Skip to main content

Advertisement

Log in

Hydrochemical and isotopic assessment of a stressed multilayer aquifer in the Moroccan eastern High Atlas

  • Original Article
  • Published:
Sustainable Water Resources Management Aims and scope Submit manuscript

Abstract

Water pollution is an increasing global concern affecting millions of people around the world, especially in arid to semi-arid areas. Management of water resources has become a crucial requirement for present times and specifically for future decades due to its detrimental impact on populations. The eastern High Atlas represents a demonstrative situation to highlight the problems in water-stressed areas. The eastern High Atlas of Morocco has a semi-arid climate and low rainfall (< 200 mm), irregular in time and space. The hydrology of the studied basin is characterized by intermittent flows and frequent, sometimes intense, limited floods. The main aquifer corresponds to the Plio-Quaternary deposits containing an unconfined groundwater of low thickness, from 3 to more than 30 m. This aquifer is controlled by the Paleozoic basement—Mesozoic to Quaternary cover interface. The hydrogeological system is located in a structurally complex area. The fractured and weathered surface part of the basement, directly in contact with the cover deposits, is also permeable. This system is mainly recharged by the depletion of the seasonal groundwater which take place in the Mesozoic landforms during rainy periods. In this semi-arid area, we show that the water resources and their qualities are highly dependant on the climatic conditions and water–rock interaction. The 2H and 18O isotopes indicate that the recharge of the Plio-Quaternary aquifer is mainly through precipitation on the summits of the NW part of the basin. The 3H isotope reveals that the waters in the basin are less than 50 years old, implying a rapid turnover. The reduced potential of the groundwater and its quality of medium to high alkalinity, limit its use for drinking and irrigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Modified from Zelmou map at 1/200000 and 1/50000, Oujda map at 1/500000; Du Dresnay et al. 1977; Houari 2003; Pelleter et al. 2008; Amar et al. 2012). (q2) modern alluvium, (q1) sandstone–carbonate colluvium and ancient alluvial terraces, (p2) lacustrine limestones (p1) sandstone-conglomerate deposits, (C) marls, gypsum clays and red sandstones, (Jm) limestones and marls, (l4) limestones, (l3) limestone banks and reef complex, (l2) limestone in ryhtm banks, (l1) limestone and massive dolomites, (T) basalts and shales, (s) black phtanites, (or) quartzites and green schistes, (€3) sandy schistes, (€2) satin and sandy schistes, (€1) arkosic sandstones, limestones and dolomites, (X2) pyroclastic deposits, (X1) satin schistes, (Xi) undifferentiated Precambrian basement, (AECF) Ain Ech Chair Fault, (MF) Mechgoug Fault, (SAF) South Atlasic Fault

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdelfadel F, Hilali M, Fontaine C, El Albani A, Mahboub A, Eloy L, Labanowski J, Benaissi L, Razack M (2020) Hydrogeology of a complex aquifer system in semi-arid mountainous region: the eastern upper guir basin in the high atlas (Morocco). Water 12:2849. https://doi.org/10.3390/w12102849

    Article  Google Scholar 

  • Aghazadeh N, Mogaddam AA (2010) Assessment of groundwater quality and its suitability for drinking and agricultural uses in the Oshnavieh Area, Northwest of Iran. J Environ Prot 01:30. https://doi.org/10.4236/jep.2010.11005

    Article  Google Scholar 

  • Al Yacoubi L, Bouchaou L, Jaillard E, Masrour M, Brahim A, El Mouden A, Schneider J, Reichert B (2017) Impact of rock-water interactions and recharge on water resources quality of the Agadir-Essaouira basin, southwestern Morocco. Arab J Geosci 10(169):1–16. https://doi.org/10.1007/s12517-017-2968-2

    Article  Google Scholar 

  • Assouline S, Narkis K, Gherabli R, Lefort P, Prat M (2014) Analysis of the impact of surface layer properties on evaporation from porous systems using column experiments and modified definition of characteristic length. Water Resour Res 50:3933–3955. https://doi.org/10.1002/2013WR014489

    Article  Google Scholar 

  • Baldassare G, Pagliarulo P, Zuffianò LE (2011) Water composition and minerals equilibria at the Syri i Kalter spring and in the Bistrica river (South Albania). Water Resour 38:662–669. https://doi.org/10.1134/S0097807811050022

    Article  Google Scholar 

  • Banks D, Frengstad B (2006) Evolution of groundwater chemical composition by plagioclase hydrolysis in Norwegian anorthosites. Geochim Cosmochim Acta 70:1337–1355. https://doi.org/10.1016/j.gca.2005.11.025

    Article  Google Scholar 

  • Bariand P, Cesbron F, Geffroy J (2005) Les minéraux: leurs gisements, leurs associations, Tome 2. ed. Minéraux et fossiles, Hors-série N°21.

  • Barkaoui AE, Zarhloule Y, Rimi A, Verdoya M, Bouri S (2014) Hydrogeochemical investigations of thermal waters in the northeastern part of Morocco. Environ Earth Sci 71(4): 1767–80. https://doi.org/10.1007/s12665-013-2582-x.0.

  • Benrabah S, Attoui B, Hannouche M (2016) Characterization of groundwater quality destined for drinking water supply of Khenchela City (eastern Algeria). J Water Land Dev 30:13–20. https://doi.org/10.1515/jwld-2016-0016

    Article  Google Scholar 

  • Bernardin C, Cornée J-J, Corsini M, Mayol S, Muller J, Tayebi M (1988) Variations d’épaisseur du Cambrien moyen en Meseta marocaine occidentale: signification géodynamique des données de surface et de subsurface. Can J Earth Sci 25:2104–2117. https://doi.org/10.1139/e88-194

    Article  Google Scholar 

  • Bolata M (1995) Etude géologique de la région de Zelmou (Haut atlas oriental, Maroc). Univ, Mohammed V, Rabat

    Google Scholar 

  • Bolle H-J (2002) Mediterranean climate: variability and trends. Springer -Verlag.

  • Boschetti T, Cifuentes J, Lacumin P, Selmo E (2019) Local meteoric water line of northern chile (18°S–30°S): an application of error-in-variables regression to the oxygen and hydrogen stable isotope ratio of precipitation. Water 11: 791. https://doi.org/10.3390/w11040791.

  • Boschetti T, Venturelli G, Toscani L, Barbieri M, Mucchino C (2005) The Bagni di Lucca thermal waters (Tuscany, Italy): an example of Ca-SO4 waters with high Na/Cl and low Ca/SO4 ratios. J Hydrol 307: 270–293. https://doi.org/10.1016/j.jhydrol.2004.10.015.

  • Bouchaou L, Michelot JL, Vengosh A, Hsissou Y, Qurtobi M, Gaye CB, Bullen TD, Zuppi GM (2008) Application of multiple isotopic and geochemical tracers for investigation of recharge, salinization, and residence time of water in the Souss-Massa aquifer, southwest of Morocco. J Hydrol 352:267–287. https://doi.org/10.1016/j.jhydrol.2008.01.022

    Article  Google Scholar 

  • Bouchaou L, Qurtobi M, Michelot JL, Zine N, Gaye CB, Aggarwal PK, Marah H, Zerouali A, Taleb H, Vengosh A (2009) Origin and residence time of the groundwater in the Tadla basin (Morocco) using multiple isotopic and chemical tools. J Hydrol 379:323e338

  • Bouchaou L, Warner NR, Tagma T, Hssaisoune M, Vengosh A (2017) The origin of geothermal waters in Morocco: multiple isotope tracers for delineating sources of water-rock interactions. Appl Geochem 84:244–253. https://doi.org/10.1016/j.apgeochem.2017.07.004

    Article  Google Scholar 

  • Bouimouass H, Fakir Y, Tweed S, Leblanc M (2020) Groundwater recharge sources in semiarid irrigated moutains fronts. Hydrol Process 34:1598–1615

    Article  Google Scholar 

  • Caia J, Huvelin P (1980) Géologie des gites minéraux marocains: baryum et strontium. Notes Et Mémoires Du Service Géologique Du Maroc 1:271–308

    Google Scholar 

  • Choubert G, Marçis J, Suter G (1954) Carte géologique Maroc (1/500000), feuille Oujda n°5.

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703. https://doi.org/10.1126/science.133.3465.1702

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468. https://doi.org/10.1111/j.2153-3490.1964.tb00181.x

    Article  Google Scholar 

  • Decarreau A, Vigier N, Pálková H, Petit S, Vieillard P, Fontaine C (2012) Partitioning of lithium between smectite and solution: an experimental approach. Geochim Cosmochim Acta 85:314–325. https://doi.org/10.1016/j.gca.2012.02.018

    Article  Google Scholar 

  • Du Dresnay R, Agard J, Schmitt M, Lebedeff V, Dubar GR (1977) Carte géologique du Haut Atlas d’Anoual-Bouanane (Haut Atlas oriental) au 1: 200000. Notes et Mémoires du Service Géologique du Maroc 46.

  • Dregne HE (1991) Global status of desertification. Ann Arid Zones 30.

  • Elango L, Kannan R (2007) Chapter 11 Rock–water interaction and its control on chemical composition of groundwater, in: Developments in Environmental Science. Elsevier, pp 229–243. https://doi.org/10.1016/S1474-8177(07)05011-5

  • Ellouz N, Patriat M, Gaulier J-M, Bouatmani R, Sabounji S (2003) From rifting to alpine inversion: mesozoic and cenozoic subsidence history of some Moroccan basins. Sed Geol 156:185–212. https://doi.org/10.1016/S0037-0738(02)00288-9

    Article  Google Scholar 

  • Eyrolle F, Ducros L, Le Dizès S, Beaugelin-Seiller K, Charmasson S, Boyer P, Cossonnet C (2018) An updated review on tritium in the environment. J Environ Radioact 181:128–137. https://doi.org/10.1016/j.jenvrad.2017.11.001

    Article  Google Scholar 

  • Famiglietti JS (2014) The global groundwater crisis. Nat Clim Chang 4:945–948. https://doi.org/10.1038/nclimate2425

    Article  Google Scholar 

  • Faure H, Fontes J-C, Gischler CE, Mook WG, Vogel JC (1970) Un exemple d’étude d’hydrogéologie isotopique en pays semi-aride, le bassin du Lac Tchad. J Hydrol 10:141–150. https://doi.org/10.1016/0022-1694(70)90184-8

    Article  Google Scholar 

  • Gamo M, Shinoda M, Maeda T (2013) Classification of arid lands, including soil degradation and irrigated areas, based on vegetation and aridity indices. Int J Remote Sens 34:6701–6722. https://doi.org/10.1080/01431161.2013.805281

    Article  Google Scholar 

  • Gasquet D, Cheilletz A (2009) L’hydrothermalisme : un phénomène cyclique dans les temps géologiques. Conséquences pour la prospection minière au Maroc. Collection EDYTEM Cahiers De Géographie 9:49–56

    Article  Google Scholar 

  • Giordano M (2009) Global Groundwater? Issues and solutions. Annu Rev Environ Resour 34:153–178. https://doi.org/10.1146/annurev.environ.030308.100251

    Article  Google Scholar 

  • Haddoumi H, Charrière A, Andreu B, Mojon P-O (2008) Les dépôts continentaux du Jurassique moyen au Crétacé inférieur dans le Haut Atlas oriental (Maroc) : paléoenvironnements successifs et signification paléogéographique. Carnets de Géologie CG2008_A06, 29 p.

  • Hanshaw BB, Back W, Deike RG (1971) A geochemical hypothesis for dolomitization by ground water. Econ Geol 66:710–724. https://doi.org/10.2113/gsecongeo.66.5.710

    Article  Google Scholar 

  • Hefferan K, Soulaimani A, Samson SD, Admou H, Inglis J, Saquaque A, Latifa C, Heywood N (2014) A reconsideration of Pan African orogenic cycle in the Anti-Atlas Mountains, Morocco. J Afr Earth Sc 98:34–46. https://doi.org/10.1016/j.jafrearsci.2014.03.007

    Article  Google Scholar 

  • Houari MR (2003) Etude structurale de la boutonnière paléozoïque de Tamlet (Haut Atlas oriental): Sa place dans la chaîne hercynienne du Maroc. Thèse Université Mohamed Premier, Oujda, p 255

    Google Scholar 

  • Houari M-R, Hoepffner C (2003) Late Carboniferous dextral wrench-dominated transpression along the North African craton margin (Eastern High-Atlas, Morocco). J Afr Earth Sc 37:11–24. https://doi.org/10.1016/S0899-5362(03)00085-X

    Article  Google Scholar 

  • Houari MR, Hoepffner C (2000) Structures des terrains paléozoïques à la limite sud de la chaîne hercynienne du Maroc: Haut Atlas oriental. Africa Geosci Rev 7:39–53

    Google Scholar 

  • Huon S, Piqué A, Clauer N (1987) Etude de l’orogenèse hercynienne au Maroc par la datation K-Ar de l’évolution métamorphique de schistes ardoisiers. Study of the Hercynian orogeny in Morocco by the K-Ar isotopic datation of metamorphic evolution in slates. Sciences Géologiques, Bulletins Et Mémoires 40:273–284. https://doi.org/10.3406/sgeol.1987.1766

    Article  Google Scholar 

  • Kamai T, Assouline S (2018) Evaporation from deep aquifers in arid regions: analytical model for combined liquid and vapor water fluxes. Water Resour Res 54:4805–4822. https://doi.org/10.1029/2018WR023030

    Article  Google Scholar 

  • Karanth KR (1987) Ground water assessment: development and management, New Delhi. ed. Tata McGraw-Hill.

  • Ketata M, Gueddari M, Bouhlila R (2011) Use of geographical information system and water quality index to assess groundwater quality in El Khairat deep aquifer (Enfidha, Central East Tunisia). Arab J Geosci 5:1379–1390. https://doi.org/10.1007/s12517-011-0292-9

    Article  Google Scholar 

  • Klimas A, Mališauskas A (2008) Boron, fluoride, strontium and lithium anomalies in fresh groundwater of Lithuania. Geologija 50(2):114–124

    Article  Google Scholar 

  • Koss V, Kim JI (1990) Modeling of strontium sorption and speciation in a natural sediment-groundwater system. J Contam Hydrol 6:267–280. https://doi.org/10.1016/0169-7722(90)90021-8

    Article  Google Scholar 

  • Krimissa S, Michelot J-L, Bouchaou L, Mudry J, Hsissou Y (2004) Sur l’origine par altération du substratum schisteux de la minéralisation chlorurée des eaux d’une nappe côtière sous climat semi-aride (Chtouka-Massa, Maroc). CR Geosci 336:1363–1369

    Article  Google Scholar 

  • Laville E, Petit J-P (1984) Role of synsedimentary strike-slip faults in the formation of Moroccan Triassic basins. Geology 12:424–427

    Article  Google Scholar 

  • Lehmann P, Assouline S, Or D (2008) Characteristic lengths affecting evaporative drying of porous media. Phys Rev E 77:056309. https://doi.org/10.1103/PhysRevE.77.056309

    Article  Google Scholar 

  • Mansour AS (2015) Sedimentology and environmental interpretation of carbonate deposits associating the evaporites-bearing Miocene succession northern Western Desert, Egypt. Carbonates Evaporites 30: 167–179. https://doi.org/10.1007/s13146-014-0200-y.

  • Marcé A (1975) Contribution des méthodes isotopiques à l’étude des modalités d’alimentation et de renouvellement des réserves souterraines du Maroc. Rap. 75SGN447 LAB, BRGM, Orléans 131.

  • Marshall WL, Warakomski JM (1980) Amorphous silica solubilities—II. Effect of aqueous salt solutions at 25 °C. Geochim Cosmochim Acta 44:915–924. https://doi.org/10.1016/0016-7037(80)90281-1

    Article  Google Scholar 

  • Massuel S, Riaux J (2017) Groundwater overexploitation: why is the red flag waved? Case study on the Kairouan plain aquifer (central Tunisia). Hydrogeol J 25:1607–1620. https://doi.org/10.1007/s10040-017-1568-2

    Article  Google Scholar 

  • Mokeddem I, Belhachemi M, Merzougui T, Nabbou N, Lachache S (2018) Hydrochemical assessment and groundwater pollution parameters in arid zone: Case of the Turonian aquifer in Béchar region, southwestern Algeria. J Water Land Dev.

  • N'da AB, Bouchaou L, Reichert B, Hanich L, Ait Brahim Y, Chehbouni A, Beraaouz EH, Michelot J-L (2016) Isotopic signatures for the assessment of snow water resources in the Moroccan high Atlas moutains: contribution to surface and groundwater recharge. Environ Earth Sci 75: 755 https://doi.org/10.1007/s12665-016-5566-9.

  • Ouanaimi H, Soulaimani A, Baidder L, Karim M, Kaoukaya A, Amhoud H, Hibti M, Boudad L, Eddebbi A, Ettachfini EM, Haddoumi H, Hilali M, Chbani B (2020) Carte géologique Maroc (1/50 000) feuille de Zelmou. Notes et Mémoires du Service Géologique du Maroc 599.

  • Pelleter E, Cheilletz A, Gasquet D, Mouttaqi A, Annich M, Hakour AE, Féraud G (2008) The variscan tamlalt-menhouhou gold deposit, Eastern High-Atlas, Morocco. J African Earth Sci Investigations Ore Deposits West African Craton Surrounding Areas 50:204–214. https://doi.org/10.1016/j.jafrearsci.2007.09.008

    Article  Google Scholar 

  • Plummer LN, Busby JF, Lee RW, Hanshaw BB (1990) Geochemical Modeling of the madison aquifer in parts of montana, wyoming, and South Dakota. Water Resour Res 26:1981–2014. https://doi.org/10.1029/WR026i009p01981

    Article  Google Scholar 

  • Rajlich P, Legierski J, Šmejkal V (1983) Stable isotope study of base metal deposits from the Eastern High Atlas, Morocco. Miner Deposita 18:161–171. https://doi.org/10.1007/BF00206206

    Article  Google Scholar 

  • Ramakrishnaiah CR, Sadashivaiah C, Ranganna G (2009) Assessment of water quality index for the groundwater in Tumkur Taluk, Karnataka State, India. E-J Chem 6:523–530. https://doi.org/10.1155/2009/757424

    Article  Google Scholar 

  • Richards LA (1954) Diagnosis and improvement of saline and alkali soils. Agriculture Handbook 60:210–220

    Google Scholar 

  • Roche M, Brunet-Moret Y, Cruette J (1975) Etude hydrologique des hauts bassins du Guir et du Bouanane (Rapport du Ministère des Travaux Publics et Communications, Direction de l’Hydraulique. Office de la Recherche Scientifique et Technique Outre-Mer).

  • Russak A, Sivan O, Yechieli Y (2016) Trace elements (Li, B, Mn and Ba) as sensitive indicators for salinization and freshening events in coastal aquifers. Chem Geol 441:35–46. https://doi.org/10.1016/j.chemgeo.2016.08.003

    Article  Google Scholar 

  • Schell WR, Sauzay G (1974) World distribution of environmental tritium, physical behaviour of radioactive contaminants in the atmosphere. IAEA. Washington Univ., Seattle (USA). Lab. of Radiation Ecology, Vienna.

  • Schilling J, Freier KP, Hertig E, Scheffran J (2012) Climate change, vulnerability and adaptation in North Africa with focus on Morocco. Agr Ecosyst Environ 156:12–26

    Article  Google Scholar 

  • Soulaimani A, Bouabdelli M, Piqué A (2003) The upper neoproterozoic-lower cambrian continental extension in the Anti-Atlas (Morocco). Bulletin De La Société Géologique De France 174:83–92

    Article  Google Scholar 

  • Tabyaoui H, Ait Brahim L, Tahiri A, Chotin P (1999) Evolution tectono-sédimentaire du Nord-Est du Maroc au cours du Trias supérieur: apport des données microtectoniques. Géologie Méditerranéenne 26:231–243

    Article  Google Scholar 

  • Taylor RG, Scanlon B, Döll P, Rodell M, van Beek R, Longuevergne L, LeBlanc M, Famiglietti JS, Edmunds M, Konikow L, Green T, Chen J, Taniguchi M, Bierkens MFP, MacDonald A, Fan Y, Maxwell R, Yechieli Y, Gurdak J, Shamsudduha M, Hiscock K, Yeh P, Holman I (2012) Groundwater and climate change. Nat Clim Change 27. https://doi.org/10.1038/nclimate1744

  • Wada Y, van Beek LPH, van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett 37, n/a-n/a. https://doi.org/10.1029/2010GL044571

  • Walvoord MA, Plummer MA, Phillips FM, Wolfsberg AV (2002) Deep arid system hydrodynamics 1. Equilibrium states and response times in thick desert vadose zones. Water Resources Res 38: 44–1–44–15. https://doi.org/10.1029/2001WR000824

  • Warme JE (1988) Jurassic carbonate facies of the central and eastern High Atlas rift, Morocco, in: The Atlas System of Morocco, V. Jacobshagen Ed. Springer Verlag, Berlin, pp. 169–199.

  • WHO (2017) Guidelines for drinking-water quality, 4th edition, incorporating the 1st addendum. ed. World Health Organization.

  • Xing X, Li X, Ma X (2019) Capillary rise and saliferous groundwater evaporation: effects of various solutes and concentrations. Hydrol Res 50:517–525. https://doi.org/10.2166/nh.2019.057

    Article  Google Scholar 

  • Zamrane Z, Turki I, Laignel B, Mahé G, Laftouhi N-E (2016) Characterization of the interannual variability of precipitation and streamflow in Tensift and Ksob Basins (Morocco) and Links with the NAO. Atmosphere 7:84. https://doi.org/10.3390/atmos7060084

    Article  Google Scholar 

  • Zarhloule Y (2004) Le gradient géothermique profond du Maroc : détermination et cartographie. Bulletin de l’Institut Scientifique, Section Sciences de la Terre 11–21.

  • Zhang J, Felzer BS, Troy TJ (2016) Extreme precipitation drives groundwater recharge: the Northern High Plains Aquifer, central United States, 1950–2010. Hydrol Process 30:2533–2545. https://doi.org/10.1002/hyp.10809

    Article  Google Scholar 

Download references

Acknowledgements

University of Poitiers, Coimbra fellowship and Agence de Bassin Hydraulique from Errachidia are acknowledged for collaboration and support. We would like to thanks international relations department of the University of Poitiers, Ch. Fernandez, V. Soulard, M. Grosdennier and M-A Masselin for help and support. For assistance, we acknowledge the technical and administrative staffs of the University of Poitiers and UMR-CNRS 7285-IC2MP.

Funding

This work was supported by the University of Poitiers and Coimbra fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrazak El Albani.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4445 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelfadel, F., Fontaine, C., Hilali, M. et al. Hydrochemical and isotopic assessment of a stressed multilayer aquifer in the Moroccan eastern High Atlas. Sustain. Water Resour. Manag. 8, 76 (2022). https://doi.org/10.1007/s40899-022-00662-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40899-022-00662-9

Keywords

Navigation