplementary Table 3 Association between the mRNA expression of NDC80 complex genes and clinicopathological parameters of the studied OC patients.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasser, M.A., Refky, B., Abdeen, H.M. et al. Expression of Nuclear Division Cycle 80 Complex Genes in Ovarian Cancer and Correlation with the Clinicopathological Features and Survival Outcomes. Indian J Gynecol Oncolog 22, 68 (2024). https://doi.org/10.1007/s40944-024-00853-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40944-024-00853-6

Keywords

Navigation